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Abstract
Nowadays, Epilepsy is one of the chronic severe neurological diseases; it has been identified with the help of brain signal 
analysis. The brain signals are recorded with the help of electrocorticography (ECoG), Electroencephalogram (EEG). From 
the brain signal, the abnormal brain functions are a more challenging task. The traditional systems are consuming more time 
to predict unusual brain patterns. Therefore, in this paper, effective bio-inspired machine learning techniques are utilized 
to predict the epilepsy seizure from the EEG signal with maximum recognition accuracy. Initially, patient brain images are 
collected by placing the electrodes on their scalp. From the brain signal, different features are extracted that are analyzed 
with the help of the Krill Herd algorithm for selecting the best features. The selected features are processed using an artificial 
alga optimized general Adversarial Networks. The network recognizes the intricate and abnormal seizure patterns. Then the 
discussed state-of-art methods are examined simulation results.

Keywords Brain informatics · Epilepsy · Electroencephalogram (EEG) · Krill herd algorithm · Artificial alga optimized 
general adversarial networks

1 Introduction

Epilepsy (Yan et al. 2015) is one of the neurological disor-
ders that have unique characteristics and founded in Babylo-
nian medicine text. The epilepsy disorder not only identified 
in human beings; it also founded in all species like rats, cats, 
and dogs. Epilepsy is spread all over the world because of 
abnormal or disturbed electrical activities (Andrzejak et al. 
2001) in the brain. The brain signal disturb happened due to 
the low blood sugar level, shortage of oxygen at the time of 
childbirth and malformations. Around 50 million peoples are 
affected by this disease, and 100 million peoples are changed 
at least once in their lifespan. Therefore, this disease is most 
dangerous, and burden and the prevalence rate is nearly 
0.5–1% (Chaudhary et al. 2011). The seizure disease is iden-
tified by several symptoms such as momentary conscious-
ness loss, patient behavior, and sensation. According to the 

symptoms, Epilepsy is divided into partial and generalized 
types (Fisher et al. 2017). The Partial seizure is named as a 
focal seizure that is occurred when the cerebral hemisphere 
is affected. It has been divided into simple and complex par-
tial seizures. The complex epilepsy seizure patients are get-
ting confused about recognizing the surrounding activities 
and behave abnormally. The uncomplicated partial seizure 
patients cannot communicate properly, but they do not lose 
their consciousness. The generalized seizure entire brain 
networks are affected very fast, which is classified into non-
convulsive and convulsive (Thurman et al. 2011).

From the analysis, epilepsy seizures are more crucial in 
the medical field to recognize in earlier stage for eliminat-
ing the unwanted complexity. So, different machine learning 
techniques (Siddiqui et al. 2020) are introduced by various 
researchers to examine the biological and health dataset. The 
researchers cover different domains like machine learning 
techniques, artificial intelligence, data mining techniques 
(Aljumah and Siddiqui 2016) to provide better solutions 
while predicting seizure (Devi and Gomathi 2020). Dur-
ing the analysis process, researchers use the various brain 
datasets for predicting the epilepsy lateralization, seizure 
detection, seizure localization, and seizure sates differentiat-
ing process (Gomathi et al. 2019). This process is achieved 
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with the help of multiple methodologies like the random 
forest, decision forest, support vector machine, artificial neu-
ral networks, and decision tree approaches. The discussed 
method efficiency is evaluated using various researcher 
reviews (Shakeel et al. 2019); from that analysis, seizures 
are detected correctly, but the methods did not focus on the 
data difficulties. So, the discussions and literature review are 
extended to covering the deep learning techniques (Mahmud 
et al. 2018) for predicting the abnormal brain pattern by 
resolving the data complexity. The researchers are focused 
on EEG data to examine the brain function using different 
processing steps such as data pre-processing, feature extrac-
tion (Jiao et al. 2019), selection, and classification process. 
From the various stages, feature extraction played a crucial 
role because that used to derive the exact patterns from the 
EEG signal (Boonyakitanont et al. 2020). The extracted pat-
terns are more useful in discovering the brain functions and 
location of the seizure.

Therefore, in this research work, the EEG dataset (Quin-
tero-Rincón et al. 2019) is used to classify the Epilepsy by 
applying the different optimized machine learning tech-
niques. During the analysis process, this work uses different 
datasets such as European Epilepsy Database (https ://www.
epile psy-datab ase.eu/)brain storm  epilepsy dataset (https ://
neuro image .usc.edu/brain storm /Datas etEpi lepsy ), and UCI 
repository dataset (Andrzejak et al. 2001). These datasets 
consist of a massive volume of brain data that helps to rec-
ognize the changes in the brain patterns effectively. From 
the collected information, features are derived and analyzed 
using applying Krill Herd (KH) feature selection algorithm. 
The selected characteristics are further examined with the 
help of an optimized general Adversarial Networks; this 
process helps to predict the seizure effectively. By consid-
ering these methodologies, the following contributions are 
achieved.

• The main intention of the work is to maximizing the sei-
zure detection accuracy by using a massive amount of 
brain datasets (EEG).

• To reducing the seizure prediction time and reducing the 
miss-classification rate using optimized feature selection 
and classification techniques.

• Providing a detailed explanation of feature selection for 
improving the seizure detection process.

• This study helps to give a detailed explanation of the 
feature selection process to improve the overall seizure 
detection efficiency.

• This study used to get the idea of how effectively the 
introduced method works on the different epilepsy data-
set.

The above-discussed contributions are achieved by 
applying the effective machine learning techniques that 

successfully classifies the brain epilepsy. Then the rest of 
the paper is arranged as follows; Sect. 2 discusses the vari-
ous researcher’s works and analyses of the brain epilepsy 
recognition process; Sect. 3 elaborates the detailed working 
process of introduced epilepsy detection. The efficiency of 
the system is evaluated in Sect. 4 and concludes in Sect. 5.

2  Related works

Ahmadi et al. (2020) creating the automatic Epilepsy and 
psychogenic non-epileptic seizures (PNES) detection system 
from EEG microstate and brain features. The authors uti-
lize the short-term electroencephalogram data for analyzing 
the seizures. The EEG recordings are examined depending 
on the microstate features, network functions, and signal 
characteristics. During this process, signals are divided into 
different bands according to the frequency level, from the 
analysis beta group only provides effective results while 
classifying the seizures.

Mera-Gaona et al. (2020) detecting epileptic spikes from 
EEG signals using neural networks and matched filters. The 
EEG signal is collected from different subjects, changes 
present in the brain activities are detected using mentioned 
networks. The identified patterns are matched with a spiked 
template for recognizing the abnormal features effectively. 
Then the efficiency of the system is evaluated using simula-
tion results in which the system ensures 99.26% accuracy 
compared to the existing methods.

Yan et al. (2019) creating an emotion recognition system 
using memory neural networks. This system used to recog-
nize the people’s emotions from the EEG signal by creat-
ing the rhythmic characteristics and EEG temporal memory 
characteristics. The identified EEG features are analyzed 
using a defined network that classifies the people emotions 
according to the arousal and valence. The created system 
proficiency is determined in various time scales, and the 
introduced rhythm characteristics model ensures the effec-
tive results.

Paul et al. (2018) analyzing different seizure detection 
techniques for improving the seizure prediction rate. Dur-
ing this process, brain activities are continuously recorded 
because the seizure-affected ratio is increased drastically in 
65 above-aged people. Therefore different seizure detection 
techniques are examined according to the time–frequency, 
time, empirical mode, frequency, and rational function. By 
considering these techniques, the paper discusses the meth-
ods working process that helps to improve the seizure detec-
tion process in the future.

Rahman et al. (2020) developing the effective multiclass 
EEG signal classification process using the Renyi min-
entropy and wavelet packet transformation approach. Here, 
the BCI competition IV EEG dataset is used to classify the 

https://www.epilepsy-database.eu/)brainstorm
https://www.epilepsy-database.eu/)brainstorm
https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy
https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy
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EEG signal. The collected EEG signal is processed by apply-
ing the wavelet packet transformation process that derives 
the useful features. The extracted features are handled by 
mutual information, Shannon entropy and renyi min-entropy 
approach to select the best features. The selected EEG sig-
nals are examined using various machine-learning tech-
niques that classify the EEG signal successfully. Accord-
ing to different research author opinions, epilepsy detection 
played an important role. Therefore, in this work, the epi-
lepsy detection system is created using optimized machine 
learning techniques. As discussed above, several machine-
learning methods are used to process the extracted EEG fea-
tures without organizing any difficulties. From the various 
researcher opinions, in this work, bio-inspired optimization 
techniques are integrated with deep learning networks to 
recognize Epilepsy effectively.

3  Materials and methods

3.1  Dataset description

The Epilepsy is detected using bio-inspired machine learn-
ing techniques. During the implementation process system, 
use the three different datasets that are discussed as follows.

3.1.1  European Epilepsy Database

The European Epilepsy dataset (https ://www.epile psy-datab 
ase.eu/) is created from Freiburg, Paris, and Coimbra, which 
is one of the largest collections of EEG recordings. Around 
250 patients are analyzed, 2500 seizure-related informa-
tion is gathered. The collected EEG signal has metadata 
information that used to examine the various subclinical 
seizures, clinical manifest, and interictal events. The EEG 

has been recorded up to 150 h with a sample rate. Based on 
the discussion, the collected EEG signal characteristics are 
depicted in Table 1.

3.1.2  Brainstorm EEG dataset

The dataset (https ://neuro image .usc.edu/brain storm /Datas 
etEpi lepsy ) (Fig. 1) collects from the person who affected 
by Epilepsy with dyscognitive, secondarily seizures, and 
sensory seizure around eight years. The brain functions are 
captured with the help of an MRI image, PET image, but 
pathological changes are challenging to identify. Therefore, 
the brain’s electrical activities are recognized using the 
EEG signal from left-frontocentral sharp waves. During the 
recording process 256 Hz, the sampling rate is used along 
with 128 channels and 16 bit A/D converter. The recorded 
EEG signal is pre-processed by using a high-pass filter 
(0.16 Hz-cut off frequency) and a low pass filter (344 Hz-
cut off rate).

3.1.3  UCI‑ Epileptic Seizure Recognition Data Set

This dataset (https ://neuro image .usc.edu/brain storm /Datas 
etEpi lepsy ) is generally used to recognize the epileptic 
seizure; it is pre-processed and re-structured version. The 
dataset is multi-variant; time-series characteristics around 
11,500 instances are presented. Totally 179 attributes are 
offered, which are used to classify the seizure without cre-
ating any difficulties. The EEG recordings are captured 
23.6seconds brain activities and 4097 data points in time 
series. The data was collected from five different activities 
such as seizure activities, tumor located area EEG, healthy 
brain area activities, eye closed EEG recordings, and eye 
open related brain activities are recorded. This collected 
EEG information is processed by applying the bio-inspired 

Table 1  European epilepsy database characteristics

a Type of seizure: SP simple partial, CP complex partial, GTC  generalized tonic–clonic seizure, NC neocortical, H Hippocampal, g electrodes 
grid, d depth, and s strip

Patients Sex Age Type of Seizure H/NC Origin Electrodes Analyzed 
Seizure

Interictal 
duration (h)

1 M 38 SP, CP, GTC H Temporal 3 24
2 F 15 SP, CP NC Frontal G, s 5 24
3 F 26 SP, CP, GT H Temporal D, g, s 5 24
4 M 14 SP, CP NC Frontal G, s 5 24
5 F 16 SP, CP, GTC NC Frontal G, s 3 24
6 M 13 SP, CP NC Temporal G, s 5 24
7 F 31 CP, GTC H Temporo–occipital D, g, s 3 24
8 M 33 SP, CP, GTC NC Temporo–partiental D, g, s 5 24
9 M 44 CP, GTC NC Temporo–occipital G, s 5 24
10 M 31 SP, CP, GTC H and NC Temporal G, s 4 24

https://www.epilepsy-database.eu/
https://www.epilepsy-database.eu/
https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy
https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy
https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy
https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy
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deep learning network; the detailed working process frame-
work is depicted in Fig. 2.

Figure 2 illustrated that a seizure detection framework 
that has several steps, such as data collection, noise removal, 
seizure feature extraction, feature selection, and seizure 
detection. Among these steps, the EEG data collection pro-
cess is explained in Sect. 3.1. The collected data is processed 
by the data preparation process that helps to make the sys-
tem easier to predict the changes in brain activities. Here 
already noise removed EEG signal has been used to remove 

the unwanted information. From the data, different features 
(Islam 2019) are extracted. Here the extracted features are 
listed in Table 2.

Based on Table 2, the features are extracted from the col-
lected EEG signal that is the representation of brain activi-
ties and seizure activities. The gathered EEG signal massive 
in dimension when it comes to the entire dataset. Therefore, 
the dimensionality of the dataset must be reduced by apply-
ing an optimized feature selection process. The detailed fea-
ture selection process is explained as follows.

Fig. 1  Sample brainstorm EEG database

Fig. 2  Seizure detection frame-
work
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3.2  Feature selection

The most crucial process of this work is feature selec-
tion that is performed by applying the krill herd algorithm 
(KH) (Zolghadr-Asli et al. 2018). It is one of the effec-
tive bio-inspired swarm intelligent techniques that work 
according to the krill individuals’ herding behavior. The 
krill individuals are poignant in the multi-dimensional 
search space to identify the close foods. The main rea-
son for choosing the KH algorithm is it is select the fea-
ture similarities also resolve the multi-objective problem 
effectively. In addition to this, the algorithm selects the 
best closest food (features) from the high-density elements 
(groups). Here feature density is one of the critical factors 
because it chose the best solution from features. Suppose 
the KH individuals are close to the food, then the density 
is high, that is, if the feature is close to the seizure detec-
tion process, then the group density is high vice versa. 
In general, the KH algorithm searches each features for 
selecting the best solution based on herd with high fre-
quency (similar group) and select closest centroid (closest 
food). During the feature selection process, the similarity 
between a feature or total distance measure (Mukherjee 
and Mukherjee, 2015; Hofmann et al. 2004)  is used as the 
fitness value. The general working process of the krill herd 
optimization algorithm is described in Fig. 3.

The KH algorithm uses three steps to select the best 
features; first, the krill individual’s movement is induced 

Table 2  Feature extraction

Features Extraction formula

Mean ∑2(n−1)

i=0
i.px+y(i)

Variance ∑n−1

i=0

∑n−1

j=0
(i − �)

2.p(i, j)

Mode Frequent value in the EEG recordings
Median Center value in the EEG recording
Skewness

1

n

∑n

i=1

�
xi−

−
x

std dev(x)

�3

Kurtosis
1

n

∑n

i=1

�
xi−

−
x

std dev(x)

�4

Maximum Min (electrodes info or frequency level)
Minimum Max (electrodes info or frequency level)
Zero-crossing xj < 0andxj+1 > 0 or xj > 0andxj+1 < 0, 

||
|
xj − xj+1

||
|
≥ �, �is threshold value

Energy ∑n−1

i,j=0

�
Pij

�2

Shannon entropy 1

1−�
log

�∑n

i=1
p�
i

�

Sample entropy −log
A�

B�

Approximate entropy Φm(r) − Φm+1(r)

Entropy ∑n−1

i,j=0
−ln

�
Pij

�
Pij

Standard deviation
��∑2(n−1)

i=0
i.px+y(i)

�2

Spectral entropy −
∑P

k=1
akxi−k + yi

Fig. 3  Krill Herd algorithm 
working process
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only other krill individuals (neighboring individuals may 
affect), foraging activity (searching for food resources) 
and random diffusion (net movement of individuals 
according to the feature density region). Initially, the 
 ith krill position is updated using the Lagrangian model 
defined in Eq. (1)

In Eq. (1), i denoted as krill individuals
ith krill motion is represented as Mi - which is computed 

from local swarm density, repulsive density, and target swarm 
density.

Foi Is foraging motion of  ith krill individuals that is calcu-
lated from food location, food attractiveness, last individual 
movement, best fitness value, and foraging speed.

Dpi Is mentioned as physical diffusion of  ith krill individu-
als. Then the individual krill values are obtained from indi-
vidual random direction and maximum diffusion speed. After 
that, krill’s first characteristics, such as movement induced by 
other krill, should be computed.

3.2.1  Krill movement inducement

Krill movement inducement is nothing but finding the closest 
food and helps to increase the density. The movement induce-
ment direction is defined as follows

In Eq.  (2) Mmax is tuning parameter in movement 
inducement

Local swarm density is represented as �i , �local
i

 is ith indi-
vidual neighboring movement, target direction is denoted as 
�
target

i

The inertia weight value is wn

Last updated tuning parameter is Mold
i

During this movement inducement, individuals are repul-
sive tendency, and the local neighboring movement is esti-
mated as follows.

Objective function normalized value is defined as k̂ij , Ki 
is the ith objective function of I neighbor and Kj is the j the 

(1)
dxi

dt
= Mi + Foi + Dpi

(2)Mnew
i

= Mmax�i + wnM
old
i

(3)�i = �local
i

+ �
target

i

(4)𝛼local
i

=

n∑

j=1

k̂ijx̂ij

(5)k̂ij =
Ki − Kj

Kworst − Kbest

neighbor objective function. The worst and best objective func-
tions of ith krill individual is represented as KworstandKbest .  Ith 
individual related position normalized value is x̂ij that is esti-
mated as follows,

Individual krill current position is xi and jth neighbor krill 
position is denoted as xj

Vector normalization is ‖xj − xi‖ And the singularities are 
avoided by small positive values such as � . After finding the 
movement direction, sensing distance is estimated as follows.

Ith krill individuals sensing distance is defined as dei. The 
individuals are treated as neighbors if the two individual dei 
values are minimal when compared to the current value. From 
the computation, the best fitness value is computed from 
Eq. (8), and the solutions are moved towards the best fitness 
value.

Individual’s coefficients are represented as cbest , k̂i,best  ith 
krill individual’s best objective function, ith krill best position 
is x̂i,best , I is the iteration number (current), and the maximum

iteration number is Imax . Once the movement induced is 
identified, then the respective foraging motion should be 
computed.

3.2.2  Foraging motion

Next, KH characteristics are foraging motion, which utilizes 
two processes, namely food location, and current food. The 
food location is identified according to the attractiveness of 
krill individuals. Therefore, the  ith krill individual foraging 
motion is defined as follows.

(6)x̂ij =
‖xj − xi‖

xj − xi + 𝜀

(7)dei =
1

5n

n∑

j=1

xi − xj

(8)𝛼
target

i
= cbestk̂i,bestx̂i,best

(9)cbest = 2

(

rand +
I

Imax

)

(10)Fi = Vf �i + �f F
old
i

(11)�i = �food
i

+ �best
i

(12)𝛽food
i

= cfood�Ki,foodx̂i,food
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where foraging speed tuning parameter is Vf  ,  ith individual 
food location is �i , foraging speed inertia weight value is �f  , 
food attractiveness is �food

i
 , ith krill individuals best objective 

function defined as �best
i

 .  Ith centroid normalized objective 
function is K̂i,food , N is the number of krill individuals of ith 
position. From the analysis, best-foraging motion best value 
is computed as follows.****

x̂i,best is denoted as last visited food position and the pre-
vious best objective function is represented as K̂i,best. The 
computed movement induced and foraging motion minimize 
the iteration time.

3.2.3  Physical diffusion

Along with these two characteristics, physical diffusion must 
be computed to get the best solution. During this computa-
tion, the searching process is moved from high density to 
low-density vice versa. As discussed earlier, feature physical 
diffusion is computed from �(random directional vector) and 
Dm (maximum diffusion speed). So, the krill individual’s 
physical diffusion is estimated as follows.

Diffusion speed tuning parameter is Dmax , the random 
directional vector value is {− 1,1}, and the maximum itera-
tion is denoted as Imax . By considering these three charac-
teristics, the optimal solutions are selected from the high-
density feature set. After choosing the solution, individuals 
are updated for further feature selection process. The feature 
selection process is done as follows.

In Eq. (18), the sensitive constant value is Δt , n is the 
entire amount of individuals, upper and lower bound is 
represented as UBj, LBj . The constant value is belonging to 
[0,2].

(13)cfood = 2

(

1 −
I

Imax

)

(14)xfood =

∑n

i=1

1

ki
xi

∑n

j=1

1

Kj

(15)𝛽best
i

= K̂i,bestx̂i,best

(16)Di = Dmax

(

1 −
I

Imax

)

�

(17)xi(I + 1) = xi(I) + Δt
dxi

dt

(18)Δt = Ct

n∑

j=1

(
UBj − LBj

)

During the individual position updating process, the cov-
erage problem is resolved with the help of genetic operators 
such as crossover and mutation. First, the crossover operator 
is applied to the individuals to getting the global solution 
that is defined as follows,

Here p and q values are belongs to {1,2,….i − 1,i + 1,….n}. 
The cr value is belonging to [0,1] and the values are 
increased when the fitness function value is decreases. After 
performing the cross over process, mutation should be per-
formed as follows.

In Eq. (23) mutation probability value is computed using 
Eq. (23) and the p, q value is {1,2,…i − 1,i + 1…S}. The Mu 
value is [0, 1], which is increases with decreasing fitness. 
Based on the above criteria, the best features are selected 
to perform the classification process. In this work, around 
4–8 features are selected for further research purposes. The 
detailed working process of classification is discussed in the 
following subsection.

3.3  Seizure classification using optimized general 
adversarial networks

The last step of this work is seizure classification that is 
done by applying artificial alga optimized general Adver-
sarial Networks. The collected EEG signals are processed 
by multiple layers of a deep learning network that has a 
self-learning process that used to derive the features from 
the previous layer (previously programmed instruction). 
The extracted features are processed, and the seizure and 
non-seizure related features are classified and labeled for 
testing purposes. Once the new patient’s EEG information 
has arrived in the system, several elements are extracted, and 
optimized features are selected. The selected characteristics 
are examined using optimized general Adversarial Networks 
(Goodfellow et al. 2014). The defined network is one of the 
deep learning networks that recognize the seizure features 
using two models, such as discriminative model (D) and 

(19)xi,m =

{
xp,m if rand < cr

xq,m else

(20)cr = 0.2K̂i,best

(21)K̂i,best = Ki − Kbest

(22)xi,m =

{
xgbest,m + 𝜇

(
xp,m − xq,m

)
if rand < Mu

xi,m else

(23)Mu = 0.05∕K̂i,best
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generative model (G). The G model analyzes the distribution 
of EEG data, and the D is used to compute the probability 
value of incoming data using training data. These G and D 
model sequences trained with the help of an adversarial pro-
cess. Based on the discussion, the respective neural network 
structure is depicted in Fig. 4. Consider the G is (z, �x) which 
represented using multi-layer perceptron is with �g param-
eter. The defined parameters are mapped with the data space, 
and the learning process is performed in the G distribution �g 
with prior random input noise variable z. Then D is defined 
as (x, �d) that receives the input from G, and the output is 
estimated using a mini-max game function that is defined as 
mentioned in Eq. (24).

In Eq. (24), real testing data is x, input with random noise 
is z, real data and input noise is represented as �data and 
�z . The probability of the input data is represented as D(x), 
which is mapped with the G(x) (Ledig et al. 2017).

During the output estimation, process the network weight 
value is updated by applying the artificial alga optimization 
approach (Korkmaz et al. 2018). The network works accord-
ing to microalgae living behavior. The alga lifestyle depends 
on adaptation, reproduction, and algal tendency. With the 
help of the simulation, alga includes several processes such 
as evolutionary process, helical movement, and adaptation. 
The algal colony consists of several algal cells, and the size 
of the algal colony is large. Most of the time, the algal colo-
nies are difficult to grow up due to insufficient light. In the 
helical movement, the algal moves to the best algal colony. 
The algal population is represented as follows

(24)
minGmaxDV(D,G) = Ex∼�data(x)

[
logD(x)

]
+ Ez∼�data(z)

[log(1 − D(z)]

The algal colony size is Si, i = 1,2… .n . Objective func-
tion f (xi), and the colony size is updated continuously as 
follows.

Algal colony updated coefficient is denoted as �i.

t is represented as the current generation. As discussed 
earlier, the algal moves in search space, which is denoted 
as the helical movement phase. The movement of algal is 
represented as follows.

Random integers are y, z, h, k and l, algal colony 
coordinates are Xt

ih
,Xt

ik
 and Xt

il
 , an independent random 

number is p(− 1,1), an arbitrary degree is � and � (0–2). 
As discussed earlier, the searching process is increased in 

(25)Algalcolony population =

⎛
⎜
⎜
⎝

x11 ⋯ x1�
⋮ ⋱ ⋮

xn1 ⋯ xn�

⎞
⎟
⎟
⎠

(26)Si = size
(
xi
)

(27)�i =
Si + 4f

(
xi
)

Si + 2f
(
xi
)

(28)St+1
i

= �iS
t
i
, i = 1, 2… ..n

(29)Xt+1
ih

= Xt
ih
+

(
Xt
jh
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the more significant move; then, the simulation process is 
performed as the most significant and smallest function of 
Xi and Xj. After that, the adaptation probability value is 
computed using Eq. (32).

It has been further elaborated as,

Algal colony index value is s (high starvation value, rand 
1 and rand 2 is a random number having the value between 0 
and 1. Ap is the adaptation probability value is 0.3 and 0.7. 
Based on the above process, the network function is optimized 
while predicting seizure detection. The computed output is 
matched with the trained features; if the matching is similar, 
then the network returns the output as one else zero. Thus, 
the introduced system classifies brain seizure with maximum 
recognition accuracy.

4  Results and discussion

This section discusses the efficiency of bio-inspired opti-
mized deep learning network based epilepsy seizure detec-
tion process. The introduced system uses the different seizure 
datasets such as European Epilepsy Database, brainstorm epi-
lepsy dataset, and UCI- Epileptic Seizure Recognition Data 
Set for evaluating the proposed method. The detailed dataset 
description is explained in Sect. 3.1. The collected dataset is 
already noise removed; there is no need to remove eliminates 
the unwanted information. After that, several time and fre-
quency domain features are extracted from the EEG signal. 
The extracted features are more relevant to the seizure detec-
tion process. The derived details are processed by the Krill 
Herd optimization algorithm that recognizes the best solution 
according to the discussion in Sect. 3.2. The selected EEG 

(32)Xs = argmax
{
starvation

(
Xi

)}
, i = 1, 2,… .n

(33)

Xt+1
sj

=

⎧
⎪
⎨
⎪
⎩

Xt
sj
+

�
Biggestj − Xt

sj

�
.Rand1, if rand2 < Ap, j = 1, 2… .d

Xt
sj

otherwise

features are prepared with the help of optimized generalized 
adversarial networks to acknowledge the seizure features 
adequately. Then the excellence of seizure detection process 
is evaluated using following metrics precision, specificity, 
recall, accuracy, and F1-score. These metrics are estimated 
as follows.

During the seizure detection process, the overall feature 
selection efficiency is evaluated in Table 3.

The Table 3 depicted that the Krill herd based feature 
selection efficiency that is compared with the several fea-
ture selection algorithms. The KHA (accuracy-98.9%, 
specificity-99.2%, precision -99%, recall-99% and 
F1-score-99.7%) which is higher than collated with remain-
ing feature selection methods such as Genetic Algorithm 
(GA) (accuracy-89.9%, specificity-90.6%, precision-92.4%, 
recall-90.1% and F1-score-90.4%), Particle swarm opti-
mization (PSO) (accuracy-93%, specificity-96.4%, preci-
sion-90.7%, recall-91.8% and F1-score-93.5%), Artificial 
bee colony (ABC) (accuracy-93.4%, specificity-94.6%, 
precision – 96.4%, recall-92.4% and F1-score-95.2%), fire-
flies algorithm (FA) (accuracy-96.4%, specificity-97.5%, 
precision-93.1%, recall-95.2% and F1-score-96.4%), But-
terflies optimization algorithm (BOA) (accuracy-94.7%, 
specificity-96%, precision-94.8%, recall-96.7% and 
F1-score-94.2%), greedy search algorithm (GSA) 

(34)
Accuracy = (TP + TN)∕(TP + TN + FP + FN) × 100%

(35)Specificity = TN∕(TN + FN) × 100%

(36)Precision =
TP

TP + FP

(37)Recall =
TP

TP + FN

(38)F1 score = 2 ⋅
precision ⋅ recall

precision + recall

Table 3  Feature selection 
efficiency

a A accuracy, S sensitivity, P precision, R recall and F1 f1-score

Techniques A S P R F1

Genetic algorithm (GA) 0.899 0.906 0.924 0.901 0.904
Particle swarm optimization (PSO) 0.93 0.964 0.907 0.918 0.935
Artificial bee colony (ABC) 0.934 0.946 0.964 0.924 0.952
Fireflies algorithm (FA) 0.964 0.975 0.931 0.952 0.964
Butterflies optimization algorithm (BOA) 0.947 0.96 0.948 0.967 0.942
Greedy search algorithm (GSA) 0.952 0.96 0.937 0.98 0.955
Krill herd algorithm (KHA) 0.989 0.992 0.99 0.99 0.997



 A. Abugabah et al.

1 3

(accuracy-95.2%, specificity-96%, precision-93.7%, 
recall-98% and F1-score-95.5%). According to above dis-
cussion respective graphical analysis is shown in Fig. 5.

According to the above research analysis, the Krill Herd 
algorithm (KHA) selects the best solution or features from 
the overall extracted features. The algorithm uses the move-
ment induction, foraging motion, and physical diffusion 
process while examining the feature characteristics. These 
characteristics help to choose the best solution because the 

searching is performed in the high-density feature set. From 
the analysis, the respective sample selected features are 
described in Table 4.

Table 4 illustrated that the number of selected features 
while classifying the brain epilepsy seizure detection pro-
cess. Considered, this research work extracts the around 50 
highlights from the EEG signal, in which introduced KHA 
algorithm selects the eight essential and best elements. 
During the selection process, different characteristics are 
used that helps to choose the most relevant features. These 
selected features are shallow compared to other feature 
selection methods listed in Table 3. Due to the excel-
lent selected features, the seizure recognition accuracy is 
increased, and the obtained classification accuracy with 
different feature selection process is depicted in Fig. 6.

Figure 6a–f shows that the introduced Krill herd and 
bio-inspired optimized deep learning classification algo-
rithms successfully identify the epilepsy seizure with 
maximum accuracy. Then the efficiency of the introduced 
Krill herd and bio-inspired optimized deep learning clas-
sification algorithm is evaluated using recall, precision, 
accuracy, and F-measure in which system ensures maxi-
mum accuracy (99.25%) compared to other methods. Thus 
the KHA and OGAN approach recognize the seizure by 
solving the discussed problem statement.

5  Conclusion

Thus the manuscript examines the EEG recordings for 
recognizing Epilepsy using bio-inspired deep learning 
networks. Initially, EEG is gathered from three different 
datasets such as European Epilepsy Database, brainstorm 
epilepsy dataset, and UCI- Epileptic Seizure Recognition 
Data Set. The collected information is processed by the 
time and frequency domain feature extraction process. From 
the extracted information, best and optimal features are 
chosen based on the Krill individual’s movement induction, 
foraging motion, and physical diffusion characteristics. The 
selected features are processed according to the generator 
and discriminator model to recognize the testing features 
output. During the output estimation process, the network 
process is updated using the artificial algae method. Due to 
the effective feature selection process, the system recognizes 

Fig. 5  Feature selection efficiency

Table 4  Selected features list

Methods Number of 
features

Total no. 
of selected 
features

Genetic algorithm (GA) 50 38
Particle swarm optimization (PSO) 50 31
Artificial bee colony (ABC) 50 27
Fireflies algorithm (FA) 50 26
Butterflies optimization algorithm (BOA) 50 18
Greedy search algorithm (GSA) 50 15
Krill Herd algorithm (KHA) 50 8
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Fig. 6  Efficiency of optimized generalized adversarial network-based seizure detection efficiency
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the seizure with 99.25% accuracy collated with the baseline 
approach. In the future, the classifier performance is 
improved using a meta-heuristic method.
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