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Chapter One

Basic concepts of Probability and Random variables

1.1 Basic concepts of Probabilities

An Experiment

An experiment is some procedure (or process) that we do.

Sample Space
The sample space of an experiment is the set of all possible outcomes of an

experiment. Also, it is called the universal set, and is denoted by ().

An Event

Any subset of the sample space A c () is called an event.
Note

@ c Q:Is the impossible event.

Q c Q: Is the sure event.

Complement of an Event
The complement of the event A is denoted by Aor A. The event A consists of all

outcomes of () but are not in A.

Probability
Probability is a measure (or number) used to measure the chance of the occurrence

of some event. This number is between 0 and 1.

Equally Likely Outcomes
The outcomes of an experiment are equally likely if the outcomes have the same

chance of occurrence.

Probability of an Event

If the experiment has n({1) equally likely outcomes, then the probability of the event

E is denoted by P(E) and is defined by: P(E) = % .
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Thus, probabilities have the following properties
1. 0 < P(A) < 1foreacheventA.

2. P(Q) = 1.
3. P(p) = 0.
4. P(A°) = 1— P(A).

Some Operations on Events

Union: The event A U B consists of all outcomes in 4 or in B or in both A and B.
Intersection: The event A N B consists of all outcomes in both 4 and B.

Sub event: The event A is called a sub event of B “A c B” if event B occurs whenever

the event 4 occurs.

Relationships between events
<> : A U B, consists of all those outcomes in A or in B or in both Al
and B B A

) /
AuB

% | Intersection |: A ~ B, consists of all those outcomes in both A and B
B A

N J) [

Consists of all outcomes that are

. . A®
in  but not in A

Sets (events) can be represented by
Venn Diagram Q

B A

Gl
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Addition Rule
P(AUB)=P(A)+P(B)—P(ANB)

Mutually exclusive (disjoint) Events

Two events are mutually exclusive if they have no sample points in common, or
equivalently, if they have empty intersection. Events A,,4,, ..., A, are mutually
exclusive if A; N A; = ¢ for all { # j, where ¢ denotes the empty set with no sample
points.

For this case:
1. P(AnB)=0.

2. Aand Acare disjoint.
3. P(AUB) = P(A) + P(B). “ special case of addition rule”

4. P (U2, A) = 32, P (AD).

Disjoint Events Joint (Not Disjoint) Events

Exhaustive Events
The events A4, 4,, ..., A,, are exhaustive events if: A; UA, U ...UA, = Q.
For this case: P(A; UA, U ..UA,) =P(Q) =1.

A Partition

A collection of events A4, A,, ..., A, of a sample space (Q is called a partition of Q if
Ay, Ay, ..., A, are mutually exclusive and exhaustive events.

Example 1.1

O ={1,2,3,4,5,6},A = {1,2},B = {2,3} and C = {1,5,6). Find:P(4), P(B), P(C), P(A N
B),P(BNC)and P(AU C).

Solution
P(4) =P(B) == ,P(C) =3 ,P(ANB) == ,P(BNC) =0,

P(AuC)=PA)+P(C)—P(ANC) ==+

Wl
N =
ok

What can we say about B&C?
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Since P(B N C) = 0, Then B&C are disjoint events.

Conditional Probability
The conditional probability of A, given B, written as P(A|B), is defined to be

__P(AnB)
P(A|B) = )
Independence

Two events A and B are said to be independent if B provides no information about
whether A has occurred and vice versa. In symbols:

- P(AnB)=P(A)P(B),Or

- P(A|B) = P(A4),0r

- P(B|A) = P(B).

Return to Example 1.1. Compute P(A|C).
P(AnC) 1/6 1
P(A|C) = = ==.
Al P(C) 1/2 3

Are A&C independent?

Since P(A|C) = é = P(A), then A&C are independent.
1.2 Random Variable

The outcome of an experiment need not be a number, for example, the outcome
when a coin is tossed can be 'heads' or 'tails'. However, we often want to represent
outcomes as numbers. A random variable is a function that associates a unique
numerical value with every outcome of an experiment X: (0 — R. The value of the
random variable will vary from trial to trial as the experiment is repeated.

There are two types of random variable discrete and continuous.

1.2.1 Discrete Random Variable

The random variable X is discrete and is said to have a discrete distribution if it can
take on values only from a finite X € {x;, x5, ..., x,,} or countable infinite sequence
X € {x4,x,, ... }. Discrete random variables are usually represents count data, such

as, the number of children in a family, the Friday night attendance at a cinema, the



http://www.stats.gla.ac.uk/steps/glossary/probability_distributions.html#discvar
http://www.stats.gla.ac.uk/steps/glossary/probability_distributions.html#contvar
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number of patients in a doctor's surgery and the number of defective light bulbs in a
box of ten.

Example 1.2

Consider the experiment of successive tosses of a coin. Define a variable X as X = 1
if the first head occurs on an even-numbered toss, X = 0 if the first head occurs on
an odd-numbered toss; and define the variable Y denote the number of the toss on
which the first head occurs. The sample space for this experiment is Q =
{H,TH,TTH,TTTH,...}. Therefore,

w X(w) | Y(w)

H 0 1
TH 1 2
TTH 0 3

1 4

TTTH

Both X and Y are discrete random variables, where the set of all possible values of
X is {0,1} (finite), and the set of all possible values of Y is {1,2,3,4, ...} (infinite but

countable).

1.2.2 Continuous random variable

A continuous random variable usually can assume numerical values from an interval
of real numbers, perhaps the whole set of real numbers R; X € {x: a<x <
b; a,b € R}. Continuous random variables are usually measurements, for example,

height, weight, the amount of sugar in an orange, the time required to run a mile.

1.3 Probability Function

1.3.1 Discrete Case (Probability Mass function)

The probability distribution of a discrete random variable is a list of probabilities

associated with each of its possible values. It is called the probability mass function
(pmf) which is usually denoted by fx (x), f (x), p(x)or p, and is equal to P(X = x).
The probability mass function must satisfy

1. 0<f(x)<1forallx,

2. Yuf()=1.
Example 1.3
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Consider the following game. A fair 4-sided die, with the numbers 1, 2, 3, 4 is rolled
twice. If the score on the second roll is strictly greater than the score on the first the
player wins the difference in euro. If the score on the second roll is strictly less than
the score on the first roll, the player loses the difference in euro. If the scores are
equal, the player neither wins nor loses. If we let X denote the (possibly negative)
winnings of the player, what is the probability mass function of X?

Solution

The total number of outcomes of the experiment is 4 x 4 = 16. The sample space of
this experiment is
Q={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),...(4,3),(4,4)}. Thus, X can take
any of the values -3,-2,-1,0, 1, 2, 3.

The pmf can be found as follow

f(-3)=P(X=-3)=P{(4, 1D} =,

f(=2) = P(X = —2) = P{(4,2)} + P{(3, 1)} =

16’
' 1
f(3) =P(X =3)=P(1L )} = 1.
Hence, the distribution of X can be written as
X -3 -2 -1 0 1 2 3 Total
f(x) 1/16 2/16 3/16 | 4/16 3/16 2/16 1/16 1

Example 1.4
Consider an experiment of tossing an unfair coin twice. The probability is 0.6 that a
coin will turn up heads on any given toss, and let X be defined as the number of
heads observed. Find the range (possible values) of X, as well as its probability mass
function. Then find P(X =1),P(X =15),P(1<x<3),P(1<x<3),PX>4) &
P(X > -2).
Solution
I. The sample space of this experiment is Q = {HH,HT,TH,TT}, therefore, the
number of heads will be 0, 1 or 2. Thus, the possible values of X are {0, 1, 2}.
Since this is a finite countable set, the random variable X is discrete. Next, we

need to find the pmf

HH 2
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HT 1
TH 1
TT 0

P(H) = 0.6 & P(T) = 0.4, Therefore we have

f(0)=P(X=0)=P(TT) = (0.4)(0.4) = 0.16,
f())=P(X=1)=P(HT) + P(TH) = (0.6)(0.4) + (0.4)(0.6) = 0.48,
f(2)=P(X=2)=P(HH) = (0.6)(0.6) = 0.36.

Hence, the distribution of X can be written as

X 0 1 2 Total
f(x) 0.16 | 0.48 0.36 1

[I. Now we can calculate the probabilities as follow
P(X=1)=0.48

P(X=15)=0
P(1<x<3)=PX=1)+PX=2)=0.48+0.36 = 0.84,
P(1<x<3)=PX =2)=0.36,

P(X>4)=0.

6. PX>-2)=PX=0+PX=1)+PX=2)=1

v W e

Example 1.5
Suppose the range of a discrete random variable is {1, 2, 3, 4}. If the probability
mass function is f (x) = cx for x =1, 2, 3, 4. Find is the value of c, then calculate
P(X =3.25),P(X>2),P(1<X<5)
Solution
I. Since f(x) is a pmf, it should satisfy two conditions

1. First,f(x)20—->c=0.

2. Second, Y, f(x)=1=>f(D+fR)+fB)+f(4d) =1

=>c+2c+3c+4c=1>10c=1=c=0.1

= f (x) =110; x = 1,234

II.
1. P(X=3.25)=0

2. PX>2)=fR)+fA) =—+—-=2=07
3. PA<XSS) =fQ+f+fH) =—+—+—-===09
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1.3.2 Continuous Case (Probability Density function)
The probability density function of a continuous random variable is a function
which can be integrated to obtain the probability that the random variable takes a

value in a given interval. It is called the probability density function (pdf) which is
usually denoted by fyx(x) or f(x). Symbolically, P(a < X < b) = f: f(x)dx = the

area under the curve of f(x) and over the interval (a,b).

AY

-~ fx)

=Y

a b
The probability density function must satisfy

1. f(x) = 0orallx,

2. [7 fx)dx =1.
Note: In the continuous case for any x € R.

1. f(x)#=PX =x),

2. PX=x)=0,

3. Pa<X<b)=Pa<X<b)=Pa<X<b)=P@a<X<bh)
Example 1.6

2x; 0<x<1
Let f(x) —{ 0; otherwise

I. Checkif f(x) is pdf.
Solution

Since,

1L.x>0=f(x)=2x>0,

2. folf(x)dx = fol 2x dx =1,

Thus, f(x) is a pdf.

II. Calculate P G <X< %),P(X =0.5) & P(-2 < X < 0.75)

Solution

N

1
1. P G <X< %) = [Zf(x)dx = [22x dx = 0.1875.
4

|

2. P(X=05)=0
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3. P(-2<X<0.75) = [° f(x)dx = [,"° 2x dx = 0.5625.
Example 1.7
Let X be a continuous random variable with the following pdf f(x) =
{ke‘x; x =0
0; otherwise
[. Find k.
Solution

The probability density function must satisfy two conditions
1. fW)=20=>ke™*>20=k=>0
2. ffooof(x)dx =1= fooo ke™*dx =1= —k[le® —-e°]=1=—-k[0-1] =1
>k=1 =>fx)=e*;x>0.
IL FindP(1<X <3),PX>4)&P(X =4)
Solution
1. PA<X<3)=[ e*dx=—[e?-e!] =0318.
2. PX>4) =["e*dx =—[e™® —e™*] = —[0 — 0.0183] = 0.0183.
3. P(X=4)=P(X>4)=0.0183.

1.4 Cumulative distribution function (CDF)

All random variables (discrete and continuous) have a cumulative distribution

function (CDF) denoted by F(x). It is a function giving the probability that the
random variable X is less than or equal to x, for every value x. Formally, the
cumulative distribution function F(x) is defined to be:

F(x)=P(X<x) for —oo<x<oo.
1.4.1 Discrete Case
For a discrete random variable, the cumulative distribution function is found by

summing up the probabilities
F(x) = Yrex £ (8).

10
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In general we can use the following rules for integer number
aand b

1- P(X < a) 1s a cumulative distribution probability
2-P(X<a)=P(X<a-1)

3-P(X > b)=1-P(X<b)=1-P(X <b-1)

4-P(X>b)=1-P(X <Db)

5- P(a<X<b)=P(X <b) - P(X<a)=P(X <b) - P(X< a-1)
6- P(a<X<b) =P(X <b) - P(X< a)

7-P(a < X<b)=P(X <b-1) - (X< a-1)

8- P(a<X<b)=P(X <b-1)-P(X <a)

Also,
F is continuous from the right. That is, lim, ,,+ F(t) = F(b).

lim, . F'(b) =0
limy . F'(b) =1

and

F' is a nondecreasing function; that is, if « < b then F(a) < F(b).

Example 1.8
Return to Examples 1.4,1.5. Find the distribution function CDF for the r.v. X.
Solution

For example 1.4 we have

X 0 1 2 Total
f(x) 0.16 0.48 0.36 1
F(x) 0.16 0.64 1
In a formal way,

00 x<0

016; 0<x<1

FGO)=3064: 1<x <2
1, x=2

Thus, we can immediately calculate:
P(X<1) =F(1) = 0.64.
PX>0)=1-PX<0)=1-F(0)=1-0.16 = 0.84, and so on.

For example 1.5 we have

F(x) =PX <x)=3¥L, 5
Loly2o2o93.
10 10

Let say we want to calculate P(X < 2) = F(2) = Y7 -

i=14g

11
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Generally,
X 1 2 3 4 Total
f(x) 0.1 0.2 0.3 0.4 1
F(x) 0.1 0.3 0.6 1
Formally,
( 0; x <1
01, 1<x<2
F(x) =403; 2<x<3
06, 3<x<4
1; x =4
Note that

If the range of a discrete random variable X consists of the values oy < a9 <
- < ay, then p(xq) = F(xq) and

p(‘ri) — F(Ii) _ F{‘ri—l)* 1= 21 3'\ R 1

1.4.2 Continuous Case
For a continuous random variable, the cumulative distribution function is the
integral of its probability density function on the interval (—oo, x).
F(x) = [" f(x)dx

Result
The different Inequalities probabilities can be written by using the CDF as follow

* P(X<a)=F(a),

* PX>a)=1—-PX <a)=1-F(a),

" Pa<X<b)=PX<b)—PX <a)=Fb)—-F(a).
Also,

The cumulative distribution function of a continuous random wvariable X
satisfies the following properties:

(a) 0< F(t) < 1.

b) F'(t) = (1).

(
(c) F(t) is a non-decreasing function, i.e. if @ < b then F(a) < F/(b).
(d) F'(t) > 0ast — —oco and F(t) = 1l as t — oco.

Example 1.9
Return to Examples 1.6,1.7. Find the distribution function CDF for the r.v. X.

Solution

12
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For example 1.6 we have

F(x)=f:2xdx=x2; 0<x<1,

Formally,
0; x<0
F(x)=4{x*%0<x<1.
1; x=>1

Now, we can immediately calculate the probabilities on the form P(X < x) or
P(X < x),such as
P(X < 0.5) = F(0.5) = 0.5 = 0.25,
P(X<3)=1,
P(X<-2)=0.
For example 1.7 we have
F(x) = f(jce‘x dx=—[e*—e]=1—-e"% x>0,

Formally,

0; x<0
F(x) = {1 —e™ x>0

Now, letfindP(X < 4) =F(4) =1—e~* =0.9817,
P(0.25 < X < 0.5) = F(0.5) — F(0.25) = 1 — e~%5 — (1 — e~°25) = 0.1723.

13
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Extra Example
(a) Determine the value of ¢ so that the following function is a pdf.
ﬁ +& —2<xz<0
flx) = —+ca: O<z<3
0 otherwise

(b) Determine P({—1 < X < 1).
(¢) Find F(z).

Solution.
(a) Observe that f is discontinuous at the points —2 and 0, and is potentially
also discontinuous at the point 3. We first find the value of ¢ that makes f

a pdf.
1_f (—+;)dx+f ( +cx)d"r
- .r+i P
T |64 1281 , 2 2 1,
3o 2 9  O¢
6 6182
100 | Be
T64 2
Solving for ¢ we find ¢ = —g

(b) The probability P{—1 < X < 1) is calculated as follows.

15 =z 60
—1 < X = = — — — — — lr — ——
P-1=X=<1) f a1 )d.r+f( ) o5

(¢) For —2 < x << 0 we have
T 15 t 2 15 7
Flx) = T dt = 4+ = -
() f_z (64 * 64) 98 64 16
and for 0 < x < 3

(15 £ i3 g 731,
Fio)= | (2+Z)a S PP S )
(z) _/_.2(64+G4) x+fu (8 8) T S

Hence the full edf is

0 r< =2
2 15 T
) 4B+ L 2<2<0
=g BT 0
1 =3

Observe that at all points of discontinuity of the pdf, the cdf is continuous.
That is, even when the pdf is discontinuous, the cdf is continuous @

14
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Chapter Two
Mathematical Expectation, Moments and Moment

Generating Function

2.1 Mathematical Expectation

In this section, we learn a general definition of mathematical expectation, as well as

some specific mathematical expectations, such as the mean and variance.

2.1.1 Expected value of a random variable

For a random variable X, the expected value (mean, average, a predicted value of a

variable) is denoted E (X), uy or u.

Discrete case

If f(x) is the pmf of the discrete random variable X, then the expected value of X is
i=EQX) =, x f(x) = Tpx P(X =2).

Continuous case

If f(x) is the pdf of the continuous random variable X, then the expected value of X

is EX) =[" xf()dx.

Note: although the integral is written with lower limit —oo and upper limit oo, the

interval of integration is the interval of non-zero-density for X.

Example 2.1

Compute the expected values of the r.v.’s which presented in Examples 1.4 & 1.6.

Solution

For Example 1.4, the expected value is calculated by E(X) = Y., x f(x). Thus,

X -3 -2 -1 0 1 2 3 Total
fGx) | 1716 | 2716 | 3/16 | 4/16 | 3/16 | 2/16 | 1/16 1
xf(x) | -3/16 | -4/16 | -3/16 | 0 3/16 | 4/16 | 3/16 | E(X) =0

For Example 1.6, the pmfis f (x) = 1x—0; x = 1,2,3,4. Then

EX)=2xf)=1LfD)+2.f2)+3.f3)+4.f(4)
=01+04+09+16=23.

15
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Example 2.2
Compute the expected values of the r.v.’s which presented in Examples 1.7&1.8.
Solution

For Example 1.7, the pdfis f(x) = 2x; 0 < x < 1. Thus,
EX) = ffoooxf(x)dx = folx (2x)dx = 2.

3
For Example 1.8, the pdfis f(x) = e™; x > 0.Hence,
E(X) = fooox e *dx
Use integration by parts:

u=x dv = e *dx
du = dx v=—e*
Hence,

E(X) = fooox e Xdx = —xe ™| — fooo— e Xdx =0+ fooo e ¥dx = —[e ® —e’] = 1.

Extra Example
A man determines that the probability of living 5 more vears is (.85, His
insurance policy pays $1,000 if he dies within the next 5 years. Let X be the
random variable that represents the amount the insurance company pays ot
in the next 5 vears.
(a) What is the probability distribution of X7
(b) What is the most he should be willing to pay for the policy?

A ‘oo Solution.
(a) P(X =1000) = 0.15 and P(X =0) = 0.85.
\lee (b)) E(X) = 1000 x 0.15+0 x 0.85 = 150. Thus, his expected payout is $150,

My o e .
5 so he should not be willing to pay more than $150 for the policy B
J«{\ sf=eX) =1 o -

Expectation of a function
If g is a function, then E(g(X)) is equal to Y., g(x)f(x) if X is a discrete random
variable, and it is equal to f_oooo g(x)f(x)dx if X is a continuous random variable.
Corollary
Let a,b € R are two constants and g,, g, are two functions of a random variable X.
Then

* E(aXxb)=aE(X)xb.

» E(agi(X) +bg,(X)) = aE(g,(X)) + bE(g.(X)).

Corollary

16
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If X;,X,,...X,)Y are nindependentr.v.’s and g4, g5, ..., gn are any functions then

E[g1(X1) - g2(X2) .. » gn(Xp)] = E[g1(X)] - E[g2(X2)] - ..." E[gn(Xy)]

= [1i21 ELg: (X1,
Example 2.3
Compute the expected values of g(X) = X? — 1 and h(X) = 3X + 2 in Examples 1.4
& 1.6.
Solution

For Example 1.4, the expected value is calculated by

E(g(X)) =E(X?-1) = E(X?) — 1. Thus,

X -3 -2 -1 0 1 2 3 Total
fo) | 1716 | 2716 | 3/16 | 4/16 | 3/16 | 2/16 | 1/16 1
x2f(x)| 9/16 | 8/16 | 3/16 | 0 | 3/16 | 8/16 | 9/16 | E(X) = 2.5

Hence, E(X?—1) =2.5—-1=1.5.
Also, E(3X +2) = 3E(X) +2 = 3(0) + 2 = 2.

For Example 1.6, the expected value is calculated by

E(gX)=EX?*-1) = E(X?) —1=(Cxx*f(x)) -1

=0+1(0.1) +4(0.2) +9(0.3) +16(0.4) —1=10—-1 =09.

Also, EBX+2)=3EX)+2=33)+2=11.

Example 2.4

Compute the expected value of g;(X) = Xg in Example 1.7, and the expected value of
g>.(X) = X? + X in Example 1.8.

Solution

For Example 1.7, the pdfis f(x) = 2x; 0 < x < 1.Thus,
2 o 2 1 2 1 5 8
E(g.(X)) = E(Xs) =[x f(xX)dx = [ x5 (2x)dx = 2 [ x5 dx = gxs = g.

For Example 1.8, the pdfis f(x) = e™; x > 0. Hence,

E(g.(X))=EX*+X) =EX»)+EX) = f x?e ™ dx + 1
0
Use integration by parts:

u = x? dv = e *dx

17
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du=2xdx v=-—-e*

Hence,

E(X?) = [, x* e dx = —x?e™*|g’ — [
2 [ xe ™ dx =2E(X) =2(1) = 2.
Therefore, E(gz(X)) =2+1=3.

o)

2xe™¥dx =0+ [ 2xe*dx =

Extra Example

The thickness of a conductive coating in micrometers has a density funetion
of f(xr) = 600z for 100pm < = < 120um. Let X denote the coating
thickness.

(a) Determine the mean and variance of X.

(b) If the coating costs $0.50 per micrometer of thickness on each part, what
is the average cost of the coating per part?

(¢) Find the probability that the coating thickness exceeds 110um.

Solution.
(a) Note that f(x) = 60022 for 100um < x < 120pm and 0 elsewhere. So,
by definition, we have

120 ]
E(X) = f - 600z~ 2dz = 600 z|,5) = 100.30
100

and

) ) 120

o’ = E(X?) - (E(X)) = / z? - 600z 2dz — 109.39% = 33.19.
J10o
(b) The average cost per part is $0.50 x (100.39) = $54.70.
(¢) The desired probability is
120 f 5
P(X = 110) = [ 600z 2dx = 11 [ |

J110
2.1.2 Variance of a Random Variable
The variance (which denoted by V(X), 6% or 62) is a measure of the "dispersion" of
X about the mean. A large variance indicates significant levels of probability or

density for points far from E(X). The variance is always positive (62 > 0). It is

defined as the average of the squared differences from the Mean. Symbolically,
V(X) = E[(X — ux)?],
This is equivalent to
V(X)) = EX?) —uz = EX?) - [E(D]*
Yox?f(x) if Xisdiscreter.v.

ere ( ) {f_wxzf(x) iins continuous r. v.

The second formula is commonly used in calculations.

18
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2.1.3 Standard deviation
The standard deviation of the random variable X is the square root of the variance,
and is denoted oy = \/a_,% = \/m
Corollary
Leta, b € R are two constants. If X is a random variable with variance V' (x), then
» V(aX +b) = a?V(X).

Example 2.5
Compute the variance and standard deviation of the r.v.’s which presented in

Examples 1.4. Then, calculate V(X — 6).
Solution

V(X) = E(X?) — [E(X)]?

From Example 2.1, we found that E(X) = 0
Now, let calculate E(X?)

X -3 -2 -1 0 1 2 3 Total
f(x) | 1/16 | 2/16 | 3/16 | 4/16 | 3/16 | 2/16 | 1/16 1
x2f(x)| 9/16 | 8/16 | 3/16 | 0 | 3/16 | 8/16 | 9/16 | E(X?) =2.5

Then, V(X) = E(X2) — [E(X)]? = 2.5 — 02 = 2.5, 04 = V2.5 = 1.58,

and V(X — 6) = V(X) = 2.5.

Example 2.6
Compute the variance and standard deviation of the r.v’'s which presented in

Examples 1.7. Then, calculate V(3X — 6).

Solution

From Example 2.2, we found that E(X) = E.
E(X?) = [~ x*f(x) = f x2(2x)dx =

2=0s5.

2
= V(X) = E(X?) — [E(X)]? = 0.5 — ( ) = 0.0556, gy, = /0.0556 = 0.2357, and

5

V(3X — 6) = 32V(X) = 9(0.5556) = 0.5.
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Extra Example

This vear, Toronto Maple Leals tickets cost an average of $80 with a variance
of 105 square dollar. Toronto city council wants to charge a 3% tax on all
tickets(i.e., all tickets will be 3% more expensive). If this happens, what
would be the variance of the cost of Toranto Maple Leafs tickets?

Solution.

Let X be the current ticket price and Y be the new ticket price. Then
Y = 1.03X. Hence,

Var(Y) = Var(1.03X) = 1.032Var(X) = (1.03)2(105) = 111.3945 m

Extra Example

Let X be a random variable with probability density function

24z f<z<q
f(=z) = { 0 elsewhere

(a) Find the variance of X.
(b) Find the c.d.f. F(z) of X.

Solution.
(a) By the symmetry of the distribution about 0, E{X) = 0. Thus,

0 1

Var(X) =E(X?) = f r*(2 + 4x)dx + fﬂ r*(2 — 4z)dx
: 0

‘ 1

_o [ %02 _gdyg, _ L
—2[0 (22 — 8z )dfe"—24

(b) Since the range of f is the interval (—1, 1), we have F(z) =0 for z < —1
and F(x) = 1 for z > L. Thus it remains to consider the case when —

:<
;r-::%.F‘or—%{xiiD,

2

For 0 <z < —; we have

L] T
F(z) = f (2 + 4t)dt + f (2 — 4t)dt = —2x% 4+ 22 + %
_é 1]
Combining these cases, we get

0

T < —é
. 2?4241 _laogpaq
Fiz) = _ 2 7 =
(z) -2+ 2z+; 0<z<i
1 r> i n
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2.1.4 Mean and Variance for Linear Combination
Suppose X4, X5, ..., X, are n independent random variables with means pu4, u,, ..., tn
and variances 012, 022, ..., 0. Then, the mean and variance of the linear combination

Y =Y, a;X;, where a4, a,, ..., a, are real constants are:

n
puy =EXY) = Z ai; = a E(Xq) + a2E(Xp) + -+ + anE(Xy)
=1

— no need to check the independent for the random variables.
and
2 _ — \n 2.2 __ 2 2 2
O-Y - V(X) - Zi=1 ai O-i —_ a1V(X1) + a2V(X2) + + anV(Xn)
— need to check the independent for the random variables.

respectively.

2.1.5 Chebyshev's inequality

If X is a random variable with mean p and standard deviation o, then for any real number
k >0,

1 , , |
PIIX -l > kol < = Pty —hoy <X < s +ho)2l=g
I - ~

_ 1
= P(,u—ka<X<u—k0)21—ﬁ

piy— ke Ay iy + ke

Example 2.7
Let Y be the outcome when a single and fair die is rolled. If E(Y) = 3.5and V(Y) =

2.9. Evaluate P (|Y — 3.5| = 2.5).

Solution

Since the distribution is unknown, we cannot compute the exact value of the
probability. To estimate the probability we will use Chebyshev's inequality.

ko =25 =17k =25 = k =1.47. Thus,

1
a7 = 0463,

P(lY —3.5|>25) <
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Example 2.8

Toss 100 coins and let X count the number of heads where E(X) = 50,V (X) = 25.
Estimate the probability that 40 < X < 60.

Solution

To estimate the probability we will use Chebyshev's inequality.

60=u+ok = 60=50+5k =10=5k =k =2.

P(40 < X < 60) = 1 — = = 0.75.
2
2.2 Central Moments and Raw Moments

2.2.1 Central Moments
The rth central moment of a random variable X (moment about the mean u) denoted

by u, is the expected value of (X — u)”; symbolically,

U = E[(X — 7] for r =0,1,2,...
Therefore,
= p=E[X-w°]=EQ) =1
= The first central moment y; = E[(X —uw)] = EX) —u = 0.
* The second central moment u, = E[(X — p)?] = V(X) = o2 (The Variance).

2.2.2 Raw Moments
The rth moment about the origin of a random variable X, denoted by ;. , is the

expected value of X”; symbolically,

U = E(X") for r=2012...
Therefore,
= up=EX®)=EQ)=1.
= The first raw moment u; = E(X) = u (The expected value of X).

» The second raw moment uj = E(X?).

Notes

= Itis known that V(X) = E(X?) — [E(X)]?, thus p, = p — u}>.
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=  Henceforth, the term "moments" will be indicate to "raw moments".

2.3 Moment Generating Function

If X is a random variable, then its moment generating function (MGF) denoted by

My (t) or M(t) is defined as

( Z e f(x) if X is a discreter.v
My(@®) =E(*)={
f e f(x)dx if X isa continuous r.v

We say that MGF of X exists, if there exists a positive constant h such that My (t) is
finite for all t € [—h, h].
Notes

*  We always have My (0) = E[e%*] = 1.

» There are some cases where MGF does not exist.

Example 2.9
For each of the following random variables, find the MGF.

I. Xis a discrete random variable, with pmf

f&) =

Solution

My () = E(e™) = $2_1 e[ (x) = " Df (1) + e" @D f(2) = je" + e,

II. Y is a random variable, with pdf
fO=1, 0<y<1
Solution

et 1  et—e® ef-1

My(t) = E(e") = [ e®f(y)dy = [, eWdy == |} === =

Why is the MGF useful?
There are basically two reasons for this:
= First, the MGF of X gives us all moments of X. That is why it is called the

moment generating function.
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= Second, the MGF (if it exists) uniquely determines the distribution. That is, if
two random variables have the same MGF, then they must have the same
distribution. Thus, if you find the MGF of a random variable, you have indeed

determined its distribution.

2.3.1 Finding Moments from MGF
Remember the Taylor series for e*: for all x € R, we have
x?  x3
x=1+x+?+?+' Zk Ok'
Now, we can write

t2 2 t3X3

+

© (tx)¥* thk
X=Zk=0 X! _Zkok' —1+tx+ + -

3!

Thus, we have
- tk t2 t3
My (t) = E[e*] = X5 E(X®) Z=1+EQOt+ E(X?) =+ E(X3); + -
Proposition

The rth moment about the origin can be found by evaluating the rt" derivative of the

moment generating function at ¢t = 0. That is

LMo = MT(0) = EX™) =

Example 2.10
10
Let X be a r.v. with MGF My (t) = Get+§) .Drive the first and the second

moments of X.
Solution
By using the previous proposition we can find the moments as follow

= The first moment is

B = 1= EMOlmg = £ (et +2) 1o = 10 (2t +2) (2e!) limg

dt 3

-2y -2oam

= The second moment is

E) = iy = S M)z = 2 (Ret +2) " ico = 210 (et +2) (2e) liso

= [90 Get + %)8 Get)2 + 10 Get + %) Get)] le=0 = % + % = 13.33.
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Example 2.11
1
Let X be a r.v. with MGF My (t) = (1 — 2t) 2 .Drive the Mean (expected value) and
the standard deviation of X.
Solution
= The mean is
d d _1 1 _3
E(X) =U= EM(tNt:o = E(l — 2t) 2|t=o = _5(1 — 2t) 2(_2)|t=0 =1L
= The variance is
V(X) = E(X?) — p?
2 d? d 2 3 _S
E(X?) = S M(O)lieo = = (1 = 26) 2lmg = =2 (1 = 26) 2(=2)]1oo =
5
3(1 - Zt)_5|t=0 = 3.
VX)=EX?)—u?=>vVX)=3-12=2.
Hence, the standard deviation is oy = V2 = 1.41.

Example 2.12
Find the MGF of the r.v. X, then use it to find the first four moments. Where

X
f(x)=5; 0<x<?2

Solution
2 xel®
My(t) = E(e®™) = | dx.
0 2
Use integration by parts:
X
u=>: dv = e™dx
1 etx
du ==dx v=—
2 t
Hence,
xetx 2 etx eZt etx eZt eZt 1
My(t) =53 - [P dx = - g = -
2t 0 2t t 2t2 t 2t2  2t2

Since the derivative of My (t) does not exist at t = 0, we will use the Taylor series

form. Thus, we have to put the MGF on the form

2 3
My(t) =1 +E(X)t+E(X2)%+E(X3)%+..._

We have
_Loet e 1 @) g
MX(t)_2t2+ t  2t2 2¢2 2t2
1 (2t-1) 2.2 3.3 4,4 545 646
=sat o (L2425 + 2767 + 2%¢% + 2°0° + 2°° + -]
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1 (2t-1) |, (2e-1) | 2(2t-1) | 22%e(2e-1) | 28t%(2t-1) | 2%¢3(2¢-1) | 25t*(2t-1)

+ + + + + + + + o
T 22 2t2 t 2! 3! 4! 5! 6!
= oo 22— 142 2—ﬁ+24t3—23’52++25t4—24t3+26’55—
2t2 t 2t2 ! 3! 4! 4! 5! 5! 6!
25¢%
6!
3 3 4 4
=1+(2-D) e+ E-Dee+ (E-D)e+(E-D)et+ -
3! 4! 4! 5! 6!
4 2 23\ t? 2% 2™\t 25 25\ t*
e G P O E R G P
3 4 4
—1+3t428 —+(% )t +(E)S+
3 3! 3/ 4!

Therefore, by comparing with the Taylor form the first four moments are

_ 4 2y — 0. 3y _ 28 _ 16, 4y 2t _ 16
E(X)—3,E(X)—2,E(X)—5—5,E(X)—3—3
2.3.2 Moment Generating Function for Linear Combination
Theorem
Suppose X;, X,, ..., X,, are n independent random variables, and the random variable

Yis definedas Y = X; + X, + -+ + X,;; Then

My (t) = My, 4x,4..+x,(t) = My, ()My, (t) ... Mx ()
Proof
My (t) = E[et] = E[et(X1+X2+~~~+Xn)] = E[etX1etX2  otxn]
= E[e**|E[et*?] ... E[e'*™] (since Xi's are independent)
= My, (t)Mx, (t) ... My _(t).
Special cases
» IfXandY are two independent r.v.'s (n=2), then My, (t) = My (t)My(t).
= [f X and Y are iid. r.wv.'s (independent identically distributed), then
My, y(t) = [M(t)]?; where M(t) is the common MGF.
Proposition
If X is any random variable and Y = a + bX, then
My (t) = e M (bt)

] i i = X;ﬂ . — _g £
In particular, if Z = - ;then M, (t) = e oMy (G)

26




215 STAT Probability | Weaam Alhadlaq

Proof

My(t) = E(et’) = E(et(@+bX) = F(eat+btX) = F(eat, gbtX)
= eME(eP™™)  (e* isa constant)

= e**My(bt) (from MGF definition).

Example 2.13
Let X be a discrete random variable with values in {0, 1, 2,..} and moment

enerating function M(t) = = Find, in terms of M (t), the generating functions for
8 g - 8 8

L. Y=3X+7

Solution

My (t) = e7tMy(3t) = et (i

_ o7t _ -1
3_3t)—e 1-0

ILW=-X

Solution

My (t) = My(—t) = —

3+t

Example 2.14
Let Xand Y are two independent random variables. Find the MGF for Z = X + Y, if

et-1 1
L My(t) =— My() = —
Solution
t_l 1 t—l
Mz(t) = Myx(t)My(t) = (e ; )(1_4t) = t(e1—4t)'

IL My(t) = My(t) = M(t) = i + %e .

Solution

My (t) = [M(D]? = G + zet)z.
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Chapter Three
Frequently Used Discrete Probability Distributions

Distributions to be Covered
= Discrete uniform distribution.
= Bernoulli distribution.
= Binomial distribution.
= Geometric distribution.
= Negative binomial distribution.
= Hypergeometric distribution.

=  Poisson distribution.

3.1 Discrete Uniform Distribution

The discrete uniform distribution is also known as the "equally likely outcomes"
distribution.
A random variable X has a discrete uniform distribution if each of the k values in its

range, say X , X, , ..., Xx, has equal probability. Then,

1
fx)=f(xk) = {E; X = X1,X2, ey Xg

)
0; otherwise

where k is a constant.

Parameter of the Distribution: k € N* (number of outcomes of the experiment).

Mean and Variance
Suppose X is a discrete uniform random variable on the consecutive integers a, a +

1,a + 2,...,b for a<b. The mean and the variance of X are

EQR) =pu="7
o (b—a+1)?-1
V(X)=0°= —0

Note
If you compute the mean and variance by their definitions, you will get the same

answer.
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Example 3.1
Let X represent a random variable taking on the possible values of {0, 1, 2, 3, 4, 5, 6,

7, 8, 9}, and each possible value has equal probability. Find the distribution of X.
Then, calculate the mean and the variance.
Solution

X has a discrete uniform distribution, thus

1
=—; x=0,1,..,9.
f(x) 10: X O; )] '9

—0+1)%—
Therefore, E(X) = ()ZLO =4.5 and V(X) = % = 8.25.

3.2 Bernoulli Distribution

Bernoulli trial It is a trial has only two outcomes, denoted by S for success and F for
failure with P(S) = pand P(F)=q= 1 — p.
Suppose that X is a r.v. representing the number of successes (x = 0 or 1). Therefore,

X has a Bernoulli distribution (X~Ber(p)) and its pmf is given by

iy = (PP x =01
f) =fCep) {O; otherwise

Parameter of the Distribution: 0 < p < 1 (probability of success).

Mean and Variance
If Xis a discrete random variable has Bernoulli distribution with parameter p then,
EX)=pu=p and V(x) =02 = pq.

Example 3.2
Let X~Ber(0.6). Find the mean and the standard deviation

Solution
p=06=>qg=1-06=04.
E(X)=p=0.6andV(X) = pq = (0.6)(0.4) = 0.24 = ¢ = 0.49.

3.3 Binomial Distribution

If we perform a random experiment by repeating n independent Bernoulli trials
where the probability of successes is p, then the random variable X representing the

number of successes in the n trials has a binomial distribution (X~Bin(n,p)). The
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possible values for binomial random variable X depends on the number of Bernoulli
trials independently repeated, and is {0, 1, 2, ..., n}. Thus, the pmf of X is given by

f@) = fonp) = {%;)pan—x; x=01,.n.

otherwise

n!

where (;l) = T

Parameters of the Distribution: n € N* (number of trails or sample size) and 0 <
p < 1 (probability of success).

Characteristics of Binomial Distribution

1. There is a fixed number, n, of identical trials.

2. The trials are independent of each other.

3. For each trial, there are only two possible outcomes (success/failure).

4

. The probability of success, p, remains the same for each trial (constant).

Mean and Variance
If X is a discrete random variable has binomial distribution with parameters n, p
then,

E(X)=u=np andV(x) = 62 = npq.
Proof

I. E(X) = np.
E(X) = Xx=0xf(x) = X%=0o x(:)p"q"-x

=3t x(Z)pxq""x (Set summation from 1, since when x = 0 the expression= 0)

n! n(n-1)! X n—x

=yn PEEEEee—
x(x—1)!(n—x)!

X N—X _ \'M .
x=1X P q =Yr=1X

' x!(n—x)!

_ n (n—-1)! x

n—x
*=1 G- P 4

_ (n—-1)! -1 n— _ _
—an;‘zlmpx q"* (AssumeY =X-1=>X=Y+1)

(n—-1)!
y!(n—-(y+1))!

(n—-1)!

yan-(y+1) — n-1_ \72)°
p~q npzyzoy!(n—y—l)!

=np Z;‘;(l) pY g1
=np X3s (n;l) pYq=D-y (Assumem =n —1)

=np i (7)Y q™ Y = np (1) = np.
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IL.

(The part (’;) pYq™ Y is a binomial pmf for y successes in m trails. Hence, the

summation= 1).

V(X) = npq.

V(X) = E(X?) — [E(X)]? = E(X?) — [np]? = E(X?) — n®p?

=E(X?—-X+X) —n?p? (Add and subtract X)

=EX?—-X)+EX)—n?p? =EX?—-X) + np — n?pZ.

Now, let’s simplify the part E(X? — X):

EQX?—X) =E(X(X - 1) =XRox(x — Df () = Zpoox(x — D(p*g" ™

= Yr,x(x — D)(T)p*q™ ™ (Set summation from 2, since when x = 0,1 the expression= 0)

n! n(n-1)(n—-2)! x

= 2¥=2x(x - 1) ' x!(n_x)!pan_x = Z;Clzzx(x - 1) ' x(x—l)(x—z)!(n—x)!p qn_x
— (n-2)! -
=n(n- DXyl 4

=n(n—1)p? Z;‘zZ%px_zq”_x (AssumeZ =X —-2=>X=7+2)

- (n—2)! -
= n(n - 1)p2 Z?=g Z!(n_(z+2))!pzqn (Z+2)

_ (n-2)!
=n(n— Dp? X1=¢ —Z!(:_Z_Z)!pzq

n—z-2

n(n — Dp? X228(" )p?qm22 (Assume k = n — 2)

=n(n - Dp* T-o(5)p*q"* = n(n — Dp* (1) = n(n - Dp*

(The part (';)pzqk‘z is a binomial pmf for z successes in k trails. Hence, the
summation = 1).

Therefore,

VX)=EX?—=X)+np —n?p? =n(n—1p? +np — n?p?

= n*p® —np* + np — n’*p* = np —np* = np(1 — p) = npq.

Moment Generating Function

If X is a discrete random variable has binomial distribution with parameters n, p

then, the MGF of X is

My (t) = (pet + "

Proof

Hint: The binomial formula gives Zﬁzo(:)u"v”‘x =u+v)"

31




215 STAT Probability | Weaam Alhadlaq

My (t) = E(e™) = X_ge™f(x) = Xi_0e™ ()p*q" ™ = Xi-o(}) e q" >

= (pe’ + ™.

Note

The Bernoulli distribution is a special case of the binomial distribution whenn = 1.
Example 3.3

Suppose 40% of a large population of registered voters favor the candidate Obama.
A random sample of n =5 voters will be selected, and X, the number favoring
Obama out of 5, is to be observed. What is the probability of getting no one who
favors Obama (i.e. P(X = 0))?. Then compute the mean and the variance.

Solution

n=5p=-—=04=q=06

100

X~Bin(5,0.4)
Flx) = (i) (0.4)(0.6)5%: x = 0,1,2,3,4,5.

Hence,
P(X = 0) = f(0) = (§)(0.4)°(0.6)° = 0.0778.
E(X) =np =5(0.4) = 2.
V(X) =npq = 5(0.4)(0.6) = 1.2.
Example 3.4
If the MGF of the r.v. X is My (t) = (0.8 + 0.2e)*. Find P(X < 3),P(-1 < X < 2)
and the mean.
Solution
The MGF is on the form (pe® + q)", thus, X~Bin(4,0.2). So, the possible values of X
are 0,1,2,3,4.
Therefore,
= PX<3)=fO)+f(D+f@+fB)=1-f4) =1-(,)0.2)*(0.8)°
=1-0.0016 = 0.9984.
» P(-1<X<2)=f(0)+f(1) =(3)(0.2)°(0.8)* + (£)(0.2)(0.8)*
= 0.4096 + 0.4096 = 0.8192.
= E(X)=4(0.2) =0.8.

32




215 STAT Probability | Weaam Alhadlaq

3.4 Geometric Distribution
A single trial of an experiment results in either success with probability p, or failure
with probability g =1—p. The experiment is performed with successive

independent trials until the first success occurs. If X represents the number of trails

until the first success, then X is a discrete random variable that can be 1,2,3, .... X is
said to have a geometric distribution with parameter p (X~Geom(0.01)) and its pmf
is given by

1. x =12, ..
otherwise

£ = fasp) = { P

Parameter of the Distribution: 0 < p < 1 (probability of success).
Characteristics of Geometric Distribution

1. The outcome of each trial is Bernoulli, that is either a success(S) or failure(F).
2. The Probability of success is constant P(S) = p.

3. The trials are repeated until ‘one’ successes occur.
For example

* A coinis tossed until a head is obtained.

*  From now we count the no. of days until we get a rainy day.

Mean and Variance

If Xis a discrete random variable has geometric distribution with parameter p then,

EX)=p=7 andV(x) =0’ ="F ==

Proof

Hint
Leti € R: |i] < 1.

n o in—1 — 1 2 — 1
DMt =14 20+ 3i% + REnEL

. o -1 _ 2
Ymean(n+ )" = REnER

1
L E(X) =
EX)=X31xf(x) =YX x pqg* t =pXeixq*t =p(1+2q +3¢* + )
14 _ b 1

T (a-9? p?2 p
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ILV(X) = ;’—2

1)2 1
VX) = EQ) — [EQOP = EX?) - (0] =E(D) -
Now,
E(X?) =Yy x*f(x) = X5, x% - pq*!
=¥% .(x? + x — x)pq* ! (Add and subtract x)
= Yaea[x(x + 1) — x]pg*~!

= Xihax(x + Dpg* ™ = XL apq* ™ = p Xy x(x + Dg* ™ — E(X)
2 1_2p 1_ 2 1

B E R R R R

Therefore,

2 1 1 1 1-p q
Vi) =———~———=——-"=—— =~
()pzppzpzppz p?

Moment Generating Function
If X is a discrete random variable has geometric distribution with parameter p then,

the MGF of X is

pet
MX (t) = 1—qet.

Proof
Hint: Foranyi € R: |i| < 1; X5, i1 =Y2 ji"=1+i+i?+ - = ﬁ
My(t) = E(e™) = ¥, e™f(x) = X5, e pq*~! = pet 7, et @ Vg*?

1 pet

=pe' Xiti(qe) T =pet =
Example 3.5

In a certain manufacturing process it is known that, on the average, 1 in every 100
items is defective. What is the probability that the fifth item inspected is the first
defective item found? Find the mean and the variance.

Solution

Let X represents the no. of items until the first defective item is found. The
probability of successes (defective item) is p = Flo = 0.01.Thus, X~Geom(0.01). So,

we want to find

P(X =5) = f(5) = (0.01)(0.99)* = 0.0096.
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1
- =100.
h=G01 - 100
5 099
= 2 = 9900.

3.5 Negative Binomial Distribution

If r is an integer, then the negative binomial random variable X can be interpreted as
being the number of trails until the rth success occurs when successive independent
trials of an experiment are performed for which the probability of success in a single

particular trial is p. The pmf of X~NBin(r, p) is given by

x—1 B
fGO) = fOsm,p) = {(r - 1)1“‘1’“ BxETTELTAZ.
0; otherwise

Parameters of the Distribution: r € N*(number of successes), 0 <p <1
(probability of success).

Characteristics of Negative Binomial Distribution

1. The outcome of each trial is Bernoulli, that is either a success(S) or failure(F).

2. The Probability of success is constant P(S) = p.

3. The trials are repeated until ‘r’ successes occur.
Note
The geometric distribution is a special case of the negative binomial distribution

whenr = 1.

Moment Generating Function
If X is a discrete random variable has negative binomial distribution with

parameters K, p then, the MGF of X is

My (6) = (

pet )r
1—-qet) ’
Proof
Hint: The sum of a negative binomial series Z,‘;"zo(k;’:l)u" =(1-u).

My(8) = E(e™) = X3 e™f(x) = X e (()p a™ "

— prert Z;ozr(f:i)et(x—r)qx—r
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=pTe™ ij:r(fj)(qet)x_r (LetY =X—-1r=>X=Y+7)

=p ert Zy 0(y+r 1)(qet)y — rt(l _ qet)—r — (Ltt)r.

1—qe

Mean and Variance
If X is a discrete random variable has negative binomial distribution with

parameters r, p then,

E) =p="CandV(n) =0 =22 =1

p? p?
Proof
. EX) =£.
BOO = (Ol = (-2 |
x\Ult=0 = dt\1— get =0
_ pet \" 7! [(1-ge)pet+petqet _(peY)” _ v _.p _r
=T (1—qef) [ (1-qet)2 ] It 0= (1 qet)r+1 It 0= r(l_q)r+1 - Tpr+1 T

V. V(X) = I%

V(X)) =EX*) - [EO]

d £y’ d _
EXD) = 2 My (©)lmg = 27 2o = Lr(pet) (1 - e T*D)],g

= [re") (=0 + D) (1 — qe") "+ (=qe") +r2(pe") " (pe")(1 = qe*) "]l
= [TPT(—(T' + 1))(1 — )—(T+2)(_q) + T'Zpr(l _ )—(r+1)]

=[r(r+ Dp2q+12p~!] = Z [ ] +2 =1 p*z”’ p+qg=1)
Hence,
2
r2+rq N\ _rq
v = - (5) =4
Example 3.6

Bob is a high school basketball player. He is a 70% free throw shooter. That means
his probability of making a free throw is 0.70. During the season, what is the
probability that Bob makes his third free throw on his fifth shot?. Find the MGF.

Solution
Let X represents the no. of throws until the third free throw is done. The probability

of successes (free throw) is p = 0.7.Thus, X~NBin(3,0.7). So, we want to find
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P(X =5) = f(5) = (371)(0.7)*(0.3)°~% = 0.1852.
£ \3
My (0) = (%)
Example 3.7
Sara flips a coin repeatedly and counts the number of heads (successes).. Find the
probability that Sara gets
[. The fourth head before the seventh flip.
II. The first head on the fourth flip.
Solution
The probability of successes (getting head) is p = 0.5. Let X represents the no. of
throws until the fourth head is shown. Thus, X~NBin(4,0.5). So, we want to find
L P(X <6) = fx(®) + fx(5) + fx(6) = (;2)(0.5)* + (377)(0.5)° + (5-1) (0.5)°
= 0.0625 + 0.125 + 0.1563 = 0.3438.
Now, let Y represents the no. of throws until the first head is shown. Thus,
Y~Geom(0.5).
IL. P(Y =4) = f,(4) = (0.5)* = 0.0625.

Comparison

* For Bernoulli and binomial distributions the number of trails is fixed (1 for Ber.
And n > 1 for Bin.) while the number of successes is variable.
» For geometric and negative binomial distributions the number of trails is

variable and the number of successes is fixed (1 for Geom.r > 1 for NBin.).

3.6 Hypergeometric Distribution

A B
M-K
n K

In a group of M objects, K are of Type [ and M — K are of Type Il If n objects are

randomly chosen without replacement from the group of M, let X denote the
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number that are of Type I in the group of n. Thus, X has a hypergeometric
distribution X~H (M, n, K). The pmf for X is

f(x) =fO;MnK) = (x)((ﬂ):x ; x =Max[0,n— (M - K)], ..., Min[n, K]

0; otherwise
Parameters of the Distribution: M € N*(population size),n € N (sample size),
K € N*(population elements with a certain characteristic).
Characteristics of Hypergeometric Distribution
1. ‘n’trials in a sample taken from a finite population of size M.
The population (outcome of trials) has two outcomes Success (S) and Failure(F).
Sample taken without replacement.

Trials are dependent.

S

The probability of success changes from trial to trial.

Mean and Variance
If X is a discrete random variable has hypergeometric distribution with parameters

M, n, K then,

nk(M—K)(M—-n)

_ ., — K _ 2 _
EX)=u= — andV(x) = o° = YETE

Proof

We will assume that the bounds of X are 0 and n.

nkK
I E(X) ="
K
E(X) = Oxf(x) = x 0oX ( )((M)
(9] G
=Xi=1X =25 (Set summation from 1, since when x = 0 the expression= 0)
—_ (K-1)!
_Zn x-m_g n  (x- 1)(Kx)|(
et S VIS S R )
n!(M-n)! —DIM—)]
_%ZZ 1( ()( (Let=X-1,L=M-1,S=K—-1landr=n-1)
6)G=)
_—Zy 0 ——(1) (Y~H(L,7,S) = Sumof pmf =1)

)
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nk(M-K)(M-n)
ILV(X) = %
V(X) = EX?) - [EX)]?

B(X?) = Do x?f () = S - W)

69
n 2. ()G S ion f 1, si h =0th ion= 0
Boix (M) (Set summation from 1, since when x = 0 the expression= 0)
K! M—K (K-1)!
_ Zn xz . x!(K—x)!(n—X _ K $n . (—DUK- x)'( _ _Z ( )(
— Lx=1 M! oM “x=1 (M-1)! M x=1X (
n!(M-n)! (n—-1)!(M-n)!

We use the same variable substitution as when deriving the mean.

O Ol @

The first sum is the expected value of a hypergeometric random variable with

E(xD) =257y + 1) D) e lz ), 5 G S)l

parameters (L,1,S). The second sum is the total sum that random variable's pmf.

2y _ NK _n nK [(n—-1)(K-1) .
EQX?) =2 [EW) +1] =2 [F+1] = M[W+1],Thus,
(n-1)(K- 1) n (n-1)(K- 1) nkK
Vix) = [ (M-1) 1] _( ) - [ (M-1) M

_nkK [M(n—l)(K—1)+M(M—1)—nk(M—1)
T M M(M-1)

- 2 —

MZ(M 5 [MnK — Mn — MK + M + M* — M — nkM + nk]
nK

_ 2
_MZ(M—1)[ Mn — MK + M* + nk] =

m[M(M n) — K(M —n)]

_ nK(M-n)(M—K)
T M2(M-1)

Example 3.8

Lots of 40 components each are called acceptable if they contain no more than 3
defectives. The procedure for sampling the lot is to select 5 components at random
(without replacement) and to reject the lot if a defective is found. What is the
probability that exactly one defective is found in the sample if there are 3 defectives
in the entire lot.

Solution

M = 40,n=5K = 3.
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Let X represents the no. of defective items in the sample. X~H (40,5,3). We want to
find

PX=1)=fQ1)= (i()4(03‘57) = 0.3011.

Does the procedure being used is good?

3.6.1 Binomial Approximation to Hypergemetric Distribution

Suppose we still have the population of size M with K units labeled as ‘success’
and M — K labeled as ‘failure,” but now we take a sample of size n is drawn with
replacement. Then, with each draw, the units remaining to be drawn look the same:

still K ‘successes’ and M — K ‘failures.” Thus, the probability of drawing a ‘success’
on each single draw is p = %, and this doesn't change. When we were drawing

without replacement, the proportions of successes would change, depending on the

result of previous draws. For example, if we were to obtain a ‘success’ on the first
. « ) K-1

draw, then the proportion of ‘successes’ for the second draw would be YL whereas

if we were to obtain a ‘failure’ on the first draw the proportion of successes for the

K
second draw would be T

Proposition

If the population size M — o0 in such a way that the proportion of successes % —
p,andnis held constant, then the hypergeometric probability mass function
approaches the binomial probability mass function i.e. H(M,n, K) — Bin (n, p= %)

As a rule of thumb, if the population size is more than 20 times the sample size
(M_> 20n), then we may use binomial probabilities in place of hypergeometric
probabilities.

Example 3.9

A box contains 6 blue and 4 red balls. An experiment is performed a ball is chosen
and its color observed. Find the probability, that after 5 trials, 3 blue balls will have
been chosen when

[. The balls are replaced.

[I. The balls not replaced.
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Solution

I. Let X represents the no. of blue balls in the sample. X~Bin(5,0.6). So, we want to
find
P(X =3) = (3)(0.6)°(0.4)? = 0.3456.

II. Let Y represents the no. of blue balls in the sample. Y~H(10,5,6). So, we want to
find

P(Y =3) = <§3§> = 0.4762.

Example 3.10

It is estimated that 4000 of the 10,000 voting residents of a town are against a new
sales tax. If 15 eligible voters are selected at random and asked their opinion, what
is the probability that at most 3 favor the new tax? Use binomial approximation.
Solution

M = 10000,n = 15,K = 6000. To use the binomial approximation we have to check
iftM > 20n?

M = 10000 > 20- 15 = 300.

Thus, X the no. of voting that favor the new sales tax in the sample has binomial
distribution with parametersn = 15,p = % = 0.6.
PX<3)=f0)+f()+f(2)+f(3)

= ()(0.6)°(0.4)*° + (%) (0.6)(0.4)* + (%) (0.6)2(0.4)** + (%) (0.6)*(0.4)*?

= 0.0019.

3.7 Poisson Distribution

The Poisson distribution is often used as a model for counting the number of events
of a certain type that occur in a certain period of time (or space). If the r.v. X has

Poisson distribution X ~Poisson(A)then its pmfis given by

e—/l/lx
fO) = flg) =1 *=012..
0; otherwise

Parameter of the Distribution: 4 > 0 (The average)
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For example

= The number of births per hour during a given day.

* The number of failures of a machine in one month.

= The number of typing errors on a page.

= The number of postponed baseball games due to rain.
Note
Suppose that X represents the number of customers arriving for service at bank in a
one hour period, and that a model for X is the Poisson distribution with parameter A.
Under some reasonable assumptions (such as independence of the numbers
arriving in different time intervals) it is possible to show that the number arriving in
any time period also has a Poisson distribution with the appropriate parameter that
is "scaled" from A. Suppose that 4 =40 ‘meaning that X, the number of bank
customers arriving in one hour, has a mean of 40’. If Y represents the number of
customers arriving in 2 hours, then Y has a Poisson distribution with a parameter of
80. In general, for any time interval of length t, the number of customers arriving in

that time interval has a Poisson distribution with parameter At = 40t. So, the

number of customers arriving during a 15-minute period (t = % hour) will have a

Poisson distribution with parameter 40 -% = 10. In general, If W represents the

number of customers arriving in t hours W~Poisson(At) therefore,

fw) =

e—lt (lt)w
|

w!

;o o w=0,12,...
Mean and Variance
If X is a discrete random variable has Poisson distribution with parameter A then,
EX)=V(x) = A
Proof
. o X"
Hint: e* = anoz.
. EX)=A.
E(X) = X3 oxf(x)

—llx
=Yy X" Z ” (Set summation from 1, since when x = 0 the expression= 0)
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/lx Ax— 1

= —A Voo _ _
Zx 1 (x ! = e Zx:l Ge—1)! (Let Y=X 1)
_ » _
- AZy 0 i = le Ael = ).
ILV(X) = 4

V(X) = E(X®) - [E(X)]?
EX)=EX?2—X+X)=EX(X-1D+X]=E[XX -D]+EX)
—EXX—D]+21=32x(x—Df(x) + 1

= Y=z x(

=y, T = e ye, ) LetZ = X —2
—Zx=2(x_2)!+ - e Zx=2(x_2)!+ ( et - - )

=2e Y2 = " Eyd=2erer 4 a=212+ A
Hence,

VX)) =22 +1—2% =L

Moment Generating Function
If X is a discrete random variable has Poisson distribution with parameter A then,
the MGF of X is
My (t) = eMe'-1),
Proof
. x o X"
Hint: e* =}, —

A/lx

P (e 2" e~1geth
x! Z x! €

Mx(t) = E(e™) = ELoe™f(x) = X3Loe™
— eMef-1)

Example 3.11

Suppose that the number of typing errors per page has a Poisson distribution with
average 6 typing errors. What is the probability that

I. the number of typing errors in a page will be 7.

[I. the number of typing errors in a page will be at least 2.

[II. in 2 pages there will be 10 typing errors.

IV. in a half page there will be no typing errors.
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Solution
. Let X represents the no. of typing errors per page.

Therefore, Ay = 6 = X~Poisson(6).

e=6
7!

7
 —0.1377.

PX=7)=
ILPX>2)=fQ)+fB)+=1-PX<2)=1-F(0)—f(1)

e %60 e %

=1- — = 0.9826.
0! 1!

[II. Let Y represents the no. of typing errors in 2 pages.

Therefore, 1y = Ayt = 62 =12 = Y~Poisson(12).

P(Y = 10) = = 0.1048.

6_12(12)10
|

IV. Let Z represents the no. of typing errors in a half pages.

Therefore, 1, = A4t = 6 % = 3 = Z~Poisson(3).

e~330
0!

P(Z =0) = = 0.0498.

3.7.1 Poisson Approximation to Binomial Distribution

For those situations in which n is large (=100) and p is very small (<£0.1), the
Poisson distribution can be used to approximate the binomial distribution. The
larger the n and the smaller the p, the better is the approximation. The following
mathematical expression for the Poisson model is used to approximate the true
(binomial) result:

—(np) x
oy -0

Where n is the sample size and p is the true probability of success (i.e. 1 = np).
Example 3.12

Given that 5% of a population are left-handed, use the Poisson distribution to
estimate the probability that a random sample of 100 people contains 2 or more
left-handed people, then compare the result with the true probability using the
binomial distribution.

Solution

Let X represents the no. of left-handed on the sample.

To use Poisson approximation we should checkif n > 100 and p < 0. 1.
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Sincen =100 > 100,p = 0.05 < 0.1 we can use Poisson approximation.

A=np =100-0.05=5 = X~Poisson(5).

Thus,

-5 0 -5
P(X22)=1-P(X<2)=1-f(0)—f(1)=1-""L_5— 09596 =
0.96.

Now, let us use binomial distribution.
PX>2)=1-P(X<2)=1-f(0)—-f(1)
=1—("3°)(0.05)°(0.95)1%° — (*9%)(0.05)(0.95)° = 0.9629 = 0.96.
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Chapter Four

Frequently Used Continuous Probability Distributions

Distributions to be Covered
= Uniform distribution.
= Exponential distribution.
* Gamma distribution.
= Chi-squared distribution.
= Beta distribution.
= Normal distribution.

= Standard normal distribution.

4.1 Uniform Distribution

A uniform distribution, sometimes also known as a rectangular distribution, is a

distribution that has constant probability.
&)

X
a b

The probability density function for a continuous uniform distribution on the
interval [a, b] is

1
f(x)=f(x;a,b) = m; a<x<bh
0; otherwise

We write X~U(a, b)

Parameters of the Distribution: a, b € R (The limits of the interval)
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Mean and Variance

If X is a continuous random variable has uniform distribution with parameters a and

b then,
__a+b _ (b-a)?
E(X) = and V(X) =
Proof
Hint
b? —a? = (b—a)(b+ a),
b3 —a3® = (b—a)(b?+ ab + a?) and
(b —a)? = b? — 2ab + a®.
L EX) =22,
_— —(Px g L[] = L [pPma’] _ 1 [b-a)®+a)] _ atb
E(X)—faxf(x)dx—fab_adx—b_a[z]la—b_a[ 2 ]_b—a[ 2 ]_ 2
__ (b-a)?
IL V(X) ===

V(X)) =EX?) - [EO]

b b x2 3 3 3
s L= = =

1 [(b—a)(b2+ab+a2)] __ b%+ab+a?
" b-a 3 - 3 :

Hence,

b2+2ab+a’ _ 4b?+4ab+4a?-3b%*—6ab—3a?
3 4 - 12

V(X) =

b%+ab+a? (a+b)2 __ b%+ab+a?
3 2 -

__ b%*-2ab+a? _ (b—a)?

- 12 o122

Moment Generating Function
If X is a continuous random variable has uniform distribution with parameters a and

b then, the MGF of X is

ebt_eat
MX(t) - t(b_a)'
Proof
My(6) = E(e™) = [ e f(x)dx = [P 2 dx = o |b =& ===
x\()=E8&7) =], €7 JWax =), 7. = to-ala = To-a)

Note that the above derivation is valid only when t # 0. However, remember that it

always when t = 0, My (t) = E(e*@) = E(1) = 1.
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Example 4.1

The daily amount of coffee, in liters, dispensed by a machine located in an airport
lobby is a random variable X having a continuous uniform distribution with a =7
and b = 10. Find the probability that on a given day the amount of coffee dispensed
by this machine will be

. at most 8.8 liters.

[I. more than 7.4 liters but less than 9.5 liters.

I1I. at least 12.5 liters.

Solution

)= gig =

L P(X<8.8)=["2dx=38=22"=0.6.
IL P(7.4<X<9.5) =2"2-9¢.7

3
IILP(X > 12.5) = 0.

Example 4.2
A bus arrives every 10 minutes at a bus stop. It is assumed that the waiting time for
a particular individual is a r.v. with a continuous uniform distribution. What is the
probability that the individual waits more than 7 minutes. Find the mean and the
standard deviation.
Solution
Let X is the waiting time for the individual. Thus, X~U(0,10).

10-7

P(X>7) =1—0=0.3.

u=¥=5 and o = /$=2.89.

4.2 Exponential Distribution

A continuous random variable X is said to have an exponential distribution

X~Exp(0) if it has probability density function

He—ex. X > 0
= ; 9 = ’ N
fx) = f(x;0) {0; otherwise’

where 6 > 0.
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The exponential distribution is usually used to model the time until something
happens in the process.
For example
* The exponential random variable is used to measure the waiting time for
elevator to come.
* The time it takes to load a truck.

* The waiting time at a car wash.

. e 1 =
Another form of exponential distribution is f(x) = € #;  x = 0. However, for the

rest of this course, we will use the first form.

Parameter of the Distribution: 6 > 0.

Cumulative Distribution Function
F(x) =P(X <x) = [ e 0% dx = —e %3 = 1 - e70%,

Direct way to find probabilities
. PX<a)=F(a)=1-e%,

I.P(a<X <b)=F(b)—F(a) =e 92 —e70P,
LP(X = b) = e,

Mean and Variance

If X is a continuous random variable has exponential distribution with parameter 6

then,
1 1
E(X) = g and V(x) = 7
Proof
. E(X) = %

E(X) = fooo xf(X)dX = fOOO er_gxdx =0 fooo xe_exdx_

Use integration by parts:

u=x dv = e % dx
e—ex
du = dx v=——

0 —-0x 00 p—0x o0 —0x
B0 =0 [ re-0itn = 0[5 + (75 0] = 0 e vrn =~

1
o
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IL V(X) = .
V(X) =EX?*) - [EX)]?
E(X?) = foooxzf(x)dx = fooo Ox%e %%dx = Hfoooxze_exdx.

Use integration by parts:

u = x? dv = e % dx
—-0x
du = 2x dx v=—ee
0 _ 2,-0x o o0 -0x . _
E(X?) =0 [, x%e ‘9"dx=6?[—xe‘9 5 +2], xee dx]=0+2f0 xe %%dx

—-0x —-0x -0x —-0x
xe o0 o e _ e _ e o _ 2
— g+ f dx| =2 [ ax = 2 = 2

=2 [_
Hence,

r=2- () =&

Moment Generating Function
If X is a continuous random variable has exponential distribution with parameter 6
then, the MGF of X is
My(t) ==
Proof
My(t) = E(e™) = fooo e*f(x)dx = foooetx e %%dx =0 foooe‘(e‘t)xdx

= 8 (-t — 6
6t 0 7ot

Note that the above derivation is valid only when t < 6.
Example 4.3

The time between arrivals of cars at Al's full-service gas pump follows an
exponential distribution with a mean time between arrivals of 3 minutes. Al would
like to know the probability that the time between two successive arrivals will be 2
minutes or less. Then find the variance.

Solution

Let X represents the time between two successive arrivals.

0 = § = X~Exp G)
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2
P(X<2)=F(2)=1—-e3=0.4866.
1
V(X)=E=32 =09,

4.2.1 Lack of Memory Property (Memoryless)

Let X be exponentially distributed with parameter 6. Suppose we know X > t.
What is the probability that X is also greater than some value s + t? That is, we
want to know P(X > s + t|X > t). This type of problem shows up frequently when
we are interested in the time between events; (Such as, queuing system). For
example, suppose that costumers in a particular system have exponentially
distributed service times. If we have a costumer that’s been waiting for one minute,
what’s the probability that it will continue to wait for more than two minutes?

Using the definition of conditional probability, we have

P(X>s+t N X>t)

P(X>s+tlX>1t) =———=

If X > s+ ¢, then X > t is redundant, so we can simplify the numerator as

P(X>s+t|X>t)=%
Using the CDF of the exponential distribution,
—6(s+t)
P(X>s+t|X>¢) =280 ¢ = g 0s

P(X>t) e~0t
[t turns out that the conditional probability does not depend on t. Thus, In our queue
example, the probability that a costumer waits for one additional minute is the same
as the probability that it wait for one minute originally, regardless of how long it’s
been waiting.
This is called the lack of memory property,

PX>s+t|X>t)=P(X>s).

Example 4.4

On average, it takes about 5 minutes to get an elevator at stat building. Let X be the
waiting time until the elevator arrives. Find the pdf of X then calculate the
probability that

. you will wait less than 3 minutes?

[I. you will wait for more than 10 minutes?
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[I.you will wait for more than 7 minutes?
[V.you will wait for more than 10 minutes given that you already wait for more than
3 minutes?

Solution
x5 (2

fx) = %e“i; x> 0.

3

. PX<3)=1—e5=0.4512.
II. P(X >10) = e 2 = 0.1353.

7
[LP(X >7) =e 5 = 0.2466.
IVP(X>10|X>3)=PX>7+3|X>3)=P(X>7)=0.2466.

4.3 Gamma Distribution

The gamma distribution is another widely used distribution. Its importance is
largely due to its relation to exponential and normal distributions. Before

introducing the gamma random variable, we need to introduce the gamma function.

4.3.1 Gamma function
The gamma function denoted by I'(«), is an extension of the factorial function to
real (and complex) numbers. Specifically, if n € {1,2,3,...}, then
r'n)=(mn-1)!
More generally, for any positive real number «, I'(«) is defined as

)= fooox“_le_xdx; a> 0.

4.3.2 Some useful Properties for Gamma distribution

Lor(3)=vm

2
II. T(a+1)=al(a), a>0.

Proof

ra+1)= fooox“ e *dx (Form gamma function definition).

Use integration by parts:
u=x“ dv =e *dx

52




215 STAT Probability | Weaam Alhadlaq

du = ax® ldx v=—e*

F(a+1) =—x%*|F + fooo ax®le™* dx
=a fooox“_le_x dx = al'(a). (Form gamma function definition)
ML [ x®eFrdy = HarD. o, > 0.

Ba+1 4

Proof
Lety = fx :>dy=ﬁdxzdx=%y,thus,x:0—>oo = y:0 — oo then,

oo [o9] a [o9]
J, x© e_[’)xdx=f0 (X) e‘yd—y=#fo y*eYdy

B B
= r[gﬁi ) (Form gamma function definition)
Example 4.6

. Findl' (g)

II. Find the value of the following integral I = fooo xbe™>*dx.

Solution

7 5 5 5 3 3 5 3 1 1 5 3 1 15
Lor(G)=3r()=33rG)=333r(G) =133 Vi=1m
L 1= [ xS 5% dx ="l = & = 0,0092,

4.3.3 Definition of Gamma Distribution
We now define the gamma distribution by providing its PDF.
A continuous random variable Xis said to have agamma distribution with

parameters @ > 0 and § > 0, denoted by X ~ Gamma(a, B), if its pdf is given by

LA
fx(@) = foaB) ={T@” e P% x>0

0; otherwise

Parameters of the Distribution: « > 0,5 > 0.

Mean and Variance

If X is a continuous random variable has gamma distribution with parameters «,
then,
a a
E(X) = 3 and V(x) = 5

Proof
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HLE(X) = %.

— (*® _m_ﬁaal—ﬁx B* —Bx
E(X)—fo xf(x)dx—fox " dx—r()f x%e Pxdx

B* r(a+1) .
=@ ﬁiﬂ (Using property III)

1 al'(a)

a .
o "% (Using property II)

V.V(X) = /%'
V(X) = E(X?) — [EX)]?

E(X?) —f x2f(x)dx —f x2 . L x“ le=Bxdy _ri )f x@+1e=Fxdy

_ B* r(a+2) .
T r(a) pat+z (Using property III)
1 (a+Dar(a) _ ala+l) )
=t@ p — g - (Usingpropertyll)
Hence,
_ala+) (a 2 _a
veo = B2 (ﬁ) =5

Moment Generating Function
If X is a continuous random variable has gamma distribution with parameters «, 5

then, the MGF of X is

Me(©) = ()"
Proof

My (t) = E(e") = fooo e™f(x)dx = foooet Fia)x“ 1o=Bx gy

—-(B-t)x — ﬁa r(a)
r(a)f x® X =1 G-ne

- (ﬁf:) = (%)a'

Note that the above derivation is valid only when t < S.

(Using property III)

4.3.4 Special Cases

First Case

Ifwelet @ = 1, we obtain f(x; 1, 8) = fe™#*; x > 0. Thus, we conclude that
Gamma(l,B) = Exp(pB).
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Second Case

v X
If we let a = Z,B = %, we obtain f(x;E l) = 1,1 xz le7z; x > 0, which is the

2’2/ z(z)p(z)

pdf of the Chi-squared distribution with v degrees of freedom. (This distribution will

be discussed in section 4.4).
Third Case

If we let f =1, we obtain f(x;a,1) = %x“‘le‘x; x => 0, which is called the

standard gamma distribution with parameter a.

4.3.5 Incomplete Gamma Function

When X follows the standard Gamma distribution then its cdf is

o0 x¥—1g—X

F*(x;a)zf0 @ dx:

This is also called the incomplete gamma function.

x = 0.

Proposition
If X~Gamma(a, ), then
F(x; a,B) = P(X < x) = F*(Bx; a),
where F* is the incomplete gamma function, and F is the cdf of the gamma
distribution.
Note
Table 4.1 in appendix (A) provides some values of F*(x; @) fora = 1,2,...,10 and
x = 12,..,15.
Example 4.7
Let X represents the survival time in weeks, where X~Gamma(6,0.05). Find the

mean and the variance, then calculate the probabilities P(60 < X < 120),

P(X < 30).
Solution
—*_5 _ 2% __ 6% _
H= = s 120 weeks, and 0° = 5 = o057 — 2400.

P(60 < X <120) = P(X <120) — P(X < 60) = F(120; 6,0.05) — F(60; 6,0.05)
F*(120-0.05;6) — F*(60-0.05;6) = F*(6;6) — F*(3;6) = 0.554 — 0.084 = 0.47.
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Example 4.8

Suppose that the time, in hours, taken to repair a heat pump is a r.v. X having a
gamma distribution with parameters a = f§ = 2. What is the probability that the
next service call will required

[. atleast 2 hours to repair the heat pump.

[I. atmost 1.25 hours to repair the heat pump.

Solution

_ 2% o1 -2x _ -2x
f(x) = X e = 4xe X,
. PX=>2)=1-P(X<2)=1-F(12;2,2)=1—-F(4;2)=1-0.908 =

0.092.

1.25

. P(X<1.25)=[""4xe **dx

0
Use integration by parts:
u=4x dv = e ?*dx
e—Zx
du =4 dx v =— >
P(X < 1.25) = —2xe 2|42 + [*° 2¢72%dx = —2(1.25)e 20129 4 0 —

e—2x|(1).25

=1-3.5e72% = 0.7127.

4.4 Chi-squared Distribution

The r.v. X is said to has a Chi-Squared distribution with parameter v (X~y2) if its
pdfis given by
1,1 xz_le_g; x>0
f@) = flv) =4 2
0; otherwise

Parameter of the Distribution: v > 0 (The degrees of freedom ‘df’).

Mean and Variance

If X is a continuous random variable has chi-squared distribution with parameter v

then,
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E(X)=v and V(x) = 2v.

Moment Generating Function
If X is a continuous random variable has Chi-squared distribution with parameter v

then, the MGF of X is

v
1

M = (=) =1-207
Note

Table 4.2 in appendix (A) provides some Lower Critical values for Chi-square

distribution.

Example 4.9
If X~x? find a, b if

. P(X<a)=0.1.

Solution

a = 2.83. (From the table)

II. P(X=>=b)=0.99.

Solution

PX=b)=1—-P(X<b)=099 = PX<b)=1-0.99 =0.01.
Therefore, b = 1.24.

4.5 Beta Distribution

A continuous random variable X is said to have a beta distribution X~Beta(a, B) if it

has probability density function

1

f) =fl;ap)= {B<a,/3) A -x0)F 0<x <1
0;

otherwise

o ol am1pq N1, _ T@r(B)
Where the beta function is defined as B(a, ) = fo x (1 —x)Ptdx = TR

r(a+p) - _
Thus, f(x) = #Ffﬁ) x% (1 —x)B1,

Parameters of the Distribution: a, f > 0.

Mean and Variance
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If X is a continuous random variable has beta distribution with parameters a and

then,

= -
E(X) = a+pB and V(x) = (a+B)2(a+B+1) "

Moment Generating Function
The moment-generating function for the beta distribution is complicated. Therefore,

we will not mention it.

Example 4.10
If X~Beta(3,2), Find P(X < 3),P(X = 7) and P(X < 0.5).

Solution
_ IB+2) 31,4  ~N2—-1 _ 4 204 N _ 201 _ ).
f(x) = Q) x°T(1—-x) =X 1-x)=12x“(1—-x);0<x < 1.

P(X<3)=[12x*(1-x)dx=1.
P(X=7) =0,

P(X <05) = [;°1222(1 —x)dx = 12 f}* (= x¥) dx = 12 (5~ Z) |85

4

= (4x3 — 3x%)|3° = 0.3125.

4.6 Normal Distribution

The normal distribution is one of the most important continuous distributions.
Many measurable characteristics are normally or approximately normally
distributed, such as, height and weight. The graph of the probability density function

pdf of a normal distribution, called the normal curve, is a bell-shaped curve.

Six)

/T

b

H

A continuous random variable X is said to have a normal distribution X~N (u, o) if it

has probability density function
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1 1(x—u

f) = foopo) ={gvam ¢

0; otherwise

Parameters of the Distribution: —oo < y < oo (The mean), 0 > 0 (The standard

deviation).

Mean and Variance

If X is a continuous random variable has normal distribution with parameters u and
o then,

E(X)=u and V(x) = g?.

Moment Generating Function
If X is a continuous random variable has normal distribution with parameters u and

o then, the MGF of X is

My (£) = e"+37t
Note

The proof for the normal distribution MGF will be reviewed later in this chapter.

4.6.1 Some properties of the normal curve f(x) of N(u, o)

[.  f(x)is symmetric about the mean p.

I[I. The total area under the curve of f(x) = 1.

[II. The highest point of the curve of f(x) at the mean p.

IV. The mode, which is the point on the horizontal axis where the curve is a
maximum, occurs at = u, (Mode = Median = Mean).

V. The curve has its points of inflection at X = u + o is concave downward if u —
0 < X < pu+ o and is concave upward otherwise.

VI. The normal curve approaches the horizontal axis asymptotically as we proceed
in either direction away from the mean.

VII. The location of the normal distribution depends on ¢ and its shape depends on

g.
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Uy < Hp; 01 = 0y Uy = Hp; 01 < 07 My < Hp; 01 < 0y
Where the solid line represents N (y4, 1), and the dashed line represents N (u, 65).

4.6.2 Standard Normal Distribution
The special case of the normal distribution where the mean ¢ = 0 and the variance

0? =1 called the standard normal distribution denoteN(0,1). Thus, the pdf is

reduced to

1 —lzz_ B
f(z)=f(z01) = F=e? Te<z<»
0; otherwise

Notations
= The random variable which has a standard normal distribution is usually
denoted by Z.

» If 0 < a <1 the notation z, refers to the point in the standard normal distribution Z
suchthat P(Z < z,) = a.

Moment Generating Function

If Z is a continuous random variable has standard normal distribution then, the MGF

of Zis
tZ
M,(t) =e>=.
Proof
0o 0o 1 12 0o 1 1 2_2¢
M;(t) = E(e*?) = f_ooetzf(z) dz = f_ooetz N 2 dz = f_oo = 2(7%-2tz) dz
o 12 _
=/ . \/%e 2(#°-202+°-6%) 47 (add and subtract t2)
tz foe) tz o0 tZ tZ
=ez [ \/%e_%(zz_z't”tz) dz=e"2 [ \/%e_%(z_t)z dz=e2-1=¢€" 2.

oo Lo,
(. \/%e 2¢=9% 47 = 1 because it is a pdf of a N(t, 1)).
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Deriving the MGF of a Normal Distribution

1
Recall the MGF of the normal distribution My (t) = 307t

Proof
We know that Z = % = X = 0Z + u. Where Z~N(0,1) and X~N(u, o).
Using the theorem: If Y = a + bX = M, (t) = e** M, (bt), we get

12,2 1 2.2
My () = Myz4,(t) = e#tMz(ot) = et - 27 1" = eHt 27",

Note
Table 4.3 in appendix (A) provides the area to the left of Z for standard normal

distribution.

4.6.3 Calculating Probabilities of Standard Normal Distribution

The standard normal distribution is very important because probabilities of any

normal distribution can be calculated from the probabilities of the standard normal

distribution.

I.  P(Z < a) from the table.

I. P(Z=b)=1— P(Z<Db)whereP(Z <b) from the table.

. Pa<Z<b)=P(Z<b)—P(Z<a), where P(Z < a) and P(Z < b) from the
table.

Proposition

If X~N(u, o), then Z = X%‘~N(0,1).

4.6.4 Calculating Probabilities of Normal Distribution

. PX<a)=P (Z < %) from the table.

I. PX=b)=P (Z > b;”) =1-P (Z < b?T”), where P (Z < b;”) from the table.

g g

L PasX<bh)=P(Ttsz<™M)=p(z<Z8)-p(z<LY),

g g

where P (Z < %) and P (Z < ﬂ) from the table.

g

Example 4.11
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If Z~N(0,1). Find P(Z < 1.5),P(Z > 0.98),P(Z < 0) and P(—1.33 < Z < 2.42).
Solution

P(Z < 1.5) = 0.9332.

P(Z > 0.98) =1 —0.8365 = 0.1635.

P(Z <0)=0.5.

P(-133<Z<242)=P(Z <242)—-P(Z <-133)=0.9922 — 0.0918 = 0.9004.

Example 4.12

Suppose that the birth weight of Saudi babies X has a normal distribution with mean

1 = 3.4 and standard deviation ¢ = 0.35.

[.  Find the probability that a randomly chosen Saudi baby has a birth weight
between 3.0 and 4.0 kg.

[I. What is the percentage of Saudi babies who have a birth weight between 3.0

and 4.0 kg.
Solution
I PB<X<4)=P (30‘33: <Z< 40‘33:) =P(-1.14< Z < 1.71)

= P(Z < 1.711) = P(Z < —1.14) = 0.9564 — 0.1271 = 0.8293.

II. P3<X<4)-100% = 0.8293-100% = 82.93%.
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Chapter Five

Joint, Marginal, and Conditional Distributions

In the study of probability, given at least two random variablesX, Y, .., that are
defined on aprobability space, thejoint probability distribution forX,Y, ... is
a probability distribution that gives the probability that each of X, Y, ... falls in any
particular range or discrete set of values specified for that variable. In the case of
only two random variables, this is called a bivariate (joint) distribution, but the
concept generalizes to any number of random variables, giving a multivariate

distribution.

For both discrete and continuous random variables we will discuss the

following

= Joint Distributions.

= Cumulative distribution.

= Marginal Distributions (computed from a joint distribution).
* Joint Mathematical Expectation

= (Conditional Distributions (e.g. P(Y = y|X = x)).

= Joint Moment Generating Function.

5.1 Joint Distributions

5.1.1 Joint Probability function
Joint distribution of two random variables X and Y has a probability function or

probability density function f(x,y) that is a function of two variables (sometimes

denoted fy y(x, y)).
Discrete Case

If X=ux4,%5,...,x, and Y = y,,y,, ..., y,,, are two discrete random variables, then the

values of the joint probability function of X and Y “f(x,y)’ is
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f(x,y) Y1 Y2 Y v | Ym 2y f(xy)
X1 fCeny) [f(e,y2) | . f(xl»J’j) o |f (X1, Ym) fx (x1)
X2 [y |f(xy2) | o f(xz'Yj) o |f (2 Ym) fx(x2)

X FOuy) |fCuya) | o | Fxnyy) | o [FGoym) | fx(x)

Xn f(xnrY1) f(xn»yz) f(xn»yj) f(xn:ym) fX(xn)
Y f| fr) fr(v2) fY(yj) o | frmm) 1

f(x,y) = P(X = x,Y = y) must satisfy

. 0<f(x,y) <1

1. Znyf(ny) =1L

Continuous Case

If X and Y are continuous random variables, then f(x, y) must satisfy
. f(x,y)=0.

. fxfyf(x,y) dydx = 1.

5.1.2 Joint distribution function
If random variables X and Y have a joint distribution, then the cumulative
distribution function is

Y X _of(s,t); IfXYarediscreter.v.'s

t=—o00

F ) = P X S ) Y S =
(x,y) ( x y) {f_yoo f_xoo f(s,t)dsdt; IfXY are continouosr.v.’s

Note

. a2
In the continuous case, I3y F(x,y) = f(x,y).

Some Properties of the Joint CDF

» F(x,y)isnon-decreasing in both x and y.
= F(x,00) = F(x).

" F(oo,y) =F(y).

= F(oo0,00) = 1.

- F(x,~®) = F(=,y) = F(=00,~0) = 0.
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5.1.3 Marginal probability Distributions
If X and Y have a joint distribution with joint density or probability function f(x,y)
then
» The marginal distribution of X has a probability function or density function
denoted fy(x) is equal to
Yy f(x,y); In the discrete case

fx(x) = {

f_oooof(x, y) dy; Inthe continouos case

= The marginal distribution of Y has a probability function or density function

denoted fy () is equal to
Y. f(x,y);  Inthe discrete case

fr&) ={

f_oooof(x, y) dx; Inthe continouos case

5.1.4 Joint Mathematical Expectation

If g(x,y) is a function of two variables, and X and Y are jointly distributed random
variables with joint probability function f(x, y), then the expected value of g(x,y)
is defined to be

Yy 2290 f(xy); In the discrete case

E X, Y = e} oo}
[g(X, V)] {f_m f_mg(x, v)f(x,y) dxdy; Inthe continouos case

Special cases

. IfgX,Y) =X, weget

Yy 2axf(x,y); In the discrete case
E[giX,Y)] =1 (o (oo _ .
o xf(x,y) dxdy; In the continouos case
Yax 2y fx,y) = Xpxf(x) = E(X); In the discrete case
- {fjooox IZ f(x,y) dydx = [°._xf(x)dx = E(X); In the continouos case

Similarly for g(X,Y) =Y.
I Ifg(X,Y) = (X — u)? we get

Yy 2alx = wAf(x,y); In the discrete case

Elg(X,Y)| =4 % .~
lgx. Y] {f_oo f_m(x — w?f(x,vy) dxdy; Inthe continouos case
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Yelx—w? ¥, fxy); In the discrete case
B fjooo(x —u)? ffooof(x, y) dydx; In the continouos case

Yolx—w?f(x) =VX); In the discrete case
B ffooo(x — w?f(x)dx =V(X); Inthe continouos case

Similarly for g(X,Y) = (Y — u)>.

Example 5.1

A company that services air conditioner units in residences and office blocks is
interested in how to schedule its technicians in the most efficient manner. The
random variable X, taking the values 1,2,3 and 4, is the service time in hours. The
random variable Y, taking the values 1,2 and 3, is the number of air conditioner

units. The joint probability function for X and Y is given in the table below

X: Service Time

1 2 3 4
Y:Numberof | 1 | 0.12 | 0.08 | 007 | 0.05
Air 2 | 008 | 015 | 021 | 013
Lodliions 3 | 001 | 001 | 002 | 007
Units

I.  Proofthat f(x,y) is a joint probability function.

II. Find: £(2,1), fx(3),F(2,3),P(X <3,Y >2),P(X +Y < 4).
III. Find the marginal function fy (y).

IV. Find E(Y),V(Y), E(XY).

Solution
I.  First itisclearthat0 < f(x,y) <1, Vx,y.
Second, )., ny(x, y) =012+ 0.08 +--- 4+ 0.07 = 1.

1. f(2,1) = 0.08.
fx(3) = 0.07 + 0.21 + 0.02 = 0.3.
F(2,2) = f(LD) + f(1,2) + f(21) + f(2,2) = 0.12 + 0.08 + 0.08 + 0.15 =
0.43.
P(X <3,Y >2) = f(1,3) + f(2,3) = 0.01 + 0.01 = 0.02.
PX+Y<4)=FfLD+FL2D+F(13)+ 2D+ f(22) + f(3,1) =051

66




215 STAT Probability | Weaam Alhadlaq

[1L

Y 1 2 3 | Sum
fy(y) 0.32 |1 0.57 | 0.11 1

IV.

Y 1 2 3 Sum
fr(» 032 ]057 | 0.11 1
yf(y) | 032 | 1.14 | 0.33 | E(Y) = 1.79
y2f(y)| 0.32 | 2.28 | 0.99 | E(Y?) = 3.59

Thus, E(Y) = 1.79,and V(Y) = E(Y?) — [E(Y)]? = 3.59 — (1.79)? = 0.38509.
Now,

E(XY) = Y51 Xama xyf (x, ) = (1)(1)(0.12) + (1)(2)(0.08) + (1)(3)(0.01) + - +
(4)(3)(0.07) = 4.86.

Example 5.2
Consider the joint probability function
fx,y)=clx+y), 0<xy<2.
Find ¢, fx (%), fr ), F(1,1), V(X), E[X (X + 6)].
Solution

= To find c we know that

2 (2 2 2
fxfyf(x,y) dydx=1= 1=c [ [ (x+y)dydx=c ] [xy +y7] |3dx
= chZ(Zx +2)dx =c[x?+2x]|3=8c=>c= %.
Thus, f(x,y) = %.

1

- K@ =il +ydy=i[o+2]3

x+1

Zx+2) = 0<x <2
8 4

1 +1

1 2 2 1
s RO =3[+ yde=i[C+xy|B=c@y+2D =2 o<y <2

» F(1,LD)=PX<1Y<1= %fol fol(x +y) dydx = lfol [xy +y72] |3dx =

8
T O e [
= VX)) =EX?) - [EX)]?

EQ) =1 fixGe+ Ddx =2 {2 + ) dx =3[+ 2|3 =1[+2| =1
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E(X?) =if02x2(x+1) dx =if02(x3 + x?%) dx=i[§+x3—3]|% =i[%+§] =
5 [7]17 11
v =3-[ =5

"« E[X(X+6)]=EX?+6X)=EX?)+6EX)=2+6 (g) =2

5.1.5 Joint Moment Generating Function

Given jointly distributed random variables X and Y, the moment generating

function of the joint distribution is
Yx Xy etV f(x,y); In the discrete case

M t,t,) = E eXt1+Yt2 = 0 00 )
xy (t1,t2) ( ) {f_m f_ooeXt1+yt2f(x, y) dxdy ; In the discrete case

Whel’e, —00 < tll tz < oo,

Some Properties

If X, Y are r.v’s and 1y, 1, are integer values, then
l.  Myy(0,0) = 1.

Il Myy(ty,0) = Mx(ty).

. My (0,t;) = My (t,).

o
V. @Mx,y(tl,tz)hl:tzzo = E(X™).

0"z
V. @Mx,y(tptz)hl:tz:o = E(Y"™).

r1+7:
VI. c?iIiTZZMX'Y(tl’ t2)lt,=t,=0 = E(X™Y"2). (The (r; + r3)th joint raw moment)

Example 5.3

Consider the joint probability function

Y

fG,y)| -2 | 0 5
1 ]015]025] 0.2
3 0.2 |0.05|0.15

X

Find M(t,,t,), then use it to find E (X), E(XY).

Solution

M(tll t2) = Z?C=1 Z:?/:—Z ext1+yt2f(x’ }’)
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= 0.15e%1722 4 0.25e%1 + 0.2e17562 4 (0.2¢3017282 4 (0.05e31 + 0.15e301 15t
)
EX) = EMX,Y(tlr t2)le,=t,=0
= 0.15e"17%%2 4 0.25e"1 + 0.2e"175%2 + 0.6e31172f2 + 0.15e31 4 0.45e34 43| _,
= 1.8.
a2 P _
EXY) = me,y(tp t2)lt,=t,=0 = % [0.15e"17%2 + 0.25e"1 + 0.2e1+>2 +
0.63t1722 4 0,153 + 0.45¢3+5%]|, _, o
= [~0.3ef1722 4 gli¥5ts _ 1 230172tz 4 D 25p3L+50]| _ = 1.75.
1—=2=

Extra Example

Let X and Y be two independent normal random variables with parameters

(pt1,0%) and (pg, 03) respectively. Find the joint moment generating function » 2
of X +Y and X - Y. R R N
: — 2
o e FL
. 0 . PRV (L
Solution. Aywy - & Ml

The joint moment generating function is

ﬂi(h‘tz] :E(etl{i\}}r}_'_fﬂ‘\r_Y]) = E(e(f1+f:*)«\'+{t1—t2}1'r]
% . pater s v
’ :E(eft1+t_J¢\ ]E(E’(fl t2)Y ) = Myx [:fl + tz)ﬂ.f}. (tl _ fz]

=€Lf1+tg]m—%(t1—tz)gcrfe(rl —ta)po+1 (t1—t2)%02

—p(ti+ta)p H(t1—ta)pa+ 3 (11+H3)0 T+ (11 +13) 03 +t1t2 (07 —03) -
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Extra Example

Let X and Y be two random variables with joint distribution funetion

L [emr s 0y>0 %~ Eapll)
(i ) — 1 ‘
Jxr(z.) { 0 otherwise

Find E(XY), E(X), E(Y) and Cov(X,Y). Usiazn. "\ S

L .
f."l £ JCK[{J('\J .

Solution.
We note first that fxv(z, y) = fx(z)fr(y) so that X and Y are independent.
Thus, the moment generating function is given by

. L 1 1
M(ty. 1) = E(e"2Y) = E(e"Y)E(eY) =
o 1—t 11—ty
Thus,
E(XY) = — M(ty, 2) = ! [ =
{ )= ‘)r Oty a2 (0,0) S (1)1 t2)? | 0,0) a
i 1
E(X)= —M{t, ts = — =
)= iy L) (0,0) (1- Tl}z“ —t3) (0,0)
a o, 1
E(Y)= —Mit, 1y = —_— - =1
o o : 0o (1—t)(1—1a)?|q
and

Cov(X.Y) = E(XY)—- E(X)E(Y)=0m

5.2 Conditional Distributions

5.2.1 Conditional Probability function
The probability of the random variable X under the knowledge provided by the

value of Y is given by

frw=y ely) = 2225 £(9) > 0.

Note that fxy—, (x|y) must satisfy
l. fX|Y=y(x|Y) = 0.

Y fxyy=y(xly) = 1; In the discrete case
{fjooo fxyr=y(x|y) dx = 1; Inthe continuous case

Similarly,

frix=x12) = L2225 f(2) > 0.
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5.2.2 Conditional Distribution Function
The conditional CDF is as follows
——wf(s|ly); Inthediscrete case

= < < =
F(xly) = PIX = x|Y < y] {fiof(ub/) du; In the continuous case

Note

]

S F&ly) = fx|y).
Example 5.4

If the joint probability function of X and Yis given by f(x,y) =2; 0<x<y<1.
Find f(x), f ), f (x1y), f (vx), F (x]y), F(ylx), f (x|0.5), F (y]0.25).

Solution
= f)=[l2dy=2yll=2-2x=2(1-x); 0<x<L1.

= fO)=[)2dx=2x]] =2y; 0<y<1

. _ Sy 2 1,
frv=y(ly) === =75 0<x<y<L
_fy) 2 1
. leX:x(ylx)— I = a0 1% I<x<y<l1
1
= FGy) = [, fGly)de=[{Jdx=T1F=3; 0<x<y<1

1 -
" FO=[[fomdy =[] dy=5 =1 0<x<y<l1
. f(x|0-5)=£=2; 0<x<§.
—-0.25 1 1
. F(y|0.25)=y0_75 =-(4y-1); ;<y<L
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Extra Example

Given the following table.

X\Y [ Y=1 Y=2 Y=3|px(x)
X=1 | .01 20 09 |3
X=2 |07 00 03 |.1
X=3 | .09 05 .06 |.2
X=4 |03 25 12 | 4
mly) | .2 5 3 1
Find py)y (r|y) where ¥ = 2.
Solution.
P Al2)
- fm"f\ ' "I\"r
p, LA
1 o L (2J -2
) PxXy {2 2 0 _
7 a Pxy (2(2) 7})}_(2) E_D
- 3,2) .05
3 . (32 @2 _ 05 _ 4,
. Pxy(32) = (2) 5
1 @, =
pxy(4,2) ,25 _
—— (42) =—————~ = — =0
.__: A P\rp |2) = o (2) 5 5
s - A ©
Pxy {I,_ 2] U
N="r—""=—=0, >4
pxpy (2] or(2) 5 » T4l

Extra Example

If X and YV are independent Poisson random variables with respective pa-
rameters Ay and As, calculate the conditional distribution of X, given that

X+Y=n
Solution. . -
We have Ky o~ Porssew AR S

PIX=kKX+Y=n)
P(X+Y =n)
PX=kY=n—k)
mx+y—m
o) —HP}—n—RH
?7 P(X+Y =n)
e~k e 22 A1 F [e—(ada)(A) 4 Ap)"]
TR m_ml[ ]
n! AEan—k
TE(n— k) (A + A"

AL A * A n—k
T\ k AL+ s A+ A

In other words, the conditional mass distribution function of X ""l‘.Lrl that
X +Y = n, is the binomial distribution with parameters n and ——

PX=kX+Y =n)=

n!

.\+J\2 u
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Extra Example
The joint density of X and Y is given by

15 : :
ooy Fr2-—r—y) 0S2,y<1
fxv(z,y) = { 0 otherwise

Compute the conditional density of X, given that Y =y for 0 <y < 1.

Solution.
The marginal density function of ¥ is

1qp .
fr(y) =f 1_701'(2 —x —yldr = b (E — E) )
0

2\3 2
Thus,

o fxvlry)
fxylzly) =—F——
xiv (2l fv(y)

(2 —x—y)
=T 2z _u
i 2

_{ir(i‘—a‘—-y]

N 4 — 3y

Extra Example
The joint density function of X and Y is given by

e Bey -
fxv(z.y) = { m r=0y=0

0 otherwise
Compute P(X > 1Y = y).

Solution.
The marginal density function of ¥ is

N ml = o0
g =e ¥ —e = —g ¥ | — — gy
f [3” =€ [] y!’. vdr € [ e u} ey

Thus,

fxy(z.y)

f‘f|}[:r|yj = f}fﬂ']

S
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Henece,

PX =1y =y) = [ —e vdx
J1

o0 -

=—e V| =e¢ -'-Ll

We end this section with the following theorem.

Extra Example
Let X and Y be two continuous random variables with joint density function

. feo0<y<z<?2
fxv(z.y) = { 0  otherwise

(a) Find fx (). fy(y) and fxy (2[1).
(b) Are X and Y independent?

Solution.
(a) We have

fx(z) = [ cdy =cx, 0<xr<2
Jo

fyly) = [- cdr=c(2—y), 0<y<2
Sy

and

fxiy(z]l) = ﬁ}ﬁ}{—&}” = ; =1, 1<z<2

(b) Since fxy (z|1) # fx(z), X and Y are dependent @

5.2.3 Conditional Expectation
If X and Y are two r.v’s have a joint probability distribution f(x,y), then the
conditional expectation of any function of X, g(x) givenY = y is
229 fxy=y(xly); In the discrete case
E[g(X)lY =y] = {

fjooo g fxy=y (x|y) dx; Inthe continuous case

Similarly for E[h(Y)|X = x], where h(y) is a function of the r.v. Y.

Special Cases

. Ifg(X)=X,weget

Yx Xfxyr=y(x1y); In the discrete case
= HUx|y »

EX|Y =y) ={

foooo X fxjy=y(x|y) dx; In the continuous case

which is the conditional expectation of X given Y (this expectation is considered

as a variable of Y).

L Ifg(X) = (X — uyy)’ we get
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2
E|(X = ) 1Y =y| = vXIY = y) = 6y,
which is the conditional variance of X given Y

Corollary

The conditional variance can be expressed as

VXY =y) = EX?|Y =y) — [EX|Y = »)]* = EX?|Y = y) — uzyy-
Theorem

Let X, Y be random variables, a,b € R,and g : R — R. Assuming all the following
expectations exist, we have

I. E(alY)=a.

I. E[(aX + b)|Y] =aE(X]|Y) + b.

III. E[E(X|Y)] = E(X), similarly E[E(Y|X)] = E(Y).

Proof

The first two are not hard to prove, and we leave them to the reader.
Consider (III). We prove the continuous case and leave the discrete case to the

reader.

o)

E(XIY) = [__ xfxjy=y(x|y) dx (a function of Y). Thus,

E[EXIN] = [T EXINf ) dy = [ S5 xfey=y (xly) dx]fy (v) dy

= [ [0 B2 ey dxdy = [, [, xf (x,y) ddy [, x[ 7, £ (x,y) dy] dx
= [, xf (x) dx = EQX).

Theorem

If X,Y have a joint distribution, then the marginal variance of X can be factored in

the form

V(X) = Ey[VIXIV)] + W[EXIY)].
Similarly,

V(Y) = Ex[V(Y1X)] + Vx[E(Y|X)].
Example 5.5
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If f(x|y) = %; 0 < x <y < 1.Find EX|YV), V(X|Y).

Solution

EQIY) = ) xf(ely)dx = [ Zdx =27 =% 0<y <1,

EX2|Y) = [ x2f (xly)dx = [ —d =2 ¥=2; 0<y<1Thus,
V(XIY) = EQ2IY) - [E@IN2 =X -2 =2 0<y<1.

Extra Example

Suppose X and Y are discrete random variables with values 1, 2, 3, 4 and
joint p.m.f. given by

i fr=y
flzy)=< 5 fz<y
0 ifr=uy

for =,y =1,2,3.4.

. o e : (v 0
(a) Find the joint probability distribution of X and ¥. 1+ B‘fﬂﬁtt‘ eV -
(b) Find the conditional expectation of ¥ given that X = 3.
Solution.
(a) The joint probability distribution is given in tabular form
= — - - . h N )
XAY |1 |2 |3 |4 |px(x) QY e A {
1 e R
16 | 16 | 16|16 | 16 \Jt‘
[ 2 4 a A
—ELREIEAL o
15 | 5 | 18 o () 5) Jefm
T 4 0=+ G
pr(v) |wlwlwlml! ; N
U
(b) We have ¥ - _'?:_ \_—-4—
T [ ??‘.-'H I'|I 4
puyg o o 1z T3\
E{} X=3) ZUP} \{UH Ax=2 ﬁl.\ -
£ 5 & o N ‘B;'r?_' AN ‘%’
o oa R T Fyige =
I)n (3.1) 2#.\1'[3-2}' N Ipxy(3,3) n 4pxy(3,4)
px(3) px(3) px(3) px(3)
1 2 11
=3-—+4--=—
3ti 3= ™
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5.2.4 Moment Generating Function for Conditional Distributions
If X, Y have a joint probability distribution, and f(x|y) is the conditional probability
function of X, then the moment generating function for the conditional distribution

(if it exist) defined as

Properties

I1. ;—;wa(t) l;=o = E(X"|Y = y), which is the rh conditional raw moment.

Example 5.6
If fxly) = i; 0 < x <y < 1.Find My y(¢) then use it to compute E(X|Y), V(X|Y).

Solution
xt yt_l
Mx|y(t)—fy xtf(xly)dx—fy—d = y=eyt _
Now,
= eyt_l = l > (yt)r - y t3 cee yTtT cee —
MX|Y(t) h yt B yt (ZT:O r! 1) (1 + vt + + 3! + + r! + 1)
=1+ +—+ g L8 =142 __|__2 Ct e
B (r +1)' N 2 1 D) 7!
Therefore,
yr
Hr = (r+1)
Hence,
E(X|Y) = pyy = 7.
2
EX?|Y) = pp = —.
y2
V(X|Y) = Y
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Chapter Six
Covariance, Correlation, Independence of Variables

(Stochastic Independence)

6.1 Covariance of random variables

If random variables X and Y are jointly distributed with joint probability function
f(x,y), then the covariance between X and Y is defined as
oxy = Cov(X,Y) = E{[X —EQOI[Y —EWM]} = E[(X — px) (Y — py)]
= EXY) - EX)E().

Proof
oxy = Cov(X,Y) = E[(X — ) (Y — uy)] = EQXY = Xuy — Yy + pixpy)

= E(XY) — ERuy) — E(Vpy) + EQugpy) = E(XY) — puyE(X) — puxECY) + pxpy

= E(XY) — uypx — pxtly + pixtty = E(XY) — 2uxuy + pxpy

= E(XY) — uxpy = EQXY) = E(XE(Y).

Some Properties for Covariance

If X, Y, Z are r.v’s and a,b are constants, then

. Cov(X,X) =V(X).

Il. Cov(X,Y) = Cov(Y,X).

I1l. Cov(X,a) = 0.

IV. Cov(aX,bY) = abCov(X,Y).

V. Cov(X+Y,Z) =Cov(X,Z) + Cov(Y, Z), this property can be generalized to
Cov(Z?lei,Z}"zl Y) = izt Xje1 Cov(X,Y;).

VI VX 1Y) =V(X) + V() £ 2Cov(X,Y).

Proof
IL, 111, IV are not hard to prove, and we leave them to the reader.

. Cov(X,X) = E(X-X) — E(X)EX) = E(X?) — [E(X)]? = V(X).
V. Cov(X+Y,2) =E[(X+Y)Z] —E(X + Y)E(Z)

=EXZ+YZ)-[EX)+EMIEZ)=EXZ)+EYZ)—EX)E(Z)-E(Y)E(Z)
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=[E(XZ)-EX)EZ)]+[E(YZ)—-E(Y)E(Z)] = Cov(X,Z) + Cov(Y, Z).

VI. V(IX+Y)=Cov(X+Y,X+Y) (FromI)
= Cov(X,X) + Cov(X,Y) + Cov(Y,X) + Cov(Y,Y) (FromV)
= Cov(X,X) + Cov(X,Y) + Cov(X,Y) + Cov(Y,Y) (FromlII)
=VX)+V({)+2Cov(X,Y). (Froml)

We can prove the case V(X — Y)by the same way.

Extra Example

On reviewing data on smoking (X, number of packages of cigarettes smoked
per year) income (Y, in thousands per year) and health (Z number of visits
to the family physician per year) for a sample of males it is found that
E(X) = 10,Var(X) = 25, E(Y) = 50, Var(Y") = 100, E(Z) = 6, Var(Z) =
4,Cov(X,Y) = 10, and Cov(X, Z) = 3.5. Dr. Davis, a young statistician,
attempts to describe the variable 7 in terms of X and Y by the relation
Z = X+cY, where ¢ is a constant to be determined. Dr. Davis’ methodology
for determining ¢ is to find the value of ¢ for which Cov(X, Z) = 3.5 when Z
is replaced by X + Y. What value of ¢ does Dr. Davis find?

- | — ] - . N\ ) ( P ~N II/" - P w
2% = Cor(K BN = GO %~ <)) = Lo X, KD o e UK k-\«\,J )
' s ) — = - \ ! - I
= \}'i.\fr\\,' L N AN \X}\!‘ /= < E_’: - < /_,' C]\_ _—5 \ C}C- = 2.b=-"7b
S C = 25 —-?.‘_5d S A\
- O
\C

Extra Example

The profit for a new product is given by Z = 3X — Y — 5, where X and YV
are independent random variables with Var(X) = 1 and Var(Y) = 2. What
is the variance of Z7

Solution.
Using the properties of a variance. and independence, we get

Var(Z) =Var(3X — Y —5) = Var(3X — V)
=Var(3X) + Var(—Y) = OVar(X) + Var(Y) =11 m

Extra Example

Let X be the sample mean of n independent random variables X, X5, --- , X,,.
Find Var(X).

Solution.
Bv independence we have

-l
Var(X) = — Z Var(X;)m
=1
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Extra Example

An insurance policy pays a total medical benefit consisting of a part paid
to the surgeon, X, and a part paid to the hospital, Y, so that the total
benefit is X + Y. Suppose that Var(X) = 5,000, Var(Y) = 10,000, and
Var(X +Y) = 17,000.
If X is increased by a flat amount of 100, and Y is increased by 10%, what
is the variance of the total benefit after these increases?

N((Arer) Oy ) = NUTR VA Y co)
Solution.
We need to compute Var(X + 100 + 1.1Y"). Since adding constants does not
change the variance, this is the same as Var(X + 1.1Y), which expands as
follows:

Var(X + 1.1Y) =Var(X) + Var(1.1Y) + 2Cov( X, 1.1Y)
—Var(X) + 1.21Var(Y) + 2(1.1)Cov(X.Y)

We are given that Var(X) = 5,000, Var(Y") = 10,000, so the only remaining
unknown quantity is Cov(X,Y"), which can be computed via the general
formula for Var(X +Y7) :

Cov(X.Y) =%{\-’ar(.¥ + V) — Var(X) — Var(Y))

1,
=§{1?. 000 — 5,000 — 10, 000) = 1,000

Substituting this into the above formula, we get the answer:

Var(X + 1.1Y) = 5,000 + 1.21(10,000) 4+ 2(1.1)(1,000) = 19,300 m

6.2 Correlation Coefficient

The correlation is a measure of the linear relationship between X and Y. It is

obtained by

Cov(X)Y) _ Cov(X)Y)

JvoOvy)  oxoy

where oy and oy are the standard deviations of X and Y respectively.

pxy = Corr(X,Y) =

Some Properties for Correlation

If X, Y arer.v’s and a,b,c,d are constants, then

I pxy = prx-

II. pxx = 1. (strong positive relationship)

IIl. px _x = —1. (strong negative relationship)

V. -1 < Pxy <1
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V. Pax+b),(cy+d) = Pxy-

Proof

Cov(aXtb,cY+d) _  acCov(X)Y)  Cov(X)Y)
Jvaxtb)v(cy+d) JaZv(x)c2v(y) JVOOV(Y)

V1. Plax+b),(cy+d) — Pxy-

Example 6.1

If f(x,y) ==%; 0<xy < 2.Find Cov(X,V),V(X +Y), pxy.
Solution

From example 5.2 we got

E(X) = E(Y) = g and V(X) = V(Y) = % Cov(X,Y) = E(XY) — E(X)E(Y)

2 2 2 2
EQXY) = [ ;o) =2 dxdy =< [ [0 (x%y + xy?) dxdy

L ey =R (2 )y =) =315

- Cov(x,¥)=1- (g)2 = —0.0278.

Cov(X)Y) 0.0278

Pxy = oovw \/(2)2 = —0.0909.

36
= VX +Y)=VX)+V(Y)+2Cov(X,Y) = i + i —2-0.0278 = 0.5556.
6.3 Independence of random variables

Random variables X and Y with cumulative distribution functions F(x) and F(y)

are said to be independent (or stochastically independent) if and only if the

cumulative distribution function of the joint distribution F(x,y) can be factored in
the form

F(x,y) = F(x)F(y); forall (x,y).
Alternatively, stochastic independence can be defined via the probability functions,

that, X and Y are independent if and only if

fO,y) = f)f(y); forall (x,y).

Corollary

If Xand Y are two independent r.v.’s then
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Flxly) = fy) _ fIfQ0) _ F(x0).

o) o)
Similaly,
flx) = f).
Note

To proof that any two variables X and Y are independent we only need to proof one
of the following

. F(x,y)=Fx)F(y).

I. F(x|y) =F(x).

III. F(y|x) = F(y).

V. flx,y) = ff Q).

V. flxly) = f(x).

VL f(ylx) = f(y).

6.3.1 Joint Expectation Under Independence Condition

If the two r.v’'s X and Y are independent, then

L E(XY)=EX)E(Q),
1. E(X|Y) = EX),
1L E(Y|X) = E(V),

(and vise versa).

Example 6.2

(L, 0<x<1l0<y<1 : .
If f(x,y)= {O; Otherwis , check if X and Y are independent.
Solution

First, let find the marginal probability functions
1

f(x)=J,1dy=ylg=1and
1

fO) =[,1dx=xl5=1.

Now, since

fr,y) =1=f)f ).
Thus, the random variables X and Y are independent.

What is the distribution of X (or Y)?!
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Extra Example

The joint pdf of X and V is given by

frr(@,y) = 4720 cr<oo, D<y< oo
xvlTy) = 0 Otherwise

Are X and YV independent?

Solution.
Marginal density fy(x) is given by

fx(z) = f qe Mty = 27 f 2e Mdy =2, x>0
0 0

Similarly, the mariginal density fy-(y) is given by

fr(y) = f 4724 gy = Qe f e 2 dr =2, y >0
a 0

Now since
fxv(z,y) = 47 = 2e7*[2e7] = fx(x)fv (v)

X and Y are independent @

Extra Example

The joint pdf of X and Y is given by

a3 Ety) 0L e+y <], 0< 3,y <00
Fxv(z,y) = { 0 Otherwise

Are X and Y independent?

Solution.
For the limit of integration see Figure 30.1 below.

Figure 30.1

The marginal pdf of X is

1—x 3 ’ l-x 3
fx(z) = / 3z +y)dy = 3y + zy° = —
0 27 |o 2

1-2?),0<z<1
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The marginal pdf of ¥ is

v 3, ey
e (4) = f No+y)de = 22® +3zy| =2(1-4%), 0<y<1
1] 2 0 2

But
9,3

Ql—UJ—f\ x) fy(y)

fxv(z,y) =3z +uy)# jfl —2?)

s0 that X and Y are dependent B

Extra Example

Consider a single toss of a coin. We define the random variable X to be 1 if
heads turns up and 0 if tails turns up, and we set ¥ =1 — X. Thus X and
Y are dependent. Show that E(XY) # E(X)E(Y).

3 [ o ) A | i
~ G_Li_.n, i }._\_7( JﬂMg Y=ol ff,g;“-_J = ¥, =e
) \ | ) '|.1 s B
7 | s =~ | N y - ; — .
-’_’.‘ﬂ_‘lt_z | | ﬁ-\ >’ =&,/ = l - ".ll,'\).};/ -.‘:: LYY = e
| | I B
ALl o L _ﬁ( P
/{’-"J "II 2 /Z T"ij | = f{ X =;". J = \/’l'. '
. N |
O N geol (7= = PO-X=1) |
& Lae) = 1, ,1'; oyl xn ’ ]
) = P X=2) ="
~ I 1 b
1\ | -
P(xwe, yoo) = P(X=oy vx =ey =0 | >N o | £
. XN . .
1 Vi 3 o 1 R _'_II \£
ﬁ'f\"“’igﬂ!i Ei)*i){"d ) = % o | © | R \ v
- | ——
y 0F N |
?' X1y J=2) = (A= 1) =>2° y I| vl o [ Ny
" - ] -\‘ I \ ; ._\\I _ . ‘J__ B B
r X=\,7=1) _IP{ X=1, A=1") ° — o\ 4 T
— \__ ;9
(WY = LT AR POmRd = IO ) X (105 090 + () e e
Solution. = joo e iy .

Clearly, E(X)= E(Y)=1.But XY =0sothat E(XY)=0+# E(X)E(Y)m

Example 6.3
Are the random variables X and Y with the following joint probability density table
independent?
Y values
0 1 3
1
0 3 0 0 0
1 1 1
X [ L]0 1351353
values | » 0 1 1 0
4 | 8
30| =]01]0
8
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Solution

First, let find the marginal probability functions

Y values
0] 1] 213 [k
1 1
0 3 0 0 0 3
1 1 1 3
X L0 55| 5| 8
values 1 1 3
2 0 " 5 0 3
1 1
3 0 3 0 0 3
1 4 2 1
FOY 5151 5 | 3 1
Now, since
1 1 11
f(0,0) = - # = =2--= fx(0)fy (0).

Thus, the random variables X and Y are not independent (dependent).

(We can use any pair other than (0,0) to reject that X and Y are independent).

6.3.2 Covariance Under Independence Condition
If Xand Y are two independent r.v.’s then
I. Cov(X,Y) =0. (Butthe converse is not true in general)

I VX+Y)=V(X)+V(Q).

Proof

. Cov(X,Y)=EXY)—EX)EQXY) =EX)EY)—-EXEQY) =0.

L VIX+Y)=VX)+ V() +2Cov(X,Y) =V(X)+V(Y)+0 (From I)
=V(X)+ V().

6.3.3 Correlation Under Independence Condition

If Xand Y are two independent r.v.’s then

pxy = Corr(X,Y) = 0;
but the converse is not true in general.
Example 6.4

Let the joint probability density function of X and Y is
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Y values
110 1 | f(x)
I I I 3
% . 16 | 16 | 16 | 16
3 3 6
values 0 16 0 16 | 16
1 1132 1L] 5
16 16 16 16
5 6 5
fO el 2!
[.  AreXandY independent.
II.  Find Cov(X,Y) and py y.
Solution
I. Since,
1,—1) = = = 0.0625 # 0.0977 = = = >. > = 1 1
f(=1,-1) = £ = 00625 # 00977 = 2= = =+ = = f(~1)fy (1),

Therefore, X and Y are dependent.

Il. Cov(X,Y) = E(XY) — E(X)E(Y)
5 6 5
EX)=E¥)=-1-=+0-2+1-2=0.
1 3 1 1
EXY)=-1--1-—-1-0-——1-1-—+-+-4+1-1-== 0. Thus,
16 16 16 16
Cov(X,Y) = 0 — 0 = 0. Therefore,

pxy = 0.

Note Cov(X,Y) = pyy = 0 even that X and Y are dependent.
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Chapter Seven
Distributions of Functions of Random Variables
(Transformations)

In this chapter, we will study how to find the distribution of a function of a random

variable with known distribution, which is called transformations of variables.

7.1 Discrete Case

7.1.1 The Case of One Variable
Suppose that X is a discrete random variable with probability function f(x). If

g(x)is a function of x, and Y is a random variable defined by the equation Y = g(X),

then Y is a discrete random variable with probability function f(y) = X, — () f (%) -

given a value of y, find all values of x for which y = g(x), (say, g(x;) = g(x;) =
-+ = g(x;) = y), and then g(y) is the sum of those f (x;) probabilities.

Corollary
If X and Y are independent random variables, and g and h are functions, then the

random variables g(x) and h(x) are independent.

There are two cases
[.  One-to-one correspondence.
[I. Not one-to-one correspondence.

However, we will focus on the first case.

If g is a one-to-one function, then the inverse image of a single value is itself a single
value. For instance, g(x) = x3, this inverse function is the cube root, while g(x) =

x2, this inverse function is the square root which may results in two values.

Steps to Obtain fy(y) for One-To-One Functions
I. Compute Y values that corresponding to X values, y = g7 1(x;), g7 1(x5), ...

II. Find the inverse x = g~1(y)
L () =P(Y =y) =P(g(X) =y) = P(X = g7 ) = fx(97* ).
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Hence, the pmf of Y is
) =fx(g7); ¥y =9(x),9(x), .
Example 7.1
If the r.v. X has pmf fyx(x) = 1x—5; x = 1,2,3,4,5. Find the pmf of the r.v. Y whrer Y =
X-3.
Solution

Note that Y = g(X) = X — 3 is a one-to-one function. Thus,

s x=123452y=(1-3),(2-3),(3-3),(4—13),(5—3) =-2,-1,0,1,2.
" Y=X-3=2g9')=X=Y+3=>g9"'()=x=y+3.

= ) =fx(g7 ) = rly +3) =22,
Thus,; fy(y) = y—+3; y=-2,-10,1,2.

15

Example 7.2

If the r.v. X has pmf fy(x) = =; x = 0,1,2. Find the pmf of the r.v. Y whrer Y = X3.

W

Solution

Note thatY = g(X) = X3 is a one-to-one function. Thus,

= x=0,12=y=03%132%=0,18.

1 1
s Y=X324(N)=X=VV=Y3=2g"1(y) =x =y

1

/) = fx(97TO) = fx ()’g) =3

Thus,; fy(y) = %; y =0,1,8.

7.1.2 The Case of Two Variables

Suppose the two discrete r.v.’s (X;,X;) has joint probability function fy x, (xy,x;)
and joint sample space Qy ,. Let (Y4,Y;) be some function of (X;,X,) defined by Y; =

91(X1,X,) andY, = g,(X;,X,) with the single-valued inverse given by X; =

97" (Yy,Y,) and X, = g;'(Y1,Y). Let Oy, be the sample space of ¥;,Y,. Then, the joint
probability function of (Y;,Y,) is given by
frov, 1, Y2) = fx,x, (91_1(3’1'3’2)' 92" O, 3’2))-
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Example 7.3

Let the two r.v.’s X;, X, have a joint probability function as follow

X
flrux)| 0 1 2 3
0 0.06 | 0.07 | 0.11 | 0.07
X1 1 0.08 | 0.09 | 0.12 | 0.09
2 0.06 | 0.08 | 0.10 | 0.07

Find the pmf of the r.v. Y where Y = X; + X,.

Solution

= x,=012&x,=0123= y=0,1.234,5.

=  We will compute the values of f; (y) by equivalency as follow
* fy(y) =P =y), Thus,
fy(0) =P(X; =0,X, =0) = 0.06,
f()=PX,=0,X,=1)+PX,=1,X, =0) =0.07 + 0.08 = 0.15,

fy(z) = P(X1 =0,X; = 2) +P(X1 =1,X, = 1) +P(X1 =2,X, = 0)

= 0.11 + 0.09 + 0.06 = 0.26,
£, (3)=PX,=0,X,=3)+PX;=1,X, =2)++P(X; =2,X, = 1)
= 0.07 + 0.12 + 0.08 = 0.27,
() =P(X,=1,X,=3)++P(X, =2,X, = 2) = 0.09 + 0.1 = 0.19,
£,(5) =P(X, =2,X, = 3) = 0.07.

Therefore,

y
fr(¥)[ 0.06

0.15

0.26

0.27

0.19

0.07

7.2 Continuous Case

There are three techniques to compute the distribution of function of random

variable:

= Method of distribution function. (F(x))

= Method of change-of-variable. (One-to-One transformation)

= Method of moment-generating function. (Mx(t))
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7.2.1 Distribution Function Method (CDF)

Let Xy, .., Xp~f (x4, ..., xp) and Y = g(Xy, ..., X,,). Then we follow the following steps
to obtain fy (y) by using the CDF technique

. Find Fx(x). (If it not given)

II. Find y rang in terms of x.

IIl. Compute  Fy(y) =P <y)=P@X) <y) =P(X <g7'(y) = Fx(97*®)

over the region whereY < y.
_ ar,(y) . .
IV. Compute f, (y) = e (by integrating the CDF).

Example 7.4

Let the probability density function of a random variable X is

fx () = {ZOx ;;t()h:rj\c/vfsel
Use the CDF method to find the probability density function of the random variable
Y = 8Xx3.
Solution

. FX(x)=f0xedx=x2|f§=x2
* Therangofy:0<x<1=20<x3<1=20<8x3<8=>0<y<8,

= F,()=P(Y<y)=PBX3<y)= P(X3 s%) = P(X < %yi) = Fy Gyi)
() =Hi; 0<y<s.

[ ] —dFy(y)—i _l_y_
O ===y 3=

Example 7.5

Let X~Exp(6) i.e. fy(x) = 8e~%%; x > 0. Use the CDF method to find the distribution

of the random variable Y = e”.

Solution

= Since X~Exp(0) then Fy(x) = 1 — e~ 9%,

* Therangofy:0<x<w=>e’<e*<e®*>1<y<om.

* F(y) =P <y)=P*<y)=PUn(e") <n@®) =PX<n®)) =
Fy(In(y) =1-e " =1 -0 =1-y7%; 1<y <o,
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dFy(y) =09y~ +); 1 <y < 0.

) =
Example 7.6
Let X~N(u, 0). Use the CDF method to find the distribution of the random variable
7 = Xr
g

Solution

fu () = —= R

Note At this example we notice that it is difficult to compute Fy(x), therefore, we

will use the differentiation that % Fy(y) = fy(y).

= —0o < z < 00,

» Therangofz: —o0 < x < 00 = —F <78 %

< <
. FZ(Z)ZP(ZSZ)=P(%SZ)=P(XSO‘Z+M)=FX(O'Z+,LL)

dFZ(Z) dFx(oz+u) _ dFx(oz+p) L dx

f2(2) = dz dx dz
= fx(az + u) - o, (by using the chain rule) thus,
f2(z) = G'a\/lﬁ “aloztum? _ \/i_n e 200D = %ﬂ e —00 < Z < oo;
i.e.Z~N(0,1).
Notation:

* Xsy= -y<X<y
s X<y = VX fy=> XS fy= —ysx<Jy

7.2.2 Change-of-Variable Method

7.2.2.1 One Variable

Definition

Let Xbe a continuous random variable with probability density function f (x)
defined over the rang c; < x <c,, and, letY = g(X) be an invertible function

of Xwith inverse functionX = g~1(Y).Then, wusing the change-of-variable

technique, the probability density function of Yis
- dg~'(y)
fr) = flg7 o) - [

defined over the rang g 1(c;) <y < g7 1(cy).
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Example 7.7
Use the change-of-variable method to find the distribution of the random variable Y
in Example 7.4.

Solution

- g ==

* Therangofy:0<x<1=0<x3<1=20<8x3<8=>0<y<8,

= £ (y) —fx(g‘l(y)) |dy 1(y)| = f, (ya) | - | 2<y§>-%y_§

1 L
=<y 3 0<y<8.

Example 7.8
If X~Uniform(2,5). Use the change-of-variable method to find the distribution of
the random variable ¥ = ——,
1+X
Solution
1
" fx(x) = 3

. Yzﬁ S Y4+YX=X2Y=X-YX>Y=X(1-Y) = eryy.Hence,

— Y
97 ) =1

. Therangofy:Z<x<5=>3<1+x<6$3<ix<§=>§<y<§.

- dg™(y) 1 -
= 0= K70 |25 = () 56l =50 -0
_a-»7? 2 5
-3’3 <y< 6
Example 7.9

Let X~Exp(1) ie. fyx(x) = 2e=**;x > 0. Use the change-of-variable method to find

1
the distribution of the random variable Y = XB5.

Solution

1
» Y=XF = X=YF Hence g '(y) = Yh.

1

1
* Therangofy:0 <x <o =08 <xf <o

wln
U
o
IA
<
IA
8
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= A =97 ) [ = K (F) - BYP ] = aByE e y > 0,8 > 0;
i.e. Y~Weibull Distribution.

7.2.2.2 Two Variables

Definition

Suppose the two contiuous r.v.’s (X1, X;) has joint probability function fy, v, (xq, x2)

and joint sample space (y x,. Let (Yy,Y;) be some function of (X, X,) defined by ¥; =

91(X1,X,) andY, = g,(X;,X,) with the single-valued inverse given by X; =

g97'(Y,Y,) and X, = g;'(Yy,Y;). LetQy.y, be the sample space ofY;,Y,. Then, we

usually find Qy y, by considering the image of (x x, under the transformation (Y3, Y;).

The joint pdf Y, and Y, is

fror, 01,¥2) = Ul fxox, (97 01, 920,97 (01, ¥2)),

where |J| refers to the absolute value of the Jacobian "J" which is given by

9x;  9xy 991 1y2) 991 (v1y2)
] _ oy oyz| _ 0y, 0y,
T [9x2 0xa| T [ag7tye) 995 (ray2)
dy, 0y, oy, dy,

Example 7.10
Let X; and X, are two independent random variables having exponential

distributions with parameters A; and 4, respectively. Find the distribution of Y; =

X1

Xl + Xz and Yz = X1+X2.

Solution
" fx, () = Ae”M x> 0and fy, (x;) = A6 4% ;x, > 0.
Since X; and X, are independent, hence

f(xl,xz) = Ale—/lﬁh_lze—lzxz — Alaze—(llx1+/12x2)

X1
X1+X,

u Y1:X1+X2&Y2: $X1:Y1Y2 :XZZYI_YIYZZYI(l_YZ)'

Hence, gi'(y1,¥2) = ¥,Y, & 93 (. y2) = y,(1 = v,).

X1

= Therangofy; &y,:0< <1=0<y,<1;

X1+ Xp

0<y;y,<00 = 0<y; <o
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- _ovr ey _ | Y2 Yi| _ _
J= 6_962 a_xz 1=y, —y1|__y1y2_y1(1_y2)—_y1-
0y; 0y,

" Fan 0Ly = Ulfex, (0700 72),07 00, 72)) = |- |f (v, 5,(1 - 3,))
= A /—lzyle—(l1y1y2+lzy1(1—yz))
= L A,y e [=yiye+tlonal . 0 <y 0 <y, < 1.
Example 7.11
Let X; and X, are two independent random variables having Gamma distributions
with parameters @ = 2 and = 1. Find the distribution of X; + X,.
Solution
" fx,(x1) =xe7 ;x; = 0and fx, (x;) = x,67% ;x, = 0.
Since X; and X, are independent, hence
f(xy,x,) = x,e %1 x,e7%2 = x; x,0”X1¥x2),
w letV; =X, &Y, =X+X,=2X, =Y.
Also, X, =Y, = Y;.
Hence, 97" (y1,¥2) =y, & 92 O0.y2) =¥, — ;-

» Therangofy; &y,:0<x; =y; <0 &0<x, =y, —y;<00=>0<y; <y,

_|9y1 0yz| _ 0|_ —
"I em| Tl g TETO0SL
0y, 09y,

" fry,1y2) = If (07 00 ¥2).97* 00 ¥2) = 11U (v, v, — ¥,)
=y, (yz — yl)e_(h"'yz_h) =y, (yz — yl)e_YZ 5 Y, > Y, > 0.

fr,(v2) = f:z y1(y2 —y)e 2 dy, = e foyz 1Yz = ¥1) dys

2 3 3 3 3
— e Y2 (w _ y_l) %2 = e [(y_ _ y_) _ 0] =% e-v2,y, >0,
2 3 2 3 6

ie. Y, =X, + X,~ Gamma(4,1).

7.2.3 Moment-Generating Function Method
Let X & Y are two random variables where My(t), My (t) exist and equal, then,
depending on the uniqueness of the moment generating function of a random

variable X and Y have the same distribution.
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Properties (From chapter two)

» If Y =aX + b, then My (t) = e’ My (at).
» IfXandY are two independent r.v’s, then My, (t) = My (t)My(t).

Example 7.12 (Sum of Independent Gammas).
Let X;~Gamma(a;, B) i = 1, ...,n. Independent random variables. Use the moment
generating function to find the distribution of ¥ = )", X;.

Solution

= My, () = (%)a" i=1,..,1n

= My(t) = Myn 5, (t) = E(e'®at+H)) = E(et™n . etn) = E(e™1) ... E(e"¥n)
_ _ B aq B an _ B Z?:l a
= My, () ... My, (£) = (ﬂ) (ﬁ) = (ﬂ)
Thus, Y =Y, X; ~ Gamma(Q L, a; , B).
Example 7.13 (Linear Function of Independent Normal r.v’s).
Let X; ~ N(y;, aiz);i = 1,...,n. Independent random variables. Use the moment

generating function to find the distribution of Y = 1\, a;X;.

Solution

ZtZ
u-t+ai— .
= MXi(t)ze e i=1, ..., n.

" My(t) = M2?=1aiXi(t) = E(et(a1X1+...+aan)) — E(etale etaan)

= E(e'®%1) L E(et*n) = My (ait) ... My (a,t)

2 chade?

2 2 2
ogiajt n t“sn 2 2
Unant+——— _ et2i=1 Hiai+— Y-, 0i a;

at+
= g1

Thus,Y =YL, a;X;~ N (Z?zl ail; IZ?=1 Uizaiz)-

Example 7.14

. e

Use the moment generating function to find the distribution of Z2 where Z~N(0,1).

Solution
2

z
" fZ(z)zv%e_?; —00 < z < 00,

2

) Mzz(t) = E(etzz) = f_ooooetzz.\/%e_%dz = Efjoooe_(T)szz
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2 o 1__2‘:)22 .
= Efo e \"z )* dz (Symmetric about 0)

1/2

1 1
Lletu=2%2 =2z=u ,dz=zu 2z du and 0 < u. Hence

1-2t 1 1-2t

Mzz(t) = \/%fooo e_( 2 )u%u_%du = \/%fooo u_Ee_(T)udu

N| R

R S e P TS O =

2

=T vzm Do T U ze Vim Nor
r(3) ()
—(1-207%

Thus, Z?~ Gamma (% ,%)

Example 7.15 (Sum of two exponential r.v’s).

Let X;,X,are two independent random variables have the same exponential
distribution with parameter 6. fy (x;) = fe~%%, x; > 0. Use the moment generating
function to find the distribution of X; + X,.

Solution

0
- MXi(t) = ot

- MU(t) = MX1+X2 (t) = MX1 (t)MXz (t) = &% - (%)2

Thus, X; + X,~Gamma(2,6).
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Appendix A.

oL

Table 4.1: The Incomplete Gamma Function: F(2:a) = [ pry™ e ¥ dy
o
@ 1 2 3 1 5 6 7 8 9 10
1 0.6320 0.2640 0.0800 0.0190 0.0040 0.0010 0.0000 0.0000 0.0000 0.0000
2 0.8650 0.5940 0.3230 0.1430 0.0530 0.0170 0.0050 0.0010 0.0000 0.0000
3 09500 0.8010 0.5770 0.3530 0.1850 0.0840 0.0340 0.0120 0.0040 0.0010
4 0.9820 0.9080 0.7620 0.5670 0.3710 0.2150 0.1110 0.0510 0.0210 0.0080
5 09930 09600 0.8750 0.7350 0.5600 0.3840 0.2380 0.1330 0.0680 0.0320
6 0.9980 0.9830 0.9380 0.8490 0.7150 0.5540 0.3940 0.2560 0.1530 0.0840
7 0.9990 0.9930 0.9700 0.9180 0.8270 0.6990 0.5500 0.4010 0.2710 0.1700
8 1.0000 0.9970 0.9860 0.9580 0.9000 0.8090 0.6870 0.5470 0.4070 0.2830
9 0.9990 0.9940 0.9790 0.9450 0.8840 0.7930 0.6760 0.5440 0.4130
10 1.0000 0.9970 0.9900 0.9710 0.9330 0.8700 0.7800 0.6670 0.5420
11 0.9990 0.9950 0.9850 0.9620 0.9210 0.8570 0.7680 0.6590
12 1.0000 0.9980 0.9920 0.9800 0.9540 0.9110 0.8450 0.7580
13 0.9990 0.9960 0.9890 0.9740 0.9460 0.9000 0.8340
14 1.0000 0.9980 0.9940 0.9860 0.9680 0.9380 0.8910
15 0.9990 0.9970 0.9920 0.9820 0.9630 0.9300
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Table 4.2: Lower Critical values for Chi-square distribution
df \a .005 .01 .025 .05 10 .90 .95 975 .99 995

1 |.00004 |.00016 |.00098 |.0039 |.0158 2.71 3.84 5.02 6.63 7.88

2 |.0100 .0201 .0506 1026 2107 4.61 5.99 7.38 9.21 10.60
3 0717 115 216 352 |.584 6.25 7.81 9.35 11.34 12.84
4 1.207 297 484 711 |1.064 7.78 9.49 11.14 13.28 14.86
5 412 .554 831 115 161 9.24 11.07 12.83 15.09 16.75
6 |.676 872 1.24 164 |2.20 10.64 12.59 14.45 16.81 18.55
7 ].989 1.24 1.69 217 |2.83 12.02 14.07 16.01 18.48 20.28
8 |1.34 1.65 2.18 273 349 13.36 1551 17.53 20.09 21.96
9 173 2.09 2.70 333 417 14.68 16.92 19.02 21.67 23.59
10 |2.16 2.56 3.25 3.94 |4.87 15.99 18.31 20.48 23.21 25.19
11 |2.60 3.05 3.82 457 |5.58 17.28 19.68 21.92 24.73 26.76
12 |3.07 3.57 4.40 523 16.30 18.55 21.03 23.34 26.22 28.30
13 |3.57 4.11 5.01 589 [7.04 19.81 22.36 24.74 27.69 29.82
14 |4.07 4.66 5.63 6.57 |7.79 21.06 23.68 26.12 29.14 31.32
15 |46 5.23 6.26 726 |8.55 22.31 25 27.49 30.58 32.80
16 |5.14 581 6.91 796 [9.31 23.54 26.30 28.85 32.00 34.27
18 16.26 7.01 8.23 9.39 |10.86 25.99 28.87 31.53 34.81 37.16
20 |7.43 8.26 9.59 10.85 |12.44 28.41 31.41 34.17 37.57 40.00
24 19.89 10.86 12.40 13.85 |15.66 33.20 36.42 39.36 42.98 45.56
30 |13.79 14.95 16.79 18.49 |20.60 40.26 43.77 46.98 50.89 53.67
40 |20.71 22.16 24.43 26.51 |29.05 51.81 55.76 59.34 63.69 66.77

60 |35.53 37.48 40.48 43.19 |46.46 74.40 79.08 83.30 88.38 91.95
120 |83.85 86.92 91.58 95.70 |100.62 |140.23 |146.57 |152.21 |158.95 |163.64
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Table 4.3: Area to the Left of the Z score for Standard Normal Distribution. s

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
-11 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
11 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
13 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
14 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
15 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
16 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
17 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
18 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
19 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
22 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
24 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
25 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
27 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
29 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
33 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

99
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Table 4.4: Lower Critical Values for t Distribution. *
v=df to.90 .95 Lo.975 to.99 Lo.995
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
35 1.3062 1.6896 2.0301 2.4377 2.7238
40 1.3030 1.6840 2.0210 2.4230 2.7040
45 1.3006 1.6794 2.0141 24121 2.6896
50 1.2987 1.6759 2.0086 2.4033 2.6778
60 1.2958 1.6706 2.0003 2.3901 2.6603
70 1.2938 1.6669 1.9944 2.3808 2.6479
80 1.2922 1.6641 1.9901 2.3739 2.6387
90 1.2910 1.6620 1.9867 2.3685 2.6316
100 1.2901 1.6602 1.9840 2.3642 2.6259
120 1.2886 1.6577 1.9799 2.3578 2.6174
140 1.2876 1.6558 1.9771 2.3533 2.6114
160 1.2869 1.6544 1.9749 2.3499 2.6069
180 1.2863 1.6534 1.9732 2.3472 2.6034
200 1.2858 1.6525 1.9719 2.3451 2.6006
00 1.282 1.645 1.960 2.326 2.576

100




