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ABSTRACT
This article introduces a novel strategy for determining the optimal control
parameters of particle swarm optimization (PSO) for the shortest conver-
gence time and lowest failure rate of photovoltaic (PV) maximum power
point tracker (MPPT) systems. This strategy is used offline to determine
these parameters and then the control system uses them in the online
MPPT. The strategy uses twonestedparticle swarmoptimization (NESTPSO)
search loops: the inner one involves the PV system and the outer one uses
the inner PSO as a fitness function. The control parameters and swarm
size of the inner PSO loop are used as optimization variables in the outer
PSO loop. This strategy can be used not only for PSO but also for all other
optimization techniques. The simulation and experimental results obtained
using the NESTPSO strategy show a great reduction of 77–681% in conver-
gence time and failure rate compared to 10 benchmark strategies, proving
the superiority of this technique.
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1. Introduction

Partial shading in photovoltaic (PV) arrays creates more than one peak in the power–
voltage (P-V) characteristics. The global peak (GP) has the highest power peak, while the local peaks
(LPs) have the lowest power. The maximum power point tracker (MPPT) is used to track the GP.
Many swarm optimization techniques have been used to perform theMPPT function in cases of uni-
form irradiance or partial shading conditions (PSC) (Eltamaly et al. 2020; Eltamaly and Farh 2019;
Titri et al. 2017). All of these techniques have control parameters and swarm sizes, which consider-
ably affect their convergence time, tc, and failure rate, FR. So far, there have been no studies in the
literature on determining the optimal values of the control parameters; instead, most of the previ-
ous research involves tuning these parameters. Inaccurate estimation of these parameter values may
cause an increase in the failure rate and convergence time, which will adversely affect the conver-
gence performance (Ahmed and Salam 2014; Eltamaly et al. 2020; Sangeetha, Babu, and Rajasekar
2016).

Reducing the convergence time of the particle swarm optimization (PSO)will add great value to its
use in the MPPT of PV systems and other applications, and was the motivation for this study. Owing
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to its simplicity, robustness and popularity, PSO has been used in this study to follow the GP of PV
energy systems. The convergence time and failure rate can be considerably reduced if PSO or other
soft computing techniques function with optimal control parameters (Eltamaly et al. 2020; Farh et al.
2019; Hou et al. 2016). A higher failure rate and convergence time of theMPPT of the PV array during
online operation may cause instability and a reduction in the generated energy. These two factors are
functions of the control parameters and the swarm size of the PSO (Eltamaly 2018; Farh, Eltamaly, and
Othman 2018). Although the PSO control parameters and the swarm size have a substantial effect on
the failure rate and convergence time, there is no previous literature onhow to determine their optimal
values. Most of the studies using PSO or other soft computing techniques estimated these values from
other applications or after tuning (Eltamaly 2015a, 2015b; Eltamaly, Farh, and Saud 2019; Grefenstette
1986; Mason, Duggan, and Howley 2018). Early efforts were made in 1986 by linearly changing the
genetic algorithm control parameters to obtain theminimum convergence time and use these param-
eters (Grefenstette 1986). This tuning technique selects the minimum available convergence time
parameters, which will not lead to the optimal solution. Moreover, to perform this tuning technique,
three nested loops are required, which will take more iterations than the number needed for nested
particle swarm optimization (NESTPSO). Later, in 2018, the results obtained from running the PSO
were used to train a neural network, which was used to obtain the PSO weight parameter, ω, associ-
ated with fast convergence (Mason, Duggan, and Howley 2018). The idea introduced in this article is
used only to obtain the best value of the inertia weight parameter, ω, but not to obtain the other con-
trol parameters or swarm size (SS). Moreover, the resulting value is the best available from training
the neural network, which may not be the optimal solution (Mason, Duggan, and Howley 2018). The
optimal swarm size for all metaheuristic techniques has never been discussed in the literature; most
previous studies used the number of particles equal to the number of peaks in the P-V curves, with-
out any justification (Eltamaly 2015a, 2015b; Eltamaly et al. 2020; Eltamaly, Farh, and Saud 2019).
This poor estimation of the PSO control parameters and swarm size may cause an increase in the
failure rate and/or prolong the convergence time, which can adversely affect the performance of PV
systems.

This objective of this article is to evaluate the optimal values of the PSO control parameters when
PSO is used for to track the GP of a PV array. This strategy can be used with any other soft computing
optimization technique. The strategy uses two nested PSO loops: the outer PSO loop optimizes the
control parameters used in the inner PSO loop to achieve the lowest convergence time and failure
rate as the objective function. Meanwhile, the inner PSO loop is used to obtain the optimal duty ratio
of the boost converter. So, the inner PSO loop is counted as a fitness function to the outer PSO loop,
where it optimizes the control parameters of the inner PSO loop to obtain the lowest values of the
failure rate and the convergence time. The PV system is used as a fitness function for the inner PSO
loop, where it uses the control parameters suggested from the outer PSO loop to obtain the optimal
duty ratio associated with the maximum power. This nested PSO strategy is called NESTPSO; it is
performed offline to determine the optimal values of the PSO control parameters and use them with
the regular online PSOMPPT of the PV systems. To the author’s knowledge, no previous research has
been conducted to determine the optimal PSO control parameters and swarm size for PSO.Moreover,
the strategy introduced in this article, using PSO as anMPPT in a PV system or any other application,
does not appear in the literature. This article will help researchers, designers and experts working in
the field of swarm optimization to improve the performance of all optimization techniques in all
real-world applications.

This article presents the components of the PV system and their detailed description in Section 2.
The detailed operation of PSO in the MPPT of the PV system application is shown in Section 3.
A detailed description of NESTPSO and how it is used to determine the PSO control parameters
is given in Section 4. The simulation results of NESTPSO and a detailed comparison with bench-
mark strategies are presented in Section 5. Experimental work showing the prototype used to validate
the proposed strategy is demonstrated in Section 6. Section 7 presents the conclusions from this
study.
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Figure 1. Circuit of a photovoltaic (PV) system with a maximum power point tracker (MPPT). PWM = pulse-width modulation;
PLL = phase-locked loop.

2. MPPT of PV system concepts

The relationship between the power generated by the PV arrays and the PV array terminal volt-
age shows nonlinear characteristics. These nonlinear characteristics need to be tracked effectively
to determine the optimal direct current (DC) voltage using DC/DC converters to control the termi-
nal voltage of the PV array. As shown in Figure 1, a boost converter is used to control the terminal
voltage of the PV array. The DC-link voltage is connected to a three-phase pulse-width modulation
(PWM) inverter to integrate the PV system with the utility grid (Lakshmi and Hemamalini 2018).
The PSOMPPT technique and the control of three-phase PWM are achieved usingMATLAB R© code
and Simulink R©, using a dSPACE DS1104 R&D Controller Board to control the system (Figure 1).

The PSO technique uses the boost converter to track the maximum power from PV energy sys-
tems. The relationship between the input–output voltages and the duty ratio of the boost converter is
shown in Equation (1) (Eltamaly, Farh, and Al-Saud 2019; Eltamaly, Al-Saud, and Abokhalil 2020a,
2020b). Based on this equation, the variation in the generated power and duty is shown in Figure 2.

VDC/VPV = 1/(1 − d) (1)

where VPV , VDC and d are the input, output and duty ratio of the boost converter, respectively.

3. PSOMPPT technique of PV energy systems

The PSO technique is inspired by the behaviour of flocks of fish and birds, swarms and shoals
searching for food, and is used to determine optimal solutions for multi-dimensional problems. This
technique was introduced by Kennedy and Eberhart (1995). The operating principle of this technique
is to use several particles to search for the optimal solution in the search space of the optimization
problem through consecutivemovements of particles. In each new iteration, the particles obtain their
movement from their own previous experience and the experience of the swarm, which are called
self experience and social experience, respectively. The PSO search performance is determined using
Equations (2) and (3). A compromise should be reached between the values of cl and cg to achieve
a balance between the self and social searches. The velocity of each particle will be added to the
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Figure 2. Relationship between the output power and the duty ratio boost converter for a photovoltaic (PV) array for different
operating conditions.

previous position of particles djk to obtain the new positions of the particles, dj+1
k (Eltamaly, Farh,

and Abokhalil 2020).

vj+1
k = ω vjk + clrl(dkbest − dkj ) + cgrg(Gbest − dkj ) (2)

dj+1
k = djk + vkj+1 (3)

where ω, cl and cg are the PSO control parameters. dkbest is the personal best position of particle k,
Gbest is the global best position, rl and rg are random values between [0 1], and the counter j is the
iteration order of the PSO.

4. New proposed NESTPSO strategy

As discussed in Section 1, the PSO control parameters and swarm size have a great effect on the
performance of the PSO, based on the convergence time and failure rate. Inaccurate estimation of
these parameters will adversely affect the performance of the PSO. Knowing the importance of these
parameters on the performance of the PSO, this article introduces a new strategy (NESTPSO) to
determine these parameters offline and uses the results in online applications of the PSO in MPPT
of the PV system. To the author’s knowledge, this study introduces for the first time a strategy that
can determine the optimal values of control parameters of PSO or any other swarm optimization
technique in any real-world application. NESTPSO has two nested loops, the outer and inner PSO
loops, as shown in Figures 3 and 4, respectively. The outer PSO loop of NESTPSO optimizes the PSO
control parameters of the inner PSO loop to obtain the optimal values of these parameters for the
minimum failure rate and convergence time of the inner PSO loop. So, the control parameters of
the inner PSO loop are used as optimization variables in the outer PSO loop. The inner PSO loop
obtains the values of control parameters from the outer PSO loop and it (the inner PSO loop) uses
these parameters to run the MPPT of the PV system Nav times to avoid the random nature of the
PSO technique. The results from the inner PSO loop are the average convergence time and failure
rate. The convergence time is the time consumed to reach the final convergence, which is equal to the
number of iterations of the inner PSO loop, Ns, used to obtain the steady state of PSO, multiplied by
the swarm size of the inner PSO loop, SSi, and the sampling rate ts, as shown in Equation (4):

tc = Ns ∗ SSi ∗ ts (4)
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Figure 3. Flowchart of the outer particle swarm optimization (PSO) loop of nested particle swarm optimization (NESTPSO) for
determining parameters of the PSOmaximum power point tracker (MPPT) of photovoltaic (PV) systems.

where Ns is the average number of iterations consumed to obtain the final solution of the inner PSO
loop. This value can be obtained by accumulating the number of iterations consumed to obtain the
convergence each time the MPPT inside the inner PSO loop is executed divided by the total number
of averaging cycles Nav, as shown in detail in the flowchart of the inner PSO loop of NESTPSO in
Figure 4.

The failure rate is used to measure the number of times the PSO failed to capture the GP divided
by Nav:

FR = (NFR/Nav) ∗ 100 (5)

where NFR is the number of occurrences of failure.
The values of tc and FR are used to determine the objective function, F:

F = M ∗ FR + tc (6)

where M is a weighting constant used to give the failure rate some degree of importance, where a
higher value ofM reduces the value of the failure rate and vice versa.

4.1. NESTPSO steps

The steps showing the logic of NESTPSO in determining the optimal PSO control parameters and
swarm size as an MPPT of the PV system are shown in the following points and shown in detail in
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Figure 4. Flowchart of the inner particle swarm optimization (PSO) loop of nested particle swarm optimization (NESTPSO) for
determining parameters of the PSOmaximum power point tracker (MPPT) of photovoltaic (PV) systems.

Figure 3, where the suffix ‘o’ is used to represent the outer PSO loop and the suffix ‘i’ to represent the
inner PSO loop of NESTPSO.

Step out 1: Set the control parameters and swarm size of the outer PSO loop (ωo, clo, cgo and SSo).
Step out 2: Initiate the values of the particles of the outer PSO loop (dk0)o that contain the control

parameters and swarm size of the inner PSO loop, as shown in (7):

(dk0)o = [d10 d20 . . . dSSo0 ] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ω1
0)i (ω2

0)i . . . (ω
SSo
0 )i

(cl10)i (cl20)i . . . (cl
SSo
0 )i

(cg10)i (cg20)i . . . (cgSSo0 )i
(SS10)i (SS20)i . . . (SSSSo0 )i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)

Step out 3: Send the values (dk0)o to the inner PSO loop and obtain the objective function, Fk0, as
shown in (6).

Step out 4: Set the initial values of the particles’ best positions, (dkbest)o = dk0 and F
k
best = Fk0. Select

the minimum objective function of Fk0 and save its value and position to FGbest and Gbest .
Step out 5: Set the initial velocity to zero, (v0k)o = 0.
Step out 6: Use the values of the global best (Gbest), the private best positions of each particle,

(Fkbest)o, (vj
k)o, and the new positions of particles, (djk)o, from (2) and (3).

Step out 7:Determine the fitness function (Fkj )o by applying the particles’ positions, (dj
k)o, to the

PV system.
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Step out 8:Checkwhether the value of the particles, (Fkj )o, is greater than the stored value, (F
k
best)o,

and update (Fkbest)o and (dkbest)o. Update FGbest and Gbest ,o by comparing their previous values with
min (Fkbest)o.

Step out 9: If the stopping criterion is valid, stop and print the optimal PSO control parameters
and swarm size, Gbest,o. If it is not valid, go to Step out 6.

The following steps show the inner PSO loop.
Step in 1: Receive the values of PSO control parameters and swarm size from the outer PSO loop

(ωi, cli, cgi and SSi).
Step in 2: Set Nav = 10,000, Ns = 0 and FR = 0.
Step in 3: Start with the initial values of particles (duty ratios) d1:SSi0 = [d10 d20 . . . ..dk0 . . . ..dSSi0 ];

send these values one by one to the PV system and collect the power, Pk0.
Step in 4: Set dkbest = dk0, P

k
best = Pk0 and PGbest = max(P1:SSi0 ), and the corresponding duty ratio

Gbest .
Step in 5: Set the initial velocity to zero (v01:SSi = 0).
Step in 6:Use the values ofGbest and dkbest to determine vj+1

k and dj+1
k of particles from (2) and (3).

Step in 7: Send the new values of dj+1
k obtained from Step in 6 to the PV system and collect Pj+1

k.
Step in 8: Check whether Pj+1

k > Pkbest and update the particles’ best values and positions, Pkbest
and dkbest , respectively. Then, update PGbest andGbest so that if the max(Pkbest) > PGbest then PGbest =
max (Pkbest)i and Gbest,i = (dkbest)i.

Step in 9: If the stopping criterion is validated, set Ns = Ns + j, then go to Step in 12; otherwise,
go to Step in 10.

Step in 10: If j ≥ iti, then Ns = Ns + iti, then go to Step in 12; otherwise, go to Step in 11.
Step in 11: If the stopping criterion is not validated and j ≤ iti, then j = j+ 1, then go to Step in 6.
Step in 12: Check that the solution is not the GP using the condition (if |Gbest − GP| > ε), then

FR = FR+ 1, where ε is a predefined tolerance; ε = 0.001 in the simulation.
Step in 13: If the average number of simulation times is less than Nav, go to Step in 3; otherwise,

go to Step in 14.
Step in 14: Calculate the FR, tc and objective function from (6), FR = FR/Nav ∗ 100,

tc = Ns ∗ SSi ∗ ts/Nav, F = M ∗ FR+ tc.
Step in 15: End of the inner PSO loop; go to the outer one.

4.2. Stopping criteria

The execution of the NESTPSO code should be terminated once the convergence occurs. This can be
achieved by using a stopping criterion. Many ideas have been introduced in the literature to define
the conditions that should be followed to decide when convergence has occurred. Most of these
techniques are introduced in Hashim and Salam (2019) and are defined as follows:

• Iteration number: This criterion is the regular termination of the code in many applications, but
it does not guarantee complete convergence because it terminates the execution of the code once
the total number of iterations is achieved.

• Best fitness threshold:This type of stopping criterion depends on stopping the iterations once the
fitness function reaches a predefined value.

• Fitness convergence: This stopping criterion ensures that all the objective function values are
concentrated in the final solution. This can be done by terminating the code once the difference
between the highest and lowest values is lower than a predefined tolerance. This technique has
been used to terminate the outer PSO loop in this study.

• Swarm position convergence: This condition stops the execution of the code when the difference
between themaximumandminimumvalues of all particles’ positions in the population is less than
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the predefined tolerance. This criterion can be implemented also by terminating the code when
the standard deviation of the particles’ positions is lower than a predefined tolerance, as shown in
(8). This stopping criterion has been used in the inner PSO loop of NESTPSO.

Std (dj1:SS) ≤ e1 (8)

where Std is the standard deviation, dj1:SS is the swarm positions at iteration j, and ε1 is the
predefined tolerance.

4.3. Determination of failure rate

Convergence failure occurs when the PSO particles are trapped in one of the LPs. It is not easy to
deduce a generalized formula to be used in judging whether the global best is the right one, unless
the exact GP is well known, which is the case in this application. To enable a fair evaluation between
all of these strategies, the absolute difference between the GP and the global best obtained from PSO
is higher than a predefined tolerance, ε2 = 0.001, which will be counted as a failure occurrence.

5. Simulation results

The simulation study is divided into two different studies. The first study aims to determine the
optimal control parameters and swarm size of the PSO, with different numbers of peaks of the P-V
characteristics of PV systems using the proposed strategy (NESTPSO). The parameters gained from
NESTPSO in the first study are used in the second study to achieve the minimum convergence time
and failure rate. The results obtained from NESTPSO are compared to the values obtained from 10
well-known benchmark PSO strategies. This study will demonstrate the improvement in the per-
formance of the PSO strategy when its parameters are obtained from NESTPSO compared to the
parameters obtained from the benchmark PSO strategies.

The detailed description of the PV module is shown in Table 1 (Sunperfect 2020). The PV system
consists of five modules connected in series.

5.1. Design of the powermodifier system

The boost converter should be designed based on the performance parameters of the other compo-
nents of the circuit and the operating range of the system (Eltamaly 2015a, 2015b; Eltamaly, Al-Saud,
andAbo-Khalil 2020). The design stage of theDC–DCboost converter has been described previously
(Ayop and Tan 2018; Mohan, Undeland, and Robbins 2003). The detailed system parameters used in
the design of the boost converter are shown in Table 1.

Table 1. Technical specifications of the photovoltaic system used in
the design stage.

Parameter Values

Insulation 100 ≤ G ≤ 1000W/m2

Temperature −25 ≤ T ≤ 50°C
Open circuit voltage 129 ≤ Voc ≤ 188.1 V
Maximum short-circuit current 7.44 A
Maximum power under NOC 919W
Voltage at maximum power, Vmp 125.05 V
Current at maximum power, Imp 7.349 A
Switching frequency, fs 20 kHz
Sampling time 0.05 s
DC-link voltage 180 V

Note: NOC = normal operating conditions (1000W/m2 and 25°C).
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To determine the optimal value of the DC-link voltage, the line–line voltage is 110V, so the DC-
link voltage can be obtained from Equation (9) (Mohan, Undeland, and Robbins 2003). Based on
this equation, the DC-link voltage is chosen to be 180V to force the three-phase PWM inverter
workaroundma = 1.0, for better performance and linear control.

Vdc = 2
√
2√

3ma
∗ VLL, where ma ≤ 1.0 (9)

where ma is the modulation index of the PWM inverter and VLL is the line–line voltage of the
electricity utility.

The boost converter should be designed so that it works in continuous conduction mode (CCM)
in most operating conditions. The minimum inductance of the boost converter inductor to make
it work in CCM is shown in formula (10) (Mohan, Undeland, and Robbins 2003). As implied by
(10), the maximum inductance is a function of the duty ratio, where its value is highest when the
duty ratio d = 0.5, which will be used in this equation. If it is required to maintain the CCM in the
range between 5% (0.3945A) and 100% (7.89A) of the rated current, d = 0.5, IPV = 0.3945A and
Vdc = 180V, then the highest inductance required should be 2.85mH.

L ≥ Vdc

2 fs. IPV
d (1 − d) (10)

The minimum value of the capacitor that should be inserted in the DC-link in terms of the allowable
voltage ripple can be determined from formula (11) (Mohan, Undeland, and Robbins 2003). If it
is required that the highest ripple in the DC-link must not exceed 1%, then the required capacitor
should be greater than 54.8μF (where IPV = 7.89A, d = 0.5, Vdc = 180V and �Vdc = 0.01). In
the simulation and experimental work, a capacitance of 60μF is used to reduce the ripple by more
than 1% in the DC-link and to compensate the ripples injected from the three-phase PWM inverter.

Cout ≥ IPV
fs.Vdc.�Vdc

d (1 − d) (11)

where �Vdc is the voltage ripple factor in the DC-link.
To reduce the ripple in the output voltage of the PV array, an input capacitor should be used (Ayop

and Tan 2018). The value of the input capacitor can be obtained from formula (12) (Ayop and Tan
2018). If it is required to have a ripple in the PV output voltage not exceeding 1%, the capacitance of
the input capacitor should be greater than 10.75μF; a value of 11μF is used in the simulation and
experimental work.

The values of the elements used in the boost converter are shown in Table 2.

Cin ≥ dmax

8L.�Vmp. f 2
(12)

where�Vmp is the voltage ripple factor (0.01) at themaximumpower point, and dmax is themaximum
allowable value of the duty ratio (0.98).

Table 2. Values of the elements
used in the boost converter.

Parameter Value

DC-link voltage 180 V
L 2.85mH
Cout 60μF
Cin 11μF
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5.2. Application of NESTPSO against number of peaks

The NESTPSO strategy has been applied to 10 different shading pattern conditions, each with a dif-
ferent number of peaks in the P-V curves, from one to 10. To enable a fair comparison, the same
stopping criteria have been used in all cases. The simulation of each case has been performed 10,000
times (Nav = 10,000) to avoid the dependence of the results on the random nature of the PSO. The
results obtained from this simulation study are shown in Table 3. These results show that the conver-
gence time with 0.05 s sampling intervals varies from 1.515 to 2.4015 s for cases with one to 10 peaks.
These values of convergence time are substantially lower than those obtained from all benchmark
PSO strategies, as shown in the next simulation study. The relationship between the optimal swarm
size and the number of peaks in the P-V curve is shown in Figure 5. The relationship between the
convergence time and the number of peaks in the P-V curve is shown in Figure 6.

Figure 5. Relationship between the optimal swarm size and the number of peaks in the P-V curves.

Figure 6. Relationship between the convergence time and the number of peaks.



ENGINEERING OPTIMIZATION 11

Table 3. Simulation of the system with different numbers of peaks using the nested particle swarm
optimization (NESTPSO) strategy.

No. of peaks ωι cli cgi SSi tc

1 −0.0139 1.1265 0.9556 4 1.5151
2 0.2373 0.6588 1.0559 5 1.8057
3 −0.1044 −0.0794 1.4283 6 1.8706
4 0.1592 0.3463 1.1862 6 2.0347
5 0.1693 0.1177 1.2438 5 2.0502
6 0.1554 0.1555 1.2061 6 2.1008
7 0.0642 −0.0508 1.2433 7 2.1214
8 −0.0189 0.0461 1.5213 8 2.1808
9 0.0725 1.6261 1.5232 9 2.3313
10 0.0422 0.0269 1.1697 9 2.4014

Table 4. Control parameters of benchmark strategies.

Strategy ωι cli cgi

S1 (Clerc and Kennedy 2002) 0.7298 1.49618 1.49618
S2 (Clerc 1999) 0.7290 1.49445 1.49445
S3 (Jiang, Luo, and Yang 2007) 0.7150 1.70000 1.70000
S4 (Mohais et al. 2004) 0.7290 2.05000 2.05000
S5 (Carlisle and Dozier 2001) 0.7290 2.04120 0.94770
S6 (Zhang et al. 2014) 0.7240 1.46800 1.46800
S7 (Clerc 2006) 0.7200 1.10800 1.10800
S8 (Liu 2015) 0.4200 1.55000 1.55000
S9 (Harrison, Engelbrecht, and Ombuki-Berman 2017) 0.5000 1.90000 1.90000
S10 (Harrison, Engelbrecht, and Ombuki-Berman 2017) 0.6000 1.80000 1.80000

5.3. Comparison of NESTPSO to the benchmark PSO strategies

The results obtained from NESTPSO are compared to 10 benchmark PSO strategies (Carlisle and
Dozier 2001; Clerc 1999, 2006; Clerc andKennedy 2002;Harrison, Engelbrecht, andOmbuki-Berman
2017; Jiang, Luo, and Yang 2007; Liu 2015; Mohais et al. 2004; Zhang et al. 2014). The control param-
eters of the benchmark PSO strategies are shown in Table 4. To enable a fair comparison between all
benchmark PSO strategies, the swarm size is chosen to be the same (SSi = 6), while the swarm size
of NESTPSO is chosen as the optimal number obtained from Table 3.

Table 5 shows the results obtained using benchmark PSO strategies compared to the results
obtained by NESTPSO. Some strategies show a very slow response, such as strategy S4 (Mohais et
al. 2004), which takes a long time to converge (11.6–14.088 s). This means that this strategy is not
suitable for use as an MPPT in PV systems. Some of the benchmark strategies show very short con-
vergence times compared to the others, such as strategy S8 (Liu 2015), which captured the GP in
3.542–8.171 s. This means that this strategy is a better choice for an MPPT of PV system applications
than the other benchmark PSO strategies shown in Table 5.

The results in Table 5 show that the convergence time from NESTPSO is lower than that from all
other benchmark strategies. Its convergence time ranges from 1.515 to 2.0415 s, which means that
it has a reduction in convergence time of 77–681% compared to the benchmark strategies shown in
Table 5. It can also be seen from Table 5 that the lowest reduction in convergence time obtained using
the NESTPSO strategy is 77%, when compared to strategy S8 (Liu 2015) with a six-peak shading
pattern. Meanwhile, the highest reduction in convergence time using the NESTPSO strategy is 681%,
when compared to strategy S4 (Mohais et al. 2004) with uniform distributed irradiance (one peak).
These results show clearly the great reduction in convergence timewhen using theNESTPSO strategy
for all numbers of peaks compared to the benchmark strategies. This great achievement proves the
superiority of the NESTPSO strategy in determining the optimal control parameters of PSO when it
is used as anMPPT in PV systems. For this reason, it is recommended that all researchers, experts and
designers use these values of PSO control parameters and swarm size when PSO is used as an MPPT
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Table 5. Convergence time corresponding to each benchmark strategy compared to the results from nested particle swarm
optimization (NESTPSO).

No. of peaks

Strategy 1 2 3 4 5 6 7 8 9 10

S1 8.1225 8.2875 8.9440 8.9640 8.7170 8.0605 10.8050 9.6525 10.0310 9.5270
S2 8.2610 8.3765 8.3870 8.9090 8.9970 8.1450 11.3030 9.3130 9.6730 8.9240
S3 8.6895 9.3485 9.3770 9.7150 9.3190 8.6175 11.3480 10.3070 10.6150 9.7870
S4 11.829 12.1420 11.771 12.513 12.510 11.600 13.9540 14.0880 13.5910 13.070
S5 8.5570 9.3670 10.3220 9.1580 9.1250 8.8550 10.6970 9.8645 10.2520 9.7540
S6 7.8825 8.1020 8.1820 8.5190 7.9520 7.6190 10.2600 9.2420 9.7910 9.0070
S7 6.7545 6.8210 7.0900 7.1500 6.8430 6.4580 10.0130 7.4390 7.9860 6.8040
S8 3.5420 3.9210 4.1960 3.8620 3.9650 3.7135 8.1710 4.4965 4.9410 4.8660
S9 5.3675 5.9440 6.1700 6.2560 6.0150 5.6660 8.0680 6.6085 7.1750 6.2290
S10 6.6520 6.8130 6.7600 6.8730 7.3210 6.6185 9.8270 8.1910 8.3270 7.5240
NESTPSO 1.5150 1.8056 1.8707 2.0348 2.0501 2.1009 2.1213 2.1807 2.3312 2.4015
Max. reduction (%) 681 575 530 526 510 452 558 546 483 445
Min. reduction (%) 134 118 124 93 93 77 285 106 112 103

in PV systems. It is also clear that NESTPSO can easily determine the optimal control parameters of
PSO or other soft computing optimization techniques for any application with no need for tuning,
review work or expert assistance.

6. Experimental work

To validate the superior operation of NESTPSO, an experimental set-up is established. This exper-
imental set-up has been used to measure the convergence times of different strategies. The experi-
mental work is divided into two subsections: the hardware set-up and the experimental results.

6.1. Hardware set-up

The hardware of the PV system is set up as shown in Figure 1. A photograph the testbed system
is shown in Figure 7. In Figure 7, five PV modules are connected in series and their terminals are
connected to the input of the boost converter. The three-phase inverter input is connected to the
DC-link of the PV system. The output of the inverter is connected to the utility grid terminals. The
MPPT of the PV system is used to control the PV array terminal voltage using the duty ratio of the
boost converter, which is implemented using PSOMPPT, and the second controller is used to control
the three-phase PWMusing the decoupling control strategy introduced by Lakshmi andHemamalini
(2018).

The control systems are implemented in MATLAB/Simulink tools and the signal values are trans-
ferred to a dSPACE (DS1104 interface card) and a real-time interface circuit. The switch used in the
boost converter is a MOSFET 2SK3635 (findchips 2020), which has 200V drain to source voltage
and an 8A drain current. A 74HC14 gate driver is used in the experimental set-up to provide an
interface between the MOSFET and the control circuit. The boost converter parameters are shown
in Table 2. The same five series-connected PV modules used in the simulation are used in the exper-
imental set-up. Partial shading is achieved by covering the targeted module with semi-transparent
sheets.

6.2. Experimental results

The circuit shown in Figure 1 was set up in the laboratory as shown in Figure 7, to validate the results
obtained from the NESTPSO strategy compared to those obtained from one of the benchmark strate-
gies shown in Tables 4 and 5. Four sheets with different transparencies were used to obtain five peaks
in the P-V characteristics of the PV array. The experiment was conducted for two different cases:
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Figure 7. Picture of the experimental set-up.

Figure 8. Experimental results obtained using the control parameters and swarm size from nested particle swarm optimization
(NESTPSO). PV = photovoltaic.

Case 1. The PSO control parameters obtained from NESTPSO for five peaks are used to show the
convergence time.

Case 2. The parameters used in S10 (Harrison, Engelbrecht, and Ombuki-Berman 2017) with six
swarm sizes are used as an example for one of the benchmark strategies.

The results for these two cases are shown in Figures 8 and 9. The results of Case 1 are shown
in Figure 8, where the optimal PSO control parameters and optimal swarm size obtained from
the NESTPSO strategy are introduced to the online PSO MPPT. These values are ω = 0.1692,
cl = 0.1178, cg = 1.2437 and swarm size = 5. The experimental results for Case 1 are shown in
Figure 8 for 25 s, where the control system captured the GP in about 2 s; after removal of the
transparent covers the system was reinitialized and it again captured the GP after 2 s.

In Case 2, strategy S10 (Harrison, Engelbrecht, and Ombuki-Berman 2017) was used, with
ω = 0.6, cl = 1.8, cg = 1.8 and swarm size = 6. The results of Case 2 are shown in Figure 9. It can
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Figure 9. Experimental results obtained from the particle swarm optimization (PSO) maximum power point tracker (MPPT) of
photovoltaic (PV) systems with control parameters of S10.

be seen from Figure 9 that the PSO captured the GP after 6 s; after the shading pattern changed at
13 s, the system was reinitialized and again the PSO captured the GP after 6 s.

It is clear from the experimental results that the MPPT that uses the PSO with control parameters
and swarm size from the NESTPSO strategy is very fast in capturing the GP compared to the other
benchmark strategies, such as S10 (Harrison, Engelbrecht, and Ombuki-Berman 2017). These results
show the superiority of NESTPSO in determining the optimal PSO control parameters and swarm
size when it is used as an MPPT in PV systems.

7. Conclusions and recommendations

The MPPT for PV systems under partially shaded conditions needs very fast and accurate conver-
gence, which is not available for the conventional MPPT techniques owing to the multiple peaks
generated in P-V curves. Soft computing techniques have been used to avoid this shortcoming. The
PSO technique, as one of the best andmost popular optimization techniques, is used for this purpose.
Poor selection of PSO control parameters causes a substantial increase in failure rate and convergence
time, which adversely affects the performance of the PV system, especially when used during online
applications. To the author’s knowledge, no previous work in the literature has determined the opti-
mal values of control parameters and swarm size of PSO or any other soft computing technique. This
article introduced a new strategy to determine these parameters and to fill this research gap. The pro-
posed strategy, called NESTPSO, uses two nested PSO loops and places the PV MPPT as a fitness
function in the inner PSO loop to optimize its PSO control parameters and swarm size. This strategy
is used offline to determine these parameters, to be used later with the online application of the PSO
MPPT of the PV systems. The NESTPSO strategy is performed against the number of peaks in the
P-V curves to determine the optimal control parameters and swarm size for each number of peaks.
The results obtained from the NESTPSO strategy were compared with 10 benchmark PSO strategies.
Themain finding from this comparison study is that the convergence time is reduced by between 77%
and 681% compared to that associated with the benchmark PSO strategies. The results obtained from
this new methodology can help researchers, designers and electricity providers in fitting PV systems
on any scale. With these results, there is no need for tuning the parameters or for experts to check the
performance of the PV system with different values of the PSO control parameters and swarm size.
These superior results fromNESTPSO open the door to further study of different online applications
using PSO or any other swarm optimization technique. The same idea could be used with any soft
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computing technique to determine the control parameters and swarm size to optimally improve the
performance of all online control applications.
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Nomenclature

d Particle position
VPV Output voltage of the PV panels
IPV PV output current
L and C Inductor and capacitor of boost converter
j Iteration number of the PSO
k Particle order within the swarm
v Velocity of particles
P Particle’s fitness value
ω Inertia weight
cl, cg Self and social experience parameters
SS Swarm size
it Maximum iteration number
Gbest Global best position
Fkbest Best fitness value of particle k
FGbest Global best value of objective function
ε, ε1, ε2 Predefined tolerances
dkbest Best position of particle k
Pkbest Best value of particle k
ts Sampling time
Nav Number of times to execute the inner loop to avoid random nature of PSO
tc Convergence time
FR Failure rate
Ns Average number of iterations consumed to achieve the peak of the inner PSO loop
NFR Number of occurrences of premature convergence
M Weighting constant
o, i Suffixes o and i represent the outer and inner PSO loops, respectively
PGbest Global best value
rl and rg Random values between [0 1]
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