PHYS 453

HANDOUT 2-Schroedinger equation

1. Show that the average value of the momentum $\langle p\rangle$ is zero in the following two cases: a) when the wavefunction $\psi(x)$ is real and b) when $\psi(x)$ is even or odd.
2. The wavefunction of a particle has the form $\psi(x)=N e^{-\lambda|x|}$. a) Find $N . b)$ What is the probability of finding the particle in the region $-1 \leq x \leq 1$ if we consider $\lambda=1$?
3. Show that the average value of the square of the momentum in an one dimensional problem could always be written in the form

$$
\left\langle p^{2}\right\rangle=\hbar^{2} \int_{-\infty}^{+\infty}\left|\psi^{\prime}(x)\right|^{2} d x
$$

4. Calculate the product of uncertainties $(\Delta x)(\Delta p)$ for the Gaussian function

$$
\psi(x)=\sqrt[4]{\frac{\lambda}{\pi}} e^{-\lambda x^{2} / 2}
$$

5. Calculate the uncertainty in momentum and position for a particle with a wavefunction equal to

$$
\psi(x)=N x e^{-\lambda x^{2} / 2}
$$

6. Find the average value of the momentum for any wavefunction of the form

$$
\Psi(x)=\psi(x) e^{i k x}
$$

where $\psi(x)$ is a real and square integrable wavefunction.
7. Let $P_{a b}(t)$ be the probability of finding the particle in the range $(a<x<b)$, at time t. Show that

$$
\frac{d P_{a b}}{d t}=J(a, t)-J(b, t)
$$

where

$$
J(x, t) \equiv \frac{i \hbar}{2 m}\left(\Psi \frac{\partial \Psi^{*}}{\partial x}-\Psi^{*} \frac{\partial \Psi}{\partial x}\right) .
$$

What are the units of J ? [$J(x, t)$ is called the probability current, because it tells you the rate at which probability is "flowing" past the point x. If $P_{a b}(t)$ is increasing, then more probability is flowing into the region at one end than flows at the other.]
8. A particle is represented (at time $t=0$) by the wave function

$$
\Psi(x, 0)= \begin{cases}A\left(a^{2}-x^{2}\right), & -a \leq x \leq a \\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine the normalization constant A.
(b) What is the expectation value of x (at time $t=0$)?
(c) What is the expectation value of p (at time $t=0$)?
(d) Find the uncertainty in x.
(e) Find the expectation value of p^{2}.
(f) Find the uncertainty in p.
(g) Check that your results are consistent with uncertainty principle.
9. A particle of mass m is in the state

$$
\Psi(x)=A e^{-a\left[\left(m x^{2} / n \mid\right)+i t\right]}
$$

(a) Find A.
(b) For what potential energy function $V(x)$ does Ψ satisfy the Schroedinger equation?
(c) Calculate the expectation values for x, p, p^{2} and x^{2}.
(d) Find the uncertainties in x and p. Are they consistent with the uncertainty principle?
10. Show that the momentum operator is given by $\hat{p}=-i \hbar \partial / \partial x$.

