PHYS 507 HANDOUT 7 - *Questions on Dielectrics*

7.1 A primitive model for an atom consists of a point nucleus (+q) surrounded by a uniformly charged spherical cloud (-q) of radius *a*. Calculate the atomic polarizability of such an atom.

7.2 Prove that a dipole in an electric field experiences a torque given by $N = p \times E$.

7.3 Prove that a dipole in an electric field, which is not uniform experiences a net force equal to $\mathbf{F} = (\mathbf{p} \cdot \nabla)\mathbf{E}$.

7.4 Prove that the field created by a polarized object is made up by the field of a volume charge density and a field of a surface charge density.

7.5 Find the electric field produced by a uniformly polarized sphere of radius *R*.

7.6 A long straight wire, carrying uniform line charge λ , is surrounded by rubber insulation out to a radius *a*. Find the electric displacement.

7.7 A metal sphere of radius *a* carries a charge Q. It is surrounded, out to a radius *b*, by linear dielectric material of permittivity ε . A) Find the potential at the center (relative to infinity). B) Find the polarization of the dielectric. C) Find the surface bound charge density.

7.8 A parallel plate capacitor is filled with insulating material of dielectric constant ε_{r} . What effect does this have on its capacitance?

7.9 A sphere of homogeneous linear dielectric material is placed in an otherwise uniform electric field \mathbf{E}_0 . Find the electric field inside the sphere.

7.10 Suppose the entire region below z = 0 in figure is filled with uniform linear dielectric material of susceptibility χ_e . Calculate the force on a point charge q situated a distance d above the origin.

7.11 Prove that the energy of a capacitor filled in with a dielectric material is given by $W = \frac{1}{2} \int \mathbf{D} \cdot \mathbf{E} d\tau.$

7.12 Calculate the work needed to pull out a dielectric slab from the plates of a capacitor as shown in figure.

7.13 A slab of a dielectric material is infinite in the *x-y* plane and has a width *h* in the *z*-direction. The slab has a constant polarization $\mathbf{P} = P_0 \hat{\mathbf{z}}$. What s the electric field in the whole space?

7.14 A cylinder of radius *a* and height *h*. The cylinder has a constant polarization $\mathbf{P} = P_0 \hat{\mathbf{z}}$. What is the electric field on the axis of the cylinder?

7.15 A cylinder of radius *a* and height *h*. The cylinder has a constant polarization $\mathbf{P} = P_0 \hat{\mathbf{z}}$. What is the electric field on the axis of the cylinder?

7.16 A parallel plate capacitor has plates with area A and their mutual distance is l. The charge of the capacitor is Q. Calculate the force between the two plates using the formula for the energy of the capacitor.

7.16 A parallel plate capacitor has plates with area A and their mutual distance is l. The capacitor contains a dielectric material whose permittivity is a linear function of the position between the plates. The permittivity has the values and $\varepsilon(0) = \varepsilon_1$ and $\varepsilon(l) = \varepsilon_2$. Find the capacity of the capacitor.

7.17 A parallel plate capacitor has plates at a distance h and dimensions as shown in the figure. It is filled with two dielectrics as shown. Find the capacity of the capacitor.

7.19 A capacitor has square plates of side *l*. Due to an error in construction the plates are not parallel but have small slope with an angle φ . Show that the capacitance of the

7.20 A spherical capacitor has radii *a* and *b*. Between the spherical plates there is a dielectric material with permittivity, which is given by $\varepsilon = \varepsilon_0 b/r$ (with *r* being the radial distance. Find the capacitance of the capacitor.

