PHYS 454

HANDOUT 3-Operators in QM-The Uncertainty Principle

1. What is the angular momentum operator in Cartesian coordinates?
2. Show that $\left[\hat{x}, \hat{p}_{x}\right]=i \hbar$.
3. Show that the translation operator, which is defined as $\hat{T} f(x)=f(x+\delta)$, is linear.
4. Show that the parity operator is linear.
5. Show that the functions $e^{i k x}, e^{-i k x}$ are eigenfunctions of the momentum operator. What about the function $e^{i k x}+e^{i k x}$?
6. Find the eigenfunctions of the operator $\hat{A}=\hat{x}-\frac{\hat{p}}{i \hbar}$.
7. If $\left|\psi_{1}\right\rangle=\hat{A}\left|\phi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle=\hat{B}\left|\phi_{2}\right\rangle$ find $\left\langle\psi_{2} \mid \psi_{1}\right\rangle$.
8. If $|\psi\rangle=\sum_{n} c_{n}\left|\psi_{n}\right\rangle$ and $|\phi\rangle=\sum_{n} b_{n}\left|\psi_{n}\right\rangle$ find $\langle\phi \mid \psi\rangle$.
9. If $|\psi\rangle=c_{1}\left|\psi_{1}\right\rangle+c_{2}\left|\psi_{2}\right\rangle$ find $\langle\psi \mid \psi\rangle$. Discuss the result.
10. If $|\psi\rangle=\sum_{n} c_{n}\left|\psi_{n}\right\rangle$ with $\left|\psi_{n}\right\rangle$ forming an orthonormal basis find $\langle\psi \mid \psi\rangle$.
11. Let the state $|\psi\rangle=N\left|\psi_{1}\right\rangle-N\left|\psi_{2}\right\rangle$ with $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ orthonormal eigenvectors of a physical quantity. Find N so $|\psi\rangle$ to be normalized.
12. Let the state $|\psi\rangle=N\left|\psi_{1}\right\rangle+2 i N\left|\psi_{2}\right\rangle+i N\left|\psi_{3}\right\rangle$ with $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ and $\left|\psi_{3}\right\rangle$ orthonormal eigenvectors of a physical quantity. Find N so $|\psi\rangle$ to be normalized.
13. You are given the physical quantity A which corresponds to an operator: $\hat{A}=-\frac{\left(\hat{x}^{2}+1\right) \hat{p}}{\hbar}+i \hat{x}$. Find the state which corresponds to $\hat{A} \psi(x)=0$ and normalize it. You are given that $\int_{-\infty}^{+\infty} \frac{d x}{x^{2}+1}=\pi$.
14. Show that any operator \hat{a} can be written in the form $\hat{a}=\hat{Q}+i \hat{P}$, where \hat{Q}, \hat{P} are hermitian operators.
15. Show that the product of two projection operators is a projection operator as well.
16. Show that the parity operator has eigenvalues ± 1.
17. Find the parity of the following functions (i) $\cos x$, (ii) $\sin x$ and (iii) $\cos x+\sin x$.
18. Prove the Heisenberg's uncertainty principle.
19. Prove the Ehrenfest's Theorem.
20. Prove the energy-time uncertainty relation.
21. Show that when a system is in an eigenfunction of an operator \hat{A}, then $\Delta A=0$.
22. Show that if two physical quantities can be measured with full precision simultaneously then their operators commute.
23. Show that for the components ℓ_{x}, ℓ_{y} and ℓ_{z} of the angular momentum we have the following commutation relations:

$$
\begin{gathered}
{\left[\ell_{x}, \ell_{y}\right]=i \hbar \ell_{z},\left[\ell_{y}, \ell_{z}\right]=i \hbar \ell_{x},\left[\ell_{z}, \ell_{x}\right]=i \hbar \ell_{y} .} \\
{\left[\ell_{z}, \ell^{2}\right]=0 .}
\end{gathered}
$$

24. Starting from the relation that $[x, p]=i \hbar$, prove the relations:

$$
\begin{gathered}
{\left[x, p^{2}\right]=2 i \hbar p, \quad\left[x, p^{3}\right]=3 i \hbar p^{2} \ldots} \\
{\left[p, x^{2}\right]=-2 i \hbar x, \quad\left[p, x^{n}\right]=-3 i \hbar x^{2} \ldots} \\
{\left[p, x^{n}\right]=-i n \hbar x^{n-1}}
\end{gathered}
$$

Then show that: $[x, \mathrm{~A}(x, p)]=i \hbar \frac{\partial A}{\partial p}$ and $[p, \mathrm{~A}(x, p)]=-i \hbar \frac{\partial A}{\partial x}$
Where, $\mathrm{A}(x, p)$ is a function of x and p smooth enough to be developed in a Taylor series with respect either to x or p.
25. A) Prove the Enhrenfest's theorem in the case of the one dimensional motion of a particle subject to a force $F=F(x)$. B) Apply your result to the following cases i) when the force is constant $F=F$ 。 and ii) when the force is that of a simple harmonic oscillator $F=-k x$.

