First midterm QMF: Actu. 468 (25%) Sunday, November 6, 2016 / Rabi I 6, 1438 (1 – 2:30) pm

Exercise 1. (6 marks)

We specify below the basic elements of a financial market with T periods:

- A finite probability space $\Omega = \{\omega_1, \ldots, \omega_k\}$ with k elements.
- A probability measure P on Ω , such that $P(\omega) > 0$ for all $\omega \in \Omega$.
- A riskless asset (a saving account) $S_t^0, t \in \{0, 1, 2, \dots T\}$ such that $S_0^0 = 1$ with a constant interest rate r.
- A d-dimensional price process S_t , $t \in \{0, 1, 2, ..., T\}$ where $S_t = (S_t^0, S_t^1, ..., S_t^d)$ and S_t^i stands for the price of the asset i at time t.
- 1. (1 mark) Give the definition of a portfolio in this market
- 2. (1 mark) Recall the self-financing property for this model
- 3. (1 mark) Give the definition of attainable payoffs for this model
- 4. (1 mark) Give the definition of a RNPM (risk neutral probability measure) in this setting.
- 5. (1 mark) Give the definition of a complete market
- 6. (1 mark) Give the definition of an incomplete market

Exercise 2. (6 marks)

Assume that T = 1 and k = 2, $r = \frac{1}{4}$. Let $(S_t^1)_{t \in \{0,1\}}$ be the price of a stock with initial price $S_0^1 = 100$ SAR and has two possible values a time T = 1:

$$S_1^1(\omega) = \begin{cases} 200 \text{ SAR} & \text{if } \omega = \omega_1 \\ 75 \text{ SAR} & \text{if } \omega = \omega_2. \end{cases}$$

Denote by F the payoff of an European put option with strike price $K=150\ SAR$.

- 1. (1 mark) Give the value of F at time T = 1.
- 2. (1 mark) Is the market $(S_t^0, S_t^1)_{t \in \{0,1\}}$ arbitrage free.
- 3. (1 mark) Is the market $(S_t^0, S_t^1)_{t \in \{0,1\}}$ complete.
- 4. (1 mark) Compute the price of the put option at time 0 using the RNPM.
- 5. (1 mark) Is the option F attainable?
- 6. (1 mark) If yes find its replicating portfolio.

Solution:

Exercise 3. (7 marks)

Now assume that k = 3, r = 0, $S_0^1 = 100$ SAR and assume that the price of the stock S_1^1 is given by

$$S_1^1(\omega) = \begin{cases} 200 \text{ SAR} & \text{if } \omega = \omega_1 \\ 150 \text{ SAR} & \text{if } \omega = \omega_2 \\ 75 \text{ SAR} & \text{if } \omega = \omega_3. \end{cases}$$

- 1. (2 mark) Find RNPM if any for the model $(S_t^0, S_t^1)_{t \in \{0,1\}}$?
- 2. (1 mark) Is the market $(S_t^0, S_t^1)_{t \in \{0,1\}}$ arbitrage free ?
- 3. (1 mark) Is the market $(S_t^0, S_t^1)_{t \in \{0,1\}}$ complete ?
- 4. (1 mark) Find the set of attainable contingent claims.
- 5. (1 mark) Show that the value at time zero of an attainable claim is the same for all RNPM.
- 6. (1 mark) Give an example of non attainable asset.

Exercise 4. (6 marks)

Assume that k = 3, r = 0 and consider now a financial market on which are negotiated two stocks with prices $(S_t^1)_{t \in \{0,1\}}$ and $(S_t^2)_{t \in \{0,1\}}$, their values at time 1 are given by:

$$S_0^1 = 10$$
 and $S_1^1(\omega) = \begin{cases} 20 \text{ SAR} & \text{if } \omega = \omega_1 \\ 15 \text{ SAR} & \text{if } \omega = \omega_2 \\ 7.5 \text{ SAR} & \text{if } \omega = \omega_3. \end{cases}$

and

$$S_0^2 = 4$$
 and $S_1^2(\omega) = \begin{cases} 5 \text{ SAR} & \text{if } \omega = \omega_1 \\ 3 \text{ SAR} & \text{if } \omega = \omega_2 \\ 4 \text{ SAR} & \text{if } \omega = \omega_3. \end{cases}$

- 1. (2 mark) Find a RNPM for the model $(S_t^0, S_t^1, S_t^2)_{t \in \{0,1\}}$.
- 2. (1 mark) Is the model $(S_t^0, S_t^1, S_t^2)_{t \in \{0,1\}}$ arbitrage free and complete ?
- 3. (1 mark) Give an example of an attainable contingent claim for this model?
- 4. (1 mark) Give its price at time zero
- 5. (1 mark) Find its replicating portfolio.

Exercise 5. (8 marks)

Consider the following probability space ($\Omega = \{\omega_1, \ \omega_2, \dots, \ \omega_5\}$, on which is defined two period market model consisting of a riskless asset (bond or saving account) with price $S_t^0 = 1$ for t = 0, 1, 2 (for simplicity assume that r = 0) and two risky assets (stocks) with prices S^1 and S^2 given by:

t	S_t^0	S_t^1					S_t^2				
		ω_1	ω_2	ω_3	ω_4	ω_5	ω_1	ω_2	ω_3	ω_4	ω_5
0	1	6	6	6	6	6	3.75	3.75	3.75	3.75	3.75
1	1	5	5	5	7	7	3	3	3	4.5	4.5
2	1	3	4	8	6	8	2	3	4	4	5

We denote for $t \in \{0,1\}$ $\mathcal{F}_t = \sigma(\{S_k^0, S_k^1, S_k^2\}, k \leq t)$ a set which describes all the in formations available in the market up to time t and $\mathcal{F}_2 = \mathcal{P}(\Omega)$ (the power set of $\mathcal{P}(\Omega)$).

- 1. (1 mark) Find \mathcal{F}_0 and \mathcal{F}_1 . (remember that you need this objects to compute conditional expectations)
- 2. (2 marks) Find RNPM for this model if any?
- 3. (1 mark) Is this market model arbitrage free and complete? Assume that F is random variable on Ω given by:

t	F									
	ω_1	ω_2	ω_3	ω_4	ω_5					
2	1	$\frac{1}{4}$	3	2	0					

- 4. (2 marks) Calculate the values of F at times 0 and 1.
- 5. (2 marks) Find a replicating portfolio of F for the period 1 and the period 2.