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Chapter One                                                                                           

Basic concepts of Probability and Random variables 

1.1 Basic concepts of Probabilities 

An Experiment 

An experiment is some procedure (or process) that we do. 

Sample Space 

The sample space of an experiment is the set of all possible outcomes of an 

experiment. Also, it is called the universal set, and is denoted by Ω. 

An Event 

Any subset of the sample space 𝐴 ⊂ Ω is called an event. 

Note 

𝜑 ⊂ Ω: Is the impossible event. 

Ω ⊂ Ω: Is the sure event. 

Complement of an Event 

The complement of the event A is denoted by 𝐴𝑐or 𝐴̅. The event 𝐴̅ consists of all 

outcomes of Ω but are not in A. 

Probability 

Probability is a measure (or number) used to measure the chance of the occurrence 

of some event. This number is between 0 and 1.  

Equally Likely Outcomes 

The outcomes of an experiment are equally likely if the outcomes have the same 

chance of occurrence. 

Probability of an Event 

If the experiment has n(Ω) equally likely outcomes, then the probability of the event 

E is denoted by P(E) and is defined by:  𝑃(𝐸) =
n(E) 
n(Ω) 

 . 
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Thus, probabilities have the following properties 

1. 0 ≤  𝑃(𝐴)  ≤  1 for each event A. 

2. 𝑃(Ω) =  1. 

3. 𝑃(𝜑) =  0. 

4. 𝑃(𝐴𝑐) =  1 − 𝑃(𝐴). 

Some Operations on Events 

Union: The event 𝐴 ∪ 𝐵 consists of all outcomes in A or in B or in both A and B. 

Intersection: The event 𝐴 ∩ 𝐵 consists of all outcomes in both A and B. 

Sub event: The event 𝐴 is called a sub event of 𝐵 “𝐴 ⊂ 𝐵” if event 𝐵 occurs whenever 

the event 𝐴 occurs.  
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Addition Rule 

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) 

Mutually exclusive (disjoint) Events 

Two events are mutually exclusive if they have no sample points in common, or 

equivalently, if they have empty intersection. Events 𝐴1, 𝐴2, … , 𝐴𝑛 are mutually 

exclusive if 𝐴𝑖 ∩ 𝐴𝑗 = 𝜑 for all 𝑖 ≠ 𝑗, where 𝜑 denotes the empty set with no sample 

points.  

For this case: 
1. 𝑃(𝐴 ∩ 𝐵) = 0. 

2. A and Ac are disjoint. 

3. 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵). “ special case of addition rule”  

4. 𝑃 (⋃ 𝐴𝑖
∞
𝑖=1 ) = ∑ 𝑃 (𝐴𝑖)∞

𝑖=1 . 

 

            A                            B 

 
                Disjoint Events 

       

                  A            B 

       
      Joint (Not Disjoint) Events   

Exhaustive Events 

The events 𝐴1, 𝐴2, … , 𝐴𝑛 are exhaustive events if: 𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛 = Ω. 

For this case:  𝑃(𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑛) = 𝑃(Ω) = 1. 

A Partition 

A collection of events 𝐴1, 𝐴2, … , 𝐴𝑛 of a sample space Ω is called a partition of Ω if 

𝐴1, 𝐴2, … , 𝐴𝑛 are mutually exclusive and exhaustive events. 

Example 1.1 

Ω = {1,2,3,4,5,6}, A = {1,2}, B = {2,3} and 𝐶 = {1,5,6}. Find:𝑃(𝐴), 𝑃(𝐵), 𝑃(𝐶), 𝑃(𝐴 ∩
𝐵), 𝑃(𝐵 ∩ 𝐶) and 𝑃(𝐴 ∪ 𝐶). 

Solution 

𝑃(𝐴) = 𝑃(𝐵) =
1

3
 , 𝑃(𝐶) =

1

2
 , 𝑃(𝐴 ∩ 𝐵) =

1

6
 , 𝑃(𝐵 ∩ 𝐶) = 0,  

𝑃(𝐴 ∪ 𝐶) = 𝑃(𝐴) + 𝑃(𝐶) − 𝑃(𝐴 ∩ 𝐶) =
1

3
+
1

2
−
1

6
=

2

3
. 

What can we say about B&C? 
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Since 𝑃(𝐵 ∩ 𝐶) = 0, Then B&C are disjoint events. 

Conditional Probability 

The conditional probability of A, given B, written as P(A|B), is defined to be 

𝑃(𝐴|𝐵) =
𝑃(𝐴∩ 𝐵)

𝑃(𝐵)
 .  

Independence 

Two events A and B are said to be independent if B provides no information about 

whether A has occurred and vice versa. In symbols: 

- 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵), Or 

- 𝑃(𝐴|𝐵) = 𝑃(𝐴), Or 

- 𝑃(𝐵|𝐴) = 𝑃(𝐵).  

Return to Example 1.1. Compute 𝑷(𝑨|𝑪). 

𝑃(𝐴|𝐶) =
𝑃(𝐴 ∩  𝐶)

𝑃(𝐶)
=
1/6

1/2
=
1

3
 . 

Are A&C independent? 

Since 𝑃(𝐴|𝐶) =
1

3
= 𝑃(𝐴), then A&C are independent. 

1.2 Random Variable 

The outcome of an experiment need not be a number, for example, the outcome 

when a coin is tossed can be 'heads' or 'tails'. However, we often want to represent 

outcomes as numbers. A random variable is a function that associates a unique 

numerical value with every outcome of an experiment 𝑋:Ω → ℛ. The value of the 

random variable will vary from trial to trial as the experiment is repeated. 

There are two types of random variable discrete and continuous. 

1.2.1 Discrete Random Variable 

The random variable X is discrete and is said to have a discrete distribution if it can 

take on values only from a finite 𝑋 ∈ {𝑥1, 𝑥2, … , 𝑥𝑛} or countable infinite sequence 

𝑋 ∈ {𝑥1, 𝑥2, … }. Discrete random variables are usually represents count data, such 

as, the number of children in a family, the Friday night attendance at a cinema, the 

http://www.stats.gla.ac.uk/steps/glossary/probability_distributions.html#discvar
http://www.stats.gla.ac.uk/steps/glossary/probability_distributions.html#contvar
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number of patients in a doctor's surgery and the number of defective light bulbs in a 

box of ten. 

Example 1.2 

Consider the experiment of successive tosses of a coin. Define a variable X as 𝑋 = 1 

if the first head occurs on an even-numbered toss, 𝑋 = 0 if the first head occurs on 

an odd-numbered toss; and define the variable Y denote the number of the toss on 

which the first head occurs. The sample space for this experiment is Ω =

{𝐻, 𝑇𝐻, 𝑇𝑇𝐻, 𝑇𝑇𝑇𝐻,… }. Therefore,  

w X(w) Y(w) 
H 0 1 

TH 1 2 
TTH 0 3 

TTTH 1 4 
⋮ ⋮ ⋮ 

Both X and Y are discrete random variables, where the set of all possible values of 

X is {0,1} (finite), and the set of all possible values of Y is {1,2,3,4, … } (infinite but 

countable). 

1.2.2 Continuous random variable 

A continuous random variable usually can assume numerical values from an interval 

of real numbers, perhaps the whole set of real numbers ℛ; 𝑋 ∈ { 𝑥:  𝑎 < 𝑥 <

𝑏;  𝑎, 𝑏 ∈ ℛ}. Continuous random variables are usually measurements, for example, 

height, weight, the amount of sugar in an orange, the time required to run a mile. 

1.3 Probability Function 

1.3.1 Discrete Case (Probability Mass function) 

The probability distribution of a discrete random variable is a list of probabilities 

associated with each of its possible values. It is called the probability mass function 

(pmf) which is usually denoted by 𝑓𝑋(𝑥), 𝑓(𝑥), 𝑝(𝑥)or 𝑝𝑥 and is equal to 𝑃(𝑋 = 𝑥).  

The probability mass function must satisfy  

1. 0 ≤ 𝑓(𝑥) ≤ 1 for all 𝑥, 

2. ∑ 𝑓(𝑥)𝑥 = 1.  

Example 1.3 
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Consider the following game. A fair 4-sided die, with the numbers 1, 2, 3, 4 is rolled 

twice. If the score on the second roll is strictly greater than the score on the first the 

player wins the difference in euro. If the score on the second roll is strictly less than 

the score on the first roll, the player loses the difference in euro. If the scores are 

equal, the player neither wins nor loses. If we let X denote the (possibly negative) 

winnings of the player, what is the probability mass function of X?  

Solution 

The total number of outcomes of the experiment is 4 × 4 = 16. The sample space of 

this experiment is 

 𝛀 = {(𝟏, 𝟏), (𝟏, 𝟐), (𝟏, 𝟑), (𝟏, 𝟒), (𝟐, 𝟏), (𝟐, 𝟐), (𝟐, 𝟑),… (𝟒, 𝟑), (𝟒, 𝟒)}. Thus, X can take 

any of the values −3, −2, −1, 0, 1, 2, 3. 

The pmf  can be found as follow 

𝒇(−𝟑) = 𝑷(𝑿 = −𝟑) = 𝑷{(𝟒, 𝟏)} =
𝟏

𝟏𝟔
 ,  

𝒇(−𝟐) = 𝑷(𝑿 = −𝟐) = 𝑷{(𝟒, 𝟐)} + 𝑷{(𝟑, 𝟏)} =
𝟐

𝟏𝟔
 ,   

⋮ 

𝒇(𝟑) = 𝑷(𝑿 = 𝟑) = 𝑷{(𝟏, 𝟒)} =
𝟏

𝟏𝟔
 .  

Hence, the distribution of X can be written as  

X -3 -2 -1 0 1 2 3 Total 
𝑓(𝑥) 1/16   2/16 3/16 4/16 3/16 2/16  1/16 1 

Example 1.4 

Consider an experiment of tossing an unfair coin twice. The probability is 0.6 that a 

coin will turn up heads on any given toss, and let X be defined as the number of 

heads observed. Find the range (possible values) of X, as well as its probability mass 

function. Then find 𝑃(𝑋 = 1), 𝑃(𝑋 = 1.5), 𝑃(1 ≤ 𝑥 ≤ 3), 𝑃(1 < 𝑥 ≤ 3), 𝑃(𝑋 > 4) & 

 𝑃(𝑋 > −2). 

Solution 

I. The sample space of this experiment is 𝛀 = {𝑯𝑯,𝑯𝑻, 𝑻𝑯, 𝑻𝑻}, therefore, the 

number of heads will be 0, 1 or 2. Thus, the possible values of X are {𝟎, 𝟏, 𝟐}.  

Since this is a finite countable set, the random variable X is discrete. Next, we 

need to find the pmf 

 w X 
HH 2 
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HT 1 
TH 1 
TT 0 

𝑷(𝑯) = 𝟎. 𝟔 & 𝑷(𝑻) = 𝟎. 𝟒, Therefore we have   

𝒇(𝟎) = 𝑷(𝑿 = 𝟎) = 𝑷(𝑻𝑻) = (𝟎. 𝟒)(𝟎. 𝟒) =  𝟎. 𝟏𝟔, 

𝒇(𝟏) = 𝑷(𝑿 = 𝟏) = 𝑷(𝑯𝑻) + 𝑷(𝑻𝑯) = (𝟎. 𝟔)(𝟎. 𝟒) + (𝟎. 𝟒)(𝟎. 𝟔) = 𝟎. 𝟒𝟖 , 

𝒇(𝟐) = 𝑷(𝑿 = 𝟐) = 𝑷(𝑯𝑯) = (𝟎. 𝟔)(𝟎. 𝟔) = 𝟎. 𝟑𝟔. 

Hence, the distribution of X can be written as  

X 0 1 2 Total 
𝑓(𝑥) 0.16  0.48  0.36  1 

II. Now we can calculate the probabilities as follow 

1. 𝑃(𝑋 = 1) = 0.48 

2. 𝑃(𝑋 = 1.5) = 0 

3. 𝑃(1 ≤ 𝑥 ≤ 3) = 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) = 0.48 + 0.36 = 0.84, 

4. 𝑃(1 < 𝑥 ≤ 3) = 𝑃(𝑋 = 2) = 0.36, 

5.  𝑃(𝑋 > 4) = 0 . 

6. 𝑃(𝑋 > −2) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) = 1 

Example 1.5 

Suppose the range of a discrete random variable is {1, 2, 3, 4}. If the probability 

mass function is f (x) = cx for x =1, 2, 3, 4. Find is the value of c, then calculate 

𝑃(𝑋 = 3.25), 𝑃(𝑋 > 2), 𝑃(1 < 𝑋 ≤ 5) 

Solution 

I. Since 𝒇(𝒙) is a pmf, it should satisfy two conditions 

1. First, f (x) ≥ 0 → c ≥ 0 . 

2. Second, ∑ 𝑓(𝑥)𝑥 = 1 ⇒ 𝑓(1) + 𝑓(2) + 𝑓(3) + 𝑓(4) = 1  

⇒ 𝑐 + 2𝑐 + 3𝑐 + 4𝑐 = 1 ⇒ 10𝑐 = 1 ⇒ 𝑐 = 0.1 

⇒ 𝑓 (𝑥) =
𝑥

10
;  𝑥 =  1, 2, 3, 4.    

II.   

1. 𝑃(𝑋 = 3.25) = 0 

2. 𝑃(𝑋 > 2) = 𝑓(3) + 𝑓(4) =
3

10
+

4

10
=

7

10
= 0.7 

3. 𝑃(1 < 𝑋 ≤ 5) = 𝑓(2) + 𝑓(3) + 𝑓(4) =
2

10
+

3

10
+

4

10
=

9

10
= 0.9 
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1.3.2 Continuous Case (Probability Density function) 

The probability density function of a continuous random variable is a function 

which can be integrated to obtain the probability that the random variable takes a 

value in a given interval. It is called the probability density function (pdf) which is 

usually denoted by 𝑓𝑋(𝑥) or 𝑓(𝑥). Symbolically, 𝑃(𝑎 < 𝑋 < 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= the 

area under the curve of 𝑓(𝑥) and over the interval (a,b). 

 
The probability density function must satisfy  

1. 𝑓(𝑥) ≥ 0 or all 𝑥, 

2. ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= 1.  

Note: In the continuous case for any 𝑥 ∈ ℛ. 

1.  𝑓(𝑥) ≠ 𝑃(𝑋 = 𝑥),  

2. 𝑃(𝑋 = 𝑥) = 0, 

3. 𝑃(𝑎 < 𝑋 < 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) 

Example 1.6 

Let 𝑓(𝑥) = {
2𝑥;       0 < 𝑥 < 1 
0;    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

I. Check if 𝑓(𝑥) is pdf. 
Solution 

Since, 

1.  𝑥 > 0 ⇒ 𝑓(𝑥) = 2𝑥 > 0, 

2. ∫ 𝑓(𝑥)𝑑𝑥
1

0
= ∫ 2𝑥 𝑑𝑥

1

0
= 1, 

Thus, 𝑓(𝑥) is a pdf. 

II. Calculate 𝑷(
𝟏

𝟒
< 𝑿 <

𝟏

𝟐
) , 𝑷(𝑿 = 𝟎. 𝟓) & 𝑷(−𝟐 < 𝑿 < 𝟎. 𝟕𝟓) 

Solution 

1. 𝑷(
𝟏

𝟒
< 𝑿 <

𝟏

𝟐
) = ∫ 𝑓(𝑥)𝑑𝑥

1

2
1

4

= ∫ 2𝑥 𝑑𝑥
1

2
1

4

= 0.1875. 

2. 𝑃(𝑋 = 0.5) = 0 
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3. 𝑷(−𝟐 < 𝑿 < 𝟎. 𝟕𝟓) = ∫ 𝑓(𝑥)𝑑𝑥
0.75

−2
= ∫ 2𝑥 𝑑𝑥

0.75

0
= 0.5625. 

Example 1.7 

Let X be a continuous random variable with the following pdf 𝑓(𝑥) =

{
𝑘𝑒−𝑥;             𝑥 ≥ 0
0;            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

I. Find k. 

Solution 

The probability density function must satisfy two conditions 

1. 𝑓(𝑥) ≥ 0 ⇒ 𝑘𝑒−𝑥 ≥ 0 ⇒ 𝑘 ≥ 0  

2.  ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= 1 ⇒ ∫ 𝑘𝑒−𝑥𝑑𝑥

∞

0
= 1 ⇒ −𝑘[𝑒−∞ − 𝑒0] = 1 ⇒ −𝑘[0 − 1] = 1 

⇒ 𝑘 = 1    ⇒ 𝑓(𝑥) = 𝑒−𝑥 ; 𝑥 ≥ 0. 

II. Find 𝑃(1 < 𝑋 < 3), 𝑃(𝑋 > 4) & 𝑃(𝑋 ≥ 4) 

Solution 

1. 𝑃(1 < 𝑋 < 3) = ∫ 𝑒−𝑥𝑑𝑥
3

1
= −[𝑒−3 − 𝑒−1] = 0.318. 

2. 𝑃(𝑋 > 4) = ∫ 𝑒−𝑥𝑑𝑥
∞

4
= −[𝑒−∞ − 𝑒−4] = −[0 − 0.0183] = 0.0183. 

3. 𝑃(𝑋 ≥ 4) = 𝑃(𝑋 > 4) = 0.0183. 

1.4 Cumulative distribution function (CDF) 

All random variables (discrete and continuous) have a cumulative distribution 

function (CDF) denoted by 𝐹(𝑥). It is a function giving the probability that the 

random variable X is less than or equal to x, for every value x. Formally, the 

cumulative distribution function 𝐹(𝑥) is defined to be: 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)     𝑓𝑜𝑟     − ∞ < 𝑥 < ∞. 

1.4.1 Discrete Case 

For a discrete random variable, the cumulative distribution function is found by 

summing up the probabilities 

𝐹(𝑥) = ∑ 𝑓(𝑡)𝑡≤𝑥 . 
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Also, 

 

 

and 

 

 

Example 1.8 

Return to Examples 1.4,1.5. Find the distribution function CDF for the r.v. X. 

Solution 

For example 1.4 we have 

X 0 1 2 Total 
𝑓(𝑥) 0.16 0.48 0.36 1 
𝐹(𝑥) 0.16 0.64 1  

In a formal way, 

𝐹(𝑥) = {

0;    𝑥 < 0
0.16;  0 ≤ 𝑥 < 1
0.64;  1 ≤ 𝑥 < 2

1;    𝑥 ≥ 2

   

Thus, we can immediately calculate: 

 𝑃(𝑋 ≤ 1) = 𝐹(1) = 0.64. 

𝑃(𝑋 > 0) = 1 − 𝑃(𝑋 ≤ 0) = 1 − 𝐹(0) = 1 − 0.16 = 0.84, and so on. 

For example 1.5 we have 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑
𝑖

10

𝑥
𝑖=1  ; 

Let say we want to calculate 𝑃(𝑋 ≤ 2) = 𝐹(2) = ∑
𝑖

10

2
𝑖=1 =

1

10
+

2

10
=

3

10
= 0.3. 



 215 STAT                                                           Probability I                                               Weaam Alhadlaq 

12 

 

Generally, 

X 1 2 3 4 Total 
𝑓(𝑥) 0.1 0.2 0.3 0.4 1 
𝐹(𝑥) 0.1 0.3 0.6 1  

Formally, 

𝐹(𝑥) =

{
 
 

 
 

 
  0;              𝑥 < 1  
0.1;     1 ≤ 𝑥 < 2
0.3;     2 ≤ 𝑥 < 3
0.6;     3 ≤ 𝑥 < 4
1;          𝑥 ≥ 4

  

Note that 

 
 

1.4.2 Continuous Case 

For a continuous random variable, the cumulative distribution function is the 

integral of its probability density function on the interval (−∞, 𝑥). 

𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞
  

Result 

The different Inequalities probabilities can be written by using the CDF as follow 

▪ 𝑃(𝑋 ≤ 𝑎) = 𝐹(𝑎), 

▪ 𝑃(𝑋 > 𝑎) = 1 − 𝑃(𝑋 ≤ 𝑎) = 1 − 𝐹(𝑎), 

▪ 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑋 ≤ 𝑏) − 𝑃(𝑋 ≤ 𝑎) = 𝐹(𝑏) − 𝐹(𝑎). 

Also, 

 

 

Example 1.9 

Return to Examples 1.6,1.7. Find the distribution function CDF for the r.v. X. 

Solution 
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For example 1.6 we have 

𝐹(𝑥) = ∫ 2𝑥 𝑑𝑥
𝑥

0
= 𝑥2;     0 < 𝑥 < 1, 

Formally, 

𝐹(𝑥) = {
0;        𝑥 < 0

𝑥2;  0 ≤ 𝑥 < 1
1;        𝑥 ≥ 1

.  

Now, we can immediately calculate the probabilities on the form 𝑃(𝑋 < 𝑥) or 

𝑃(𝑋 ≤ 𝑥), such as 

𝑃(𝑋 < 0.5) = 𝐹(0.5) = 0.52 = 0.25, 

𝑃(𝑋 < 3) = 1, 

𝑃(𝑋 < −2) = 0. 

For example 1.7 we have 

𝐹(𝑥) = ∫ 𝑒−𝑥 𝑑𝑥
𝑥

0
= −[𝑒−𝑥 − 𝑒0] = 1 − 𝑒−𝑥;     𝑥 > 0, 

Formally, 

𝐹(𝑥) = {
            0;                𝑥 < 0
1 − 𝑒−𝑥;                𝑥 ≥ 0

. 

Now, let find 𝑃(𝑋 < 4) = 𝐹(4) = 1 − 𝑒−4 = 0.9817, 

𝑃(0.25 < 𝑋 < 0.5) = 𝐹(0.5) − 𝐹(0.25) = 1 − 𝑒−0.5 − (1 − 𝑒−0.25) = 0.1723. 
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Chapter Two                                                                    

Mathematical Expectation,  Moments  and  Moment 

Generating Function 

2.1 Mathematical Expectation 

In this section, we learn a general definition of mathematical expectation, as well as 

some specific mathematical expectations, such as the mean and variance. 

2.1.1 Expected value of a random variable 

For a random variable X, the expected value (mean, average, a predicted value of a 

variable) is denoted 𝐸(𝑋), 𝜇𝑋 or 𝜇. 

Discrete case 

If 𝑓(𝑥) is the pmf of the discrete random variable X, then the expected value of X is  

𝜇 = 𝐸(𝑋) = ∑ 𝑥 𝑓(𝑥)𝑥 = ∑ 𝑥 𝑃(𝑋 = 𝑥)𝑥 . 

Continuous case 

If 𝑓(𝑥) is the pdf of the continuous random variable X, then the expected value of X 

is                                                 𝐸(𝑋) = ∫ 𝑥 𝑓(𝑥)𝑑𝑥
∞

−∞
. 

Note: although the integral is written with lower limit −∞ and upper limit ∞, the 

interval of integration is the interval of non-zero-density for X. 

Example 2.1 

Compute the expected values of the r.v.’s which presented in Examples 1.4 & 1.6. 

Solution 

For Example 1.4, the expected value is calculated by 𝐸(𝑋) = ∑ 𝑥 𝑓(𝑥)𝑥 . Thus, 

X -3 -2 -1 0 1 2 3 Total 
𝑓(𝑥) 1/16   2/16 3/16 4/16 3/16 2/16  1/16 1 
𝑥𝑓(𝑥) -3/16 -4/16 -3/16 0 3/16 4/16 3/16 𝐸(𝑋) = 0 

For Example 1.6, the pmf is 𝑓 (𝑥) =
𝑥

10
;  𝑥 =  1, 2, 3, 4. Then 

𝐸(𝑋) = ∑ 𝑥 𝑓(𝑥)𝑥 = 1. 𝑓(1) + 2. 𝑓(2) + 3. 𝑓(3) + 4. 𝑓(4). 

= 0.1 + 0.4 + 0.9 + 1.6 = 3. 
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Example 2.2 

Compute the expected values of the r.v.’s which presented in Examples 1.7&1.8. 

Solution 

For Example 1.7, the pdf is 𝑓(𝑥) = 2𝑥;       0 < 𝑥 < 1. Thus, 

𝐸(𝑋) = ∫ 𝑥 𝑓(𝑥)𝑑𝑥
∞

−∞
= ∫ 𝑥 (2𝑥)𝑑𝑥

1

0
=

2

3
. 

For Example 1.8, the pdf is 𝑓(𝑥) = 𝑒−𝑥;     𝑥 > 0. Hence, 

𝐸(𝑋) = ∫ 𝑥 𝑒−𝑥𝑑𝑥
∞

0
  

Use integration by parts:  

 𝑢 = 𝑥             𝑑𝑣 = 𝑒−𝑥𝑑𝑥 

𝑑𝑢 = 𝑑𝑥           𝑣 = −𝑒−𝑥 

Hence, 

𝐸(𝑋) = ∫ 𝑥 𝑒−𝑥𝑑𝑥
∞

0
= −𝑥𝑒−𝑥|0

∞ − ∫ − 𝑒−𝑥𝑑𝑥
∞

0
= 0 + ∫  𝑒−𝑥𝑑𝑥

∞

0
= −[𝑒−∞ − 𝑒0],= 1. 

Extra Example 

 

 

 
Expectation of a function 

If 𝑔 is a function, then 𝐸(𝑔(𝑋)) is equal to ∑ 𝑔(𝑥)𝑓(𝑥)𝑥  if X is a discrete random 

variable, and it is equal to ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥
∞

−∞
 if X is a continuous random variable. 

Corollary 

Let 𝑎, 𝑏 ∈ ℛ are two constants and 𝑔1, 𝑔2 are two functions of a random variable X. 

Then 

▪ 𝐸(𝑎𝑋 ± 𝑏) = 𝑎𝐸(𝑋) ± 𝑏. 

▪ 𝐸(𝑎𝑔1(𝑋) + 𝑏𝑔2(𝑋)) = 𝑎𝐸(𝑔1(𝑋)) + 𝑏𝐸(𝑔2(𝑋)). 

Corollary 
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If  𝑋1, 𝑋2, …𝑋𝑛𝑌 are 𝑛 independent r.v.’s and 𝑔1, 𝑔2, … , 𝑔𝑛 are any functions then 

𝐸[𝑔1(𝑋1) ∙ 𝑔2(𝑋2) ∙ … ∙ 𝑔𝑛(𝑋𝑛)] = 𝐸[𝑔1(𝑋1)] ∙ 𝐸[𝑔2(𝑋2)] ∙ … ∙ 𝐸[𝑔𝑛(𝑋𝑛)]. 

= ∏ 𝐸[𝑔𝑖(𝑋𝑖)]
𝑛
𝑖=1 . 

Example 2.3 

Compute the expected values of 𝑔(𝑋) = 𝑋2 − 1 and ℎ(𝑋) = 3𝑋 + 2 in Examples 1.4 

& 1.6. 

Solution 

For Example 1.4, the expected value is calculated by  

 

𝐸(𝑔(𝑋)) = 𝐸(𝑋2 − 1) = 𝐸(𝑋2) − 1. Thus, 

X -3 -2 -1 0 1 2 3 Total 
𝑓(𝑥) 1/16   2/16 3/16 4/16 3/16 2/16  1/16 1 
𝑥2𝑓(𝑥) 9/16 8/16 3/16 0 3/16 8/16 9/16 𝐸(𝑋) = 2.5 

Hence, 𝐸(𝑋2 − 1) = 2.5 − 1 = 1.5. 

Also, 𝐸(3𝑋 + 2) = 3𝐸(𝑋) + 2 = 3(0) + 2 = 2. 

For Example 1.6, the expected value is calculated by  

𝐸(𝑔(𝑋)) = 𝐸(𝑋2 − 1) = 𝐸(𝑋2) − 1 = (∑ 𝑥2𝑓(𝑥)𝑥 ) − 1, 

= 0 + 1(0.1) + 4(0.2) + 9(0.3) + 16(0.4) − 1 = 10 − 1 = 9. 

Also, 𝐸(3𝑋 + 2) = 3𝐸(𝑋) + 2 = 3(3) + 2 = 11. 

Example 2.4 

Compute the expected value of 𝑔1(𝑋) = 𝑋
2

3 in Example 1.7, and the expected value of 

𝑔2(𝑋) = 𝑋
2 + 𝑋 in Example 1.8. 

Solution 

For Example 1.7, the pdf is  𝑓(𝑥) = 2𝑥;       0 < 𝑥 < 1. Thus, 

𝐸(𝑔1(𝑋)) = 𝐸 (𝑋
2

3) = ∫ 𝑥
2

3 𝑓(𝑥)𝑑𝑥
∞

−∞
= ∫ 𝑥

2

3 (2𝑥)𝑑𝑥
1

0
= 2∫ 𝑥

5

3 𝑑𝑥
1

0
=

6

8
𝑥
8

3|0
1 =

6

8
. 

For Example 1.8, the pdf is 𝑓(𝑥) = 𝑒−𝑥;     𝑥 > 0. Hence, 

𝐸(𝑔2(𝑋)) = 𝐸(𝑋
2 + 𝑋) = 𝐸(𝑋2) + 𝐸(𝑋) = ∫ 𝑥2 𝑒−𝑥𝑑𝑥

∞

0

+ 1 

Use integration by parts:  

 𝑢 = 𝑥2             𝑑𝑣 = 𝑒−𝑥𝑑𝑥 



 215 STAT                                                           Probability I                                               Weaam Alhadlaq 

18 

 

𝑑𝑢 = 2𝑥 𝑑𝑥       𝑣 = −𝑒−𝑥 

Hence, 

𝐸(𝑋2) = ∫ 𝑥2 𝑒−𝑥𝑑𝑥
∞

0
= −𝑥2𝑒−𝑥|0

∞ − ∫ −2𝑥 𝑒−𝑥𝑑𝑥
∞

0
= 0 + ∫ 2𝑥 𝑒−𝑥𝑑𝑥

∞

0
=

2∫ 𝑥 𝑒−𝑥𝑑𝑥
∞

0
= 2𝐸(𝑋) = 2(1) = 2. 

Therefore,  𝐸(𝑔2(𝑋)) = 2 + 1 = 3. 

 

Extra Example 

 

2.1.2 Variance of a Random Variable 

The variance (which denoted by 𝑉(𝑋), 𝜎𝑋
2 or 𝜎2) is a measure of the "dispersion" of 

X about the mean. A large variance indicates significant levels of probability or 

density for points far from 𝐸(𝑋). The variance is always positive (𝜎2 ≥ 0). It is 

defined as the average of the squared differences from the Mean. Symbolically, 

𝑉(𝑋) = 𝐸[(𝑋 − 𝜇𝑋)
2] , 

This is equivalent to 

𝑉(𝑋) = 𝐸(𝑋2) − 𝜇𝑋
2 = 𝐸(𝑋2) − [𝐸(𝑋)]2. 

Where 𝐸(𝑋2) = {
∑ 𝑥2𝑓(𝑥)𝑥       𝑖𝑓 𝑋 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑟. 𝑣.

∫ 𝑥2𝑓(𝑥)
∞

−∞
    𝑖𝑓 𝑋 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑟. 𝑣.

 

The second formula is commonly used in calculations. 
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2.1.3 Standard deviation 

The standard deviation of the random variable X is the square root of the variance, 

and is denoted 𝜎𝑋 = √𝜎𝑋
2 = √𝑉(𝑋). 

Corollary 

Let 𝑎, 𝑏 ∈ ℛ are two constants. If X is a random variable with variance 𝑉(𝑥), then 

▪ 𝑉(𝑎𝑋 ± 𝑏) = 𝑎2𝑉(𝑋). 

Example 2.5 

Compute the variance and standard deviation of the r.v.’s which presented in 

Examples 1.4. Then, calculate 𝑉(𝑋 − 6). 

Solution 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 

From Example 2.1, we found that 𝐸(𝑋) = 0  

Now, let calculate 𝐸(𝑋2) 

X -3 -2 -1 0 1 2 3 Total 
𝑓(𝑥) 1/16   2/16 3/16 4/16 3/16 2/16  1/16 1 
𝑥2𝑓(𝑥) 9/16 8/16 3/16 0 3/16 8/16 9/16 𝐸(𝑋2) = 2.5 

Then, 𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 = 2.5 − 02 = 2.5, 𝜎𝑋 = √2.5 = 1.58,  

and 𝑉(𝑋 − 6) = 𝑉(𝑋) = 2.5. 

Example 2.6 

Compute the variance and standard deviation of the r.v’s which presented in 

Examples 1.7. Then, calculate 𝑉(3𝑋 − 6). 

Solution 

From Example 2.2, we found that 𝐸(𝑋) =
2

3
.  

𝐸(𝑋2) = ∫ 𝑥2𝑓(𝑥)
∞

−∞
= ∫ 𝑥2(2𝑥)𝑑𝑥

1

0
=

1

2
= 0.5. 

⇒ 𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 = 0.5 − (
2

3
)
2

= 0.0556, 𝜎𝑋 = √0.0556 = 0.2357, and  

𝑉(3𝑋 − 6) = 32𝑉(𝑋) = 9(0.5556) = 0.5. 
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Extra Example 

 
Extra Example 
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2.1.4 Mean and Variance for Linear Combination  

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 are n independent random variables with means 𝜇1, 𝜇2, … , 𝜇𝑛  

and variances 𝜎1
2, 𝜎2

2, … , 𝜎𝑛
2. Then, the mean and variance of the linear combination 

𝑌 = ∑ 𝑎𝑖𝑋𝑖
𝑛
𝑖=1 , where 𝑎1,  𝑎2, … , 𝑎𝑛 are real constants are: 

𝜇𝑌 = 𝐸(𝑌) =∑ 𝑎𝑖𝜇𝑖 
𝑛

𝑖=1
= 𝑎1𝐸(𝑋1) + 𝑎2𝐸(𝑋2) + ⋯+ 𝑎𝑛𝐸(𝑋𝑛) 

→ no need to check the independent for the random variables. 

and 

𝜎𝑌
2 = 𝑉(𝑋) = ∑ 𝑎𝑖

2𝜎𝑖
2 𝑛

𝑖=1 = 𝑎1
2𝑉(𝑋1) + 𝑎2

2𝑉(𝑋2) + ⋯+ 𝑎𝑛
2𝑉(𝑋𝑛)  

→ need to check the independent for the random variables. 

respectively. 

2.1.5 Chebyshev's inequality 

If X is a random variable with mean 𝜇 and standard deviation 𝜎, then for any real number 

𝑘 > 0, 

𝑃[|𝑋 − 𝜇| > 𝑘𝜎] ≤
1

𝑘2
 

≡  𝑃(𝜇 − 𝑘𝜎 < 𝑋 < 𝜇 − 𝑘𝜎) ≥ 1 −
1

𝑘2
 

 

Example 2.7 

 Let Y be the outcome when a single and fair die is rolled. If 𝐸(𝑌) = 3.5 and 𝑉(𝑌) =

2.9. Evaluate 𝑃 (|𝑌 − 3.5| ≥ 2.5). 

Solution 

Since the distribution is unknown, we cannot compute the exact value of the 

probability. To estimate the probability we will use Chebyshev's inequality. 

𝑘𝜎 = 2.5 ⇒ 1.7 𝑘 = 2.5 ⇒ 𝑘 = 1.47. Thus, 

𝑃 (|𝑌 − 3.5| ≥ 2.5) ≤
1

(1.47)2
= 0.463. 
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Example 2.8 

Toss 100 coins and let X count the number of heads where 𝐸(𝑋) = 50, 𝑉(𝑋) = 25. 

Estimate the probability that 40 ≤ X ≤ 60. 

Solution 

To estimate the probability we will use Chebyshev's inequality. 

60 = 𝜇 + 𝜎𝑘 ⇒  60 = 50 + 5𝑘  ⇒ 10 = 5𝑘 ⇒ 𝑘 = 2. 

𝑃(40 < 𝑋 < 60) ≥ 1 −
1

22
= 0.75. 

2.2 Central Moments and Raw Moments  

2.2.1 Central Moments  

The rth central moment of a random variable X (moment about the mean 𝜇) denoted 

by 𝜇𝑟 is the expected value of (𝑋 − 𝜇)𝑟; symbolically,   

𝜇𝑟 = 𝐸[(𝑋 − 𝜇)
𝑟]        𝑓𝑜𝑟        𝑟 =  0, 1, 2, … . 

Therefore, 

▪ 𝜇0 = 𝐸[(𝑋 − 𝜇)
0] = 𝐸(1) = 1. 

▪ The first central moment 𝜇1 = 𝐸[(𝑋 − 𝜇)] = 𝐸(𝑋) − 𝜇 = 0. 

▪ The second central moment 𝜇2 = 𝐸[(𝑋 − 𝜇)
2] = 𝑉(𝑋) = 𝜎2 (The Variance). 

⋮ 

2.2.2 Raw Moments  

The rth moment about the origin of a random variable X, denoted by 𝜇𝑟
′  , is the 

expected value of 𝑋𝑟; symbolically, 

𝜇𝑟
′ = 𝐸(𝑋𝑟)        𝑓𝑜𝑟        𝑟 =  0, 1, 2, … . 

Therefore, 

▪ 𝜇0
′ = 𝐸(𝑋0) = 𝐸(1) = 1. 

▪ The first raw moment 𝜇1
′ = 𝐸(𝑋) = 𝜇 (The expected value of X). 

▪ The second raw moment 𝜇2
′ = 𝐸(𝑋2). 

⋮ 

Notes 

▪ It is known that  V(X) = E(X2) − [E(X)]2, thus 𝜇2 = 𝜇2
′ − 𝜇1

′ 2. 
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▪ Henceforth, the term "moments" will be indicate to "raw moments". 

2.3 Moment Generating Function 

If 𝑋 is a random variable, then its moment generating function (MGF) denoted by 

𝑀𝑋(𝑡) or 𝑀(𝑡) is defined as 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) =

{
 
 

 
   ∑𝑒𝑡𝑥𝑓(𝑥)

𝑥

         if  𝑋 is a discrete 𝑟. 𝑣      

  ∫ 𝑒𝑡𝑥 𝑓(𝑥)𝑑𝑥
∞

−∞

   if  𝑋 is a continuous 𝑟. 𝑣

 

We say that MGF of X exists, if there exists a positive constant h such that 𝑀𝑋(𝑡) is 

finite for all 𝑡 ∈ [−ℎ, ℎ]. 

Notes 

▪ We always have 𝑀𝑋(0) = 𝐸[𝑒
0𝑋] = 1. 

▪ There are some cases where MGF does not exist. 

Example 2.9 

For each of the following random variables, find the MGF. 

I. X is a discrete random variable, with pmf 

𝑓(𝑥) = {

1

3
   ,    𝑥 = 1

2

3
   ,    𝑥 = 2

 . 

Solution 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) = ∑ 𝑒𝑡𝑥𝑓(𝑥)2

𝑥=1 = 𝑒𝑡(1)𝑓(1) + 𝑒𝑡(2)𝑓(2) =
1

3
𝑒𝑡 +

2

3
𝑒2𝑡 . 

II. Y is a random variable, with pdf 

𝑓(𝑦) = 1 ,   0 < 𝑦 < 1 

Solution 

𝑀𝑌(𝑡) = 𝐸(𝑒𝑡𝑌) = ∫ 𝑒𝑡𝑦𝑓(𝑦)
1

0
𝑑𝑦 = ∫ 𝑒𝑡𝑦𝑑𝑦

1

0
=

𝑒𝑡𝑦

𝑡
|0
1 =

𝑒𝑡−𝑒0

𝑡
=

𝑒𝑡−1

𝑡
. 

Why is the MGF useful? 

There are basically two reasons for this: 

▪ First, the MGF of X gives us all moments of X. That is why it is called the 

moment generating function. 
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▪ Second, the MGF (if it exists) uniquely determines the distribution. That is, if 

two random variables have the same MGF, then they must have the same 

distribution. Thus, if you find the MGF of a random variable, you have indeed 

determined its distribution. 

2.3.1 Finding Moments from MGF 

Remember the Taylor series for 𝑒𝑥: for all 𝑥 ∈ 𝑅, we have 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+⋯ = ∑

𝑥𝑘

𝑘!

∞
𝑘=0 . 

Now, we can write 

𝑒𝑡𝑋 = ∑
(𝑡𝑋)𝑘

𝑘!

∞
𝑘=0 = ∑

𝑡𝑘𝑥𝑘

𝑘!

∞
𝑘=0 = 1 + 𝑡𝑥 +

𝑡2𝑥2

2!
+
𝑡3𝑥3

3!
+⋯. 

Thus, we have 

𝑀𝑋(𝑡) = 𝐸[𝑒
𝑡𝑋] = ∑ 𝐸(𝑋𝑘) 

𝑡𝑘

𝑘!

∞
𝑘=0 = 1 + 𝐸(𝑋)𝑡 + 𝐸(𝑋2)

𝑡2

2!
+ 𝐸(𝑋3)

𝑡3

3!
+⋯ . 

Proposition 

The rth moment about the origin can be found by evaluating the rth derivative of the 

moment generating function at t = 0. That is 

𝑑𝑟

𝑑𝑡𝑟
𝑀(𝑡)|𝑡=0 = 𝑀𝑟(0) = 𝐸(𝑋𝑟) = 𝜇𝑟

′   

Example 2.10 

Let X be a r.v. with MGF 𝑀𝑋(𝑡) = (
1

3
𝑒𝑡 +

2

3
)
10

.Drive the first and the second 

moments of X. 

Solution 

By using the previous proposition we can find the moments as follow 

▪ The first moment is 

 𝐸(𝑋) = 𝜇 =
𝑑

𝑑𝑡
𝑀(𝑡)|𝑡=0 =

𝑑

𝑑𝑡
(
1

3
𝑒𝑡 +

2

3
)
10
|𝑡=0 = 10 (

1

3
𝑒𝑡 +

2

3
)
9

(
1

3
𝑒𝑡) |𝑡=0    

=
10

3
(
1

3
+
2

3
)
9

=
10

3
= 3.33.   

▪ The second moment is 

 𝐸(𝑋2) = 𝜇2
′ =

𝑑2

𝑑𝑡2
𝑀(𝑡)|𝑡=0 =

𝑑2

𝑑𝑡2
(
1

3
𝑒𝑡 +

2

3
)
10
|𝑡=0 =

𝑑

𝑑𝑡
10 (

1

3
𝑒𝑡 +

2

3
)
9

(
1

3
𝑒𝑡) |𝑡=0  

= [90 (
1

3
𝑒𝑡 +

2

3
)
8

(
1

3
𝑒𝑡)

2

+ 10 (
1

3
𝑒𝑡 +

2

3
)
9

(
1

3
𝑒𝑡)] |𝑡=0 =

90

9
+
10

3
= 13.33.  
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Example 2.11 

Let X be a r.v. with MGF 𝑀𝑋(𝑡) = (1 − 2𝑡)
−
1

2 .Drive the Mean (expected value) and 

the standard deviation of X. 

Solution 

▪ The mean is 

𝐸(𝑋) = 𝜇 =
𝑑

𝑑𝑡
𝑀(𝑡)|𝑡=0 =

𝑑

𝑑𝑡
(1 − 2𝑡)−

1

2|𝑡=0 = −
1

2
(1 − 2𝑡)−

3

2(−2)|𝑡=0 = 1. 

▪ The variance is 

𝑉(𝑋) = 𝐸(𝑋2) − 𝜇2 

𝐸(𝑋2) =
𝑑2

𝑑𝑡2
𝑀(𝑡)|𝑡=0 =

𝑑

𝑑𝑡
(1 − 2𝑡)−

3

2|𝑡=0 = −
3

2
(1 − 2𝑡)−

5

2(−2)|𝑡=0 =

3(1 − 2𝑡)−
5

2|𝑡=0 = 3. 

𝑉(𝑋) = 𝐸(𝑋2) − 𝜇2 ⇒ 𝑉(𝑋) = 3 − 12 = 2. 

Hence, the standard deviation is 𝜎𝑋 = √2 = 1.41. 

Example 2.12 

Find the MGF of the r.v. X, then use it to find the first four moments. Where 

𝑓(𝑥) =
𝑥

2
;     0 < 𝑥 < 2 

Solution 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) = ∫

𝑥𝑒𝑡𝑥

2
 𝑑𝑥

2

0
. 

Use integration by parts:  

 𝑢 =
𝑥

2
             𝑑𝑣 = 𝑒𝑡𝑥𝑑𝑥 

𝑑𝑢 =
1

2
𝑑𝑥           𝑣 =

𝑒𝑡𝑥

𝑡
. 

Hence, 

𝑀𝑋(𝑡) =
𝑥𝑒𝑡𝑥

2𝑡
|0
2 − ∫

𝑒𝑡𝑥

2𝑡
𝑑𝑥

2

0
=

𝑒2𝑡

𝑡
−

𝑒𝑡𝑥

2𝑡2
|0
2 =

𝑒2𝑡

𝑡
−

𝑒2𝑡

2𝑡2
+

1

2𝑡2
., 

Since the derivative of 𝑀𝑋(𝑡) does not exist at 𝑡 = 0, we will use the Taylor series 

form. Thus, we have to put the MGF on the form 

𝑀𝑋(𝑡) = 1 + 𝐸(𝑋)𝑡 + 𝐸(𝑋
2)

𝑡2

2!
+ 𝐸(𝑋3)

𝑡3

3!
+⋯. 

We have 

𝑀𝑋(𝑡) =
1

2𝑡2
+
𝑒2𝑡

𝑡
−

𝑒2𝑡

2𝑡2
=

1

2𝑡2
+
(2𝑡−1)

2𝑡2
𝑒2𝑡. 

=
1

2𝑡2
+
(2𝑡−1)

2𝑡2
[1 + 2𝑡 + 22𝑡2 + 23𝑡3 + 24𝑡4 + 25𝑡5 + 26𝑡6 +⋯ ]. 
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=
1

2𝑡2
+
(2𝑡−1)

2𝑡2
+
(2𝑡−1)

𝑡
+
2(2𝑡−1)

2!
+
22𝑡(2𝑡−1)

3!
+
23𝑡2(2𝑡−1)

4!
+
24𝑡3(2𝑡−1)

5!
+
25𝑡4(2𝑡−1)

6!
+⋯. 

=
1

2𝑡2
+
1

𝑡
−

1

2𝑡2
+ 2 −

1

𝑡
+ 2𝑡 − 1 +

23𝑡2

3!
−
22𝑡

3!
+
24𝑡3

4!
−
23𝑡2

4!
++

25𝑡4

5!
−
24𝑡3

5!
+
26𝑡5

6!
−

25𝑡4

6!
+⋯. 

= 1 + (2 −
22

3!
) 𝑡 + (

23

3!
−
23

4!
) 𝑡2 + (

24

4!
−
24

5!
) 𝑡3 + (

25

5!
−
25

6!
) 𝑡4 +⋯. 

= 1 +
4

3
𝑡 + (

23

3
−

23

12
)
𝑡2

2!
+ (

24

4
−

24

20
)
𝑡3

3!
+ (

25

5
−

25

30
)
𝑡4

4!
+⋯. 

= 1 +
4

3
𝑡 + 2

𝑡2

2!
+ (

24

5
)
𝑡3

3!
+ (

24

3
)
𝑡4

4!
+⋯. 

Therefore, by comparing with the Taylor form the first four moments are 

𝐸(𝑋) =
4

3
;   𝐸(𝑋2) = 2;   𝐸(𝑋3) =

24

5
=

16

5
;    𝐸(𝑋4) =

24

3
=

16

3
. 

2.3.2 Moment Generating Function for Linear Combination  

Theorem 

Suppose 𝑋1,  𝑋2, … , 𝑋𝑛 are 𝑛 independent random variables, and the random variable 

Y is defined as  𝑌 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛; Then 

𝑀𝑌(𝑡) = 𝑀𝑋1+𝑋2+⋯+𝑋𝑛
(𝑡) = 𝑀𝑋1(𝑡)𝑀𝑋2(𝑡) …𝑀𝑋𝑛(𝑡) 

Proof 

𝑀𝑌(𝑡) = 𝐸[𝑒
𝑡𝑌] = 𝐸[𝑒𝑡(𝑋1+𝑋2+⋯+𝑋𝑛)] = 𝐸[𝑒𝑡𝑋1𝑒𝑡𝑋2…𝑒𝑡𝑋𝑛] 

= 𝐸[𝑒𝑡𝑋1]𝐸[𝑒𝑡𝑋2] …𝐸[𝑒𝑡𝑋𝑛]  (since 𝑋𝑖′𝑠 are independent) 

= 𝑀𝑋1
(𝑡)𝑀𝑋2

(𝑡) …𝑀𝑋𝑛(𝑡). 

Special cases 

▪ If X and Y are two independent r.v.’s (n=2), then 𝑀𝑋+𝑌(𝑡) = 𝑀𝑋(𝑡)𝑀𝑌(𝑡).  

▪ If X and Y are i.i.d.  r.v.’s (independent identically distributed), then 

𝑀𝑋+𝑌(𝑡) = [𝑀(𝑡)]
2; where 𝑀(𝑡) is the common MGF. 

Proposition 

If X is any random variable and 𝑌 = 𝑎 + 𝑏𝑋, then 

𝑀𝑌(𝑡) = 𝑒
𝑎𝑡𝑀𝑋(𝑏𝑡) 

▪ In particular, if   𝑍 =
𝑋−𝜇

𝜎
 ; then 𝑀𝑍(𝑡) = 𝑒−

𝜇

𝜎𝑀𝑋 (
𝑡

𝜎
). 
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Proof 

𝑀𝑌(𝑡) = 𝐸(𝑒
𝑡𝑌) = 𝐸(𝑒𝑡(𝑎+𝑏𝑋)) = 𝐸(𝑒𝑎𝑡+𝑏𝑡𝑋) = 𝐸(𝑒𝑎𝑡. 𝑒𝑏𝑡𝑋) 

= 𝑒𝑎𝑡𝐸(𝑒𝑏𝑡𝑋)      (𝑒𝑎𝑡 is a constant) 

= 𝑒𝑎𝑡𝑀𝑋(𝑏𝑡)       (from MGF definition). 

Example 2.13 

Let X be a discrete random variable with values in {0, 1, 2,…} and moment 

generating function 𝑀(𝑡) =
3

3−𝑡
. Find, in terms of 𝑀(𝑡), the generating functions for 

I. 𝑌 = 3𝑋 + 7 

Solution 

𝑴𝒀(𝒕) = 𝒆𝟕𝒕𝑴𝑿(𝟑𝒕) = 𝒆
𝟕𝒕 (

𝟑

𝟑−𝟑𝒕
) = 𝒆𝟕𝒕(𝟏 − 𝒕)−𝟏. 

II. 𝑊 = −𝑋 

Solution 

𝑴𝑾(𝒕) = 𝑴𝑿(−𝒕) =
𝟑

𝟑+𝒕
. 

Example 2.14 

Let X and Y are two independent random variables. Find the MGF for 𝑍 = 𝑋 + 𝑌, if  

I. 𝑀𝑋(𝑡) =
𝑒𝑡−1

𝑡
 , 𝑀𝑌(𝑡) =

1

1−4𝑡
. 

Solution 

𝑴𝒁(𝒕) = 𝑴𝑿(𝒕)𝑴𝒀(𝒕) = (
𝑒𝑡−1

𝑡
) ( 

1

1−4𝑡
) =

𝑒𝑡−1

𝑡(1−4𝑡)
. 

II. 𝑀𝑋(𝑡) = 𝑀𝑌(𝑡) = 𝑀(𝑡) =
1

4
+
3

4
𝑒𝑡. 

Solution 

𝑴𝒁(𝒕) = [𝑴(𝒕)]
𝟐 = (

𝟏

𝟒
+
𝟑

𝟒
𝒆𝒕)

𝟐

. 
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Chapter Three                                                                                  

Frequently Used Discrete Probability Distributions 

Distributions to be Covered 

▪ Discrete uniform distribution. 

▪ Bernoulli distribution. 

▪ Binomial distribution. 

▪ Geometric distribution. 

▪ Negative binomial distribution. 

▪ Hypergeometric distribution. 

▪ Poisson distribution. 

3.1 Discrete Uniform Distribution 

The discrete uniform distribution is also known as the "equally likely outcomes" 

distribution.  

A random variable X has a discrete uniform distribution if each of the k values in its 

range, say 𝑥1 , 𝑥2 , . . . , 𝑥𝑘, has equal probability. Then,  

𝑓(𝑥) = 𝑓(𝑥; 𝑘) = {
1

𝑘
;     𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑘

0;               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,  

where k is a constant. 

Parameter of the Distribution: 𝑘 ∈ ℕ+ (number of outcomes of the experiment). 

Mean and Variance 

Suppose X is a discrete uniform random variable on the consecutive integers 𝑎, 𝑎 +

1, 𝑎 + 2,… , 𝑏 for a ≤ b. The mean and the variance of X are  

𝐸(𝑋) = 𝜇 =
𝑏+𝑎

2
,  

𝑉(𝑋) = 𝜎2 =
(𝑏−𝑎+1)2−1

12
  

Note 

If you compute the mean and variance by their definitions, you will get the same 

answer. 
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Example 3.1 

Let X represent a random variable taking on the possible values of {0, 1, 2, 3, 4, 5, 6, 

7, 8, 9}, and each possible value has equal probability. Find the distribution of X. 

Then, calculate the mean and the variance. 

Solution 

X has a discrete uniform distribution, thus 

𝒇(𝒙) =
𝟏

𝟏𝟎
;   𝒙 = 𝟎, 𝟏, … , 𝟗. 

Therefore, 𝑬(𝑿) =
𝟗+𝟎

𝟐
= 𝟒. 𝟓  and 𝑽(𝑿) =

(𝟗−𝟎+𝟏)𝟐−𝟏

𝟏𝟐
= 8.25. 

3.2 Bernoulli Distribution 

Bernoulli trial It is a trial has only two outcomes, denoted by S for success and F for 

failure with 𝑃(𝑆)  =  𝑝 and 𝑃(𝐹) = 𝑞 =  1 −  𝑝.  

Suppose that X is a r.v. representing the number of successes (x = 0 or 1). Therefore, 

X has a Bernoulli distribution (𝑋~𝐵𝑒𝑟(𝑝)) and its pmf  is given by 

𝑓(𝑥) = 𝑓(𝑥; 𝑝) = {
𝑝𝑥𝑞1−𝑥;        𝑥 = 0,1.
0;               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Parameter of the Distribution: 0 ≤ 𝑝 ≤ 1 (probability of success). 

Mean and Variance 

If  X is a discrete random variable has Bernoulli distribution with parameter p then, 

𝐸(𝑋) = 𝜇 = 𝑝   and    𝑉(𝑥) = 𝜎2 = 𝑝𝑞. 

Example 3.2 

Let 𝑋~𝐵𝑒𝑟(0.6). Find the mean and the standard deviation 

Solution 

𝑝 = 0.6 ⇒ 𝑞 = 1 − 0.6 = 0.4 . 

𝐸(𝑋) = 𝑝 = 0.6 and 𝑉(𝑋) = 𝑝𝑞 = (0.6)(0.4) = 0.24 ⇒  𝜎 = 0.49. 

3.3 Binomial Distribution 

If we perform a random experiment by repeating n independent Bernoulli trials 

where the probability of successes is p, then the random variable X representing the 

number of successes in the n trials has a binomial distribution (𝑋~𝐵𝑖𝑛(𝑛, 𝑝)). The 
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possible values for binomial random variable X depends on the number of Bernoulli 

trials independently repeated, and is {0, 1, 2, . . . , n}. Thus, the pmf of X is given by 

𝑓(𝑥) = 𝑓(𝑥; 𝑛, 𝑝) = {
(𝑛
𝑥
)𝑝𝑥𝑞𝑛−𝑥;        𝑥 = 0,1, … , 𝑛.

0;                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
, 

where (𝑛
𝑥
) =

𝑛!

𝑥!(𝑛−𝑥)!
. 

Parameters of the Distribution: 𝑛 ∈ ℕ+ (number of trails or sample size) and 0 ≤

𝑝 ≤ 1 (probability of success). 

Characteristics of Binomial Distribution 

1. There is a fixed number, n, of identical trials. 

2.  The trials are independent of each other. 

3.  For each trial, there are only two possible outcomes (success/failure). 

4. The probability of success, p, remains the same for each trial (constant). 

Mean and Variance 

If  X is a discrete random variable has binomial distribution with parameters n, p 

then, 

𝐸(𝑋) = 𝜇 = 𝑛𝑝  and 𝑉(𝑥) = 𝜎2 = 𝑛𝑝𝑞. 

Proof 

I. 𝑬(𝑿) = 𝒏𝒑. 

𝐸(𝑋) = ∑ 𝑥𝑓(𝑥)𝑛
𝑥=0 = ∑ 𝑥(𝑛

𝑥
)𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=0   

= ∑ 𝑥(𝑛
𝑥
)𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=1  (Set summation from 1, since when 𝑥 = 0 the expression= 0) 

= ∑ 𝑥 ∙
𝑛!

𝑥!(𝑛−𝑥)!
𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=1 = ∑ 𝑥 ∙
𝑛(𝑛−1)!

𝑥(𝑥−1)!(𝑛−𝑥)!
𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=1   

= 𝑛∑
(𝑛−1)!

(𝑥−1)!(𝑛−𝑥)!
𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=1   

= 𝑛𝑝∑
(𝑛−1)!

(𝑥−1)!(𝑛−𝑥)!
𝑝𝑥−1𝑞𝑛−𝑥𝑛

𝑥=1        (Assume 𝑌 = 𝑋 − 1 ⇒ 𝑋 = 𝑌 + 1) 

= 𝑛𝑝∑
(𝑛−1)!

𝑦!(𝑛−(𝑦+1))!
𝑝𝑦𝑞𝑛−(𝑦+1)𝑛−1

𝑦=0 = 𝑛𝑝∑
(𝑛−1)!

𝑦!(𝑛−𝑦−1)!
𝑝𝑦𝑞𝑛−𝑦−1𝑛−1

𝑦=0   

= 𝑛𝑝∑ (𝑛−1
𝑦
) 𝑝𝑦𝑞(𝑛−1)−𝑦𝑛−1

𝑦=0             (Assume 𝑚 = 𝑛 − 1) 

= 𝑛𝑝∑ (𝑚
𝑦
) 𝑝𝑦𝑞𝑚−𝑦𝑚

𝑦=0 = 𝑛𝑝 (1) = 𝑛𝑝.               
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(The part (𝑚
𝑦
) 𝑝𝑦𝑞𝑚−𝑦 is a binomial pmf for y successes in m trails. Hence, the 

summation= 1). 

II.  𝑽(𝑿) = 𝒏𝒑𝒒. 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 = 𝐸(𝑋2) − [𝑛𝑝]2 = 𝐸(𝑋2) − 𝑛2𝑝2   

= 𝐸(𝑋2 − 𝑋 + 𝑋) − 𝑛2𝑝2     (Add and subtract X)  

= 𝐸(𝑋2 − 𝑋) + 𝐸(𝑋) − 𝑛2𝑝2 = 𝐸(𝑋2 − 𝑋) + 𝑛𝑝 − 𝑛2𝑝2.   

Now, let’s simplify the part 𝐸(𝑋2 − 𝑋): 

𝐸(𝑋2 − 𝑋) = 𝐸(𝑋(𝑋 − 1)) = ∑ 𝑥(𝑥 − 1)𝑓(𝑥)𝑛
𝑥=0 = ∑ 𝑥(𝑥 − 1)(𝑛

𝑥
)𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=0   

= ∑ 𝑥(𝑥 − 1)(𝑛
𝑥
)𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=2  (Set summation from 2, since when 𝑥 = 0,1 the expression= 0) 

= ∑ 𝑥(𝑥 − 1) ∙
𝑛!

𝑥!(𝑛−𝑥)!
𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=2 = ∑ 𝑥(𝑥 − 1) ∙
𝑛(𝑛−1)(𝑛−2)!

𝑥(𝑥−1)(𝑥−2)!(𝑛−𝑥)!
𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=2   

= 𝑛(𝑛 − 1)∑
(𝑛−2)!

(𝑥−2)!(𝑛−𝑥)!
𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=2   

= 𝑛(𝑛 − 1)𝑝2∑
(𝑛−2)!

(𝑥−2)!(𝑛−𝑥)!
𝑝𝑥−2𝑞𝑛−𝑥𝑛

𝑥=2        (Assume 𝑍 = 𝑋 − 2 ⇒ 𝑋 = 𝑍 + 2) 

= 𝑛(𝑛 − 1)𝑝2∑
(𝑛−2)!

𝑧!(𝑛−(𝑧+2))!
𝑝𝑧𝑞𝑛−(𝑧+2)𝑛−2

𝑧=0   

= 𝑛(𝑛 − 1)𝑝2∑
(𝑛−2)!

𝑧!(𝑛−𝑧−2)!
𝑝𝑧𝑞𝑛−𝑧−2𝑛−2

𝑧=0   

= 𝑛(𝑛 − 1)𝑝2∑ (𝑛−2
𝑧
)𝑝𝑧𝑞(𝑛−2)−𝑧𝑛−2

𝑧=0             (Assume 𝑘 = 𝑛 − 2) 

= 𝑛(𝑛 − 1)𝑝2∑ (𝑘
𝑧
)𝑝𝑧𝑞𝑘−𝑧𝑘

𝑧=0 = 𝑛(𝑛 − 1)𝑝2 (1) = 𝑛(𝑛 − 1)𝑝2.               

(The part (𝑘
𝑧
)𝑝𝑧𝑞𝑘−𝑧 is a binomial pmf for z successes in k trails. Hence, the 

summation = 1). 

Therefore, 

𝑉(𝑋) = 𝐸(𝑋2 − 𝑋) + 𝑛𝑝 − 𝑛2𝑝2 = 𝑛(𝑛 − 1)𝑝2 + 𝑛𝑝 − 𝑛2𝑝2 

= 𝑛2𝑝2 − 𝑛𝑝2 + 𝑛𝑝 − 𝑛2𝑝2 = 𝑛𝑝 − 𝑛𝑝2 = 𝑛𝑝(1 − 𝑝) = 𝑛𝑝𝑞. 

Moment Generating Function  

If  X is a discrete random variable has binomial distribution with parameters n, p 

then, the MGF of X is 

𝑀𝑋(𝑡) = (𝑝𝑒
𝑡 + 𝑞)𝑛 

Proof 

Hint: The binomial formula gives ∑ (𝑛
𝑥
)𝑢𝑥𝑣𝑛−𝑥𝑛

𝑥=0 = (𝑢 + 𝑣)𝑛. 
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𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑥) = ∑ 𝑒𝑡𝑥𝑓(𝑥)𝑛

𝑥=0 = ∑ 𝑒𝑡𝑥(𝑛
𝑥
)𝑝𝑥𝑞𝑛−𝑥𝑛

𝑥=0 = ∑ (𝑛
𝑥
)(𝑝𝑒𝑡)𝑥𝑞𝑛−𝑥𝑛

𝑥=0   

= (𝑝𝑒𝑡 + 𝑞)𝑛. 

Note 

The Bernoulli distribution is a special case of the binomial distribution when 𝑛 = 1. 

Example 3.3 

Suppose 40% of a large population of registered voters favor the candidate Obama. 

A random sample of 𝑛 = 5 voters will be selected, and X, the number favoring 

Obama out of 5, is to be observed. What is the probability of getting no one who 

favors Obama (i.e. 𝑃(𝑋 =  0))?. Then compute the mean and the variance. 

Solution 

𝑛 = 5, 𝑝 =
40

100
= 0.4 ⇒ 𝑞 = 0.6. 

𝑋~𝐵𝑖𝑛(5,0.4) 

𝑓(𝑥) = (
5

𝑥
) (0.4)𝑥(0.6)5−𝑥; 𝑥 = 0,1,2,3,4,5. 

Hence,  

𝑃(𝑋 =  0) = 𝑓(0) = (5
0
)(0.4)0(0.6)5 = 0.0778. 

𝐸(𝑋) = 𝑛𝑝 = 5(0.4) = 2. 

𝑉(𝑋) = 𝑛𝑝𝑞 = 5(0.4)(0.6) = 1.2. 

Example 3.4 

If  the MGF of the r.v. X is 𝑀𝑋(𝑡) = (0.8 + 0.2𝑒𝑡)4. Find 𝑃(𝑋 ≤ 3), 𝑃(−1 < 𝑋 < 2) 

and the mean. 

Solution 

The MGF is on the form (𝑝𝑒𝑡 + 𝑞)𝑛, thus, 𝑋~𝐵𝑖𝑛(4,0.2). So, the possible values of X 

are 0,1,2,3,4. 

Therefore,  

▪ 𝑃(𝑋 ≤ 3) = 𝑓(0) + 𝑓(1) + 𝑓(2) + 𝑓(3) = 1 − 𝑓(4) = 1 − (4
4
)(0.2)4(0.8)0  

= 1 − 0.0016 = 0.9984.  

▪ 𝑃(−1 < 𝑋 < 2) = 𝑓(0) + 𝑓(1) = (4
0
)(0.2)0(0.8)4 + (4

1
)(0.2)1(0.8)3  

= 0.4096 + 0.4096 = 0.8192.  

▪ 𝐸(𝑋) = 4(0.2) = 0.8. 
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3.4 Geometric Distribution 

A single trial of an experiment results in either success with probability 𝑝, or failure 

with probability 𝑞 = 1 − 𝑝. The experiment is performed with successive 

independent trials until the first success occurs. If X represents the number of trails 

until the first success, then X is a discrete random variable that can be 1,2,3, …. X is 

said to have a geometric distribution with parameter 𝑝 (𝑋~𝐺𝑒𝑜𝑚(0.01)) and its pmf  

is given by 

𝑓(𝑥) = 𝑓(𝑥; 𝑝) = {
𝑝𝑞𝑥−1;   𝑥 = 1,2, …
0;            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

Parameter of the Distribution: 0 ≤ 𝑝 ≤ 1  (probability of success). 

Characteristics of Geometric Distribution 

1. The outcome of each trial is Bernoulli, that is either a success(S) or failure(F). 

2. The Probability of success is constant 𝑃(𝑆) = 𝑝. 

3. The trials are repeated until ‘one’ successes occur. 

For example 

▪ A coin is tossed until a head is obtained.  

▪  From now we count the no. of days until we get a rainy day. 

Mean and Variance 

If  X is a discrete random variable has geometric distribution with parameter p then, 

𝐸(𝑋) = 𝜇 =
1

𝑝
  and 𝑉(𝑥) = 𝜎2 =

1−𝑝

𝑝2
=

𝑞

𝑝2
. 

Proof 

Hint  

Let 𝑖 ∈ ℛ: |𝑖| < 1. 

▪ ∑ 𝑛𝑖𝑛−1∞
𝑛=1 = 1 + 2𝑖 + 3𝑖2 +⋯ =

1

(1−𝑖)2
. 

▪ ∑ 𝑛(𝑛 + 1)𝑖𝑛−1∞
𝑛=1 =

2

(1−𝑖)3
. 

I. 𝑬(𝑿) =
𝟏

𝒑
. 

𝐸(𝑋) = ∑ 𝑥𝑓(𝑥)∞
𝑥=1 = ∑ 𝑥 ∙ 𝑝𝑞𝑥−1∞

𝑥=1 = 𝑝∑ 𝑥𝑞𝑥−1∞
𝑥=1 = 𝑝(1 + 2𝑞 + 3𝑞2 +⋯)  

=
𝑝

(1−𝑞)2
=

𝑝

𝑝2
=

1

𝑝
.  
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II. 𝑽(𝑿) =
𝒒

𝒑𝟐
. 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 = 𝐸(𝑋2) − (
1

𝑝
)
2

= 𝐸(𝑋2) −
1

𝑝2
. 

Now, 

𝐸(𝑋2) = ∑ 𝑥2𝑓(𝑥)∞
𝑥=1 = ∑ 𝑥2 ∙ 𝑝𝑞𝑥−1∞

𝑥=1   

= ∑ (𝑥2 + 𝑥 − 𝑥)𝑝𝑞𝑥−1∞
𝑥=1  (Add and subtract x) 

= ∑ [𝑥(𝑥 + 1) − 𝑥]𝑝𝑞𝑥−1∞
𝑥=1   

= ∑ 𝑥(𝑥 + 1)𝑝𝑞𝑥−1∞
𝑥=1 − ∑ 𝑥𝑝𝑞𝑥−1∞

𝑥=1 = 𝑝∑ 𝑥(𝑥 + 1)𝑞𝑥−1∞
𝑥=1 − 𝐸(𝑋)  

= 𝑝 ∙
2

(1−𝑞)3
−

1

𝑝
=

2𝑝

𝑝3
−

1

𝑝
=

2

𝑝2
−

1

𝑝
.  

Therefore, 

𝑉(𝑋) =
2

𝑝2
−

1

𝑝
−

1

𝑝2
=

1

𝑝2
−

1

𝑝
=

1−𝑝

𝑝2
=

𝑞

𝑝2
. 

Moment Generating Function  

If  X is a discrete random variable has geometric distribution with parameter p then, 

the MGF of X is 

𝑀𝑋(𝑡) =
𝑝𝑒𝑡

1−𝑞𝑒𝑡
. 

Proof 

Hint: For any 𝑖 ∈ ℛ: |𝑖| < 1; ∑ 𝑖𝑛−1∞
𝑛=1 = ∑ 𝑖𝑛∞

𝑛=0 = 1 + 𝑖 + 𝑖2 +⋯ =
1

1−𝑖
. 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) = ∑ 𝑒𝑡𝑥𝑓(𝑥)∞

𝑥=1 = ∑ 𝑒𝑡𝑥𝑝𝑞𝑥−1∞
𝑥=1 = 𝑝𝑒𝑡 ∑ 𝑒𝑡(𝑥−1)𝑞𝑥−1∞

𝑥=1   

= 𝑝𝑒𝑡 ∑ (𝑞𝑒𝑡)𝑥−1∞
𝑥=1 = 𝑝𝑒𝑡 ∙

1

1−𝑞𝑒𝑡
=

𝑝𝑒𝑡

1−𝑞𝑒𝑡
. 

Example 3.5 

In a certain manufacturing process it is known that, on the average, 1 in every 100 

items is defective. What is the probability that the fifth item inspected is the first 

defective item found? Find the mean and the variance. 

 Solution 

Let X represents the no. of items until the first defective item is found. The 

probability of successes (defective item) is 𝑝 =
1

100
= 0.01.Thus, 𝑋~𝐺𝑒𝑜𝑚(0.01). So, 

we want to find  

𝑃(𝑋 = 5) = 𝑓(5) = (0.01)(0.99)4 = 0.0096. 
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𝜇 =
1

0.01
= 100. 

𝜎2 =
0.99

(0.01)2
= 9900. 

3.5 Negative Binomial Distribution 

If 𝑟 is an integer, then the negative binomial random variable X can be interpreted as 

being the number of trails until the rth success occurs when successive independent 

trials of an experiment are performed for which the probability of success in a single 

particular trial is 𝑝. The pmf of 𝑋~𝑁𝐵𝑖𝑛(𝑟, 𝑝) is given by 

𝑓(𝑥) = 𝑓(𝑥; 𝑟, 𝑝) = {
(
𝑥 − 1

𝑟 − 1
) 𝑝𝑟𝑞𝑥−r;   𝑥 = 𝑟, 𝑟 + 1, 𝑟 + 2,…

0;                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
 

Parameters of the Distribution: 𝑟 ∈ 𝑁+(number of successes), 0 ≤ 𝑝 ≤ 1  

(probability of success). 

Characteristics of Negative Binomial Distribution 

1. The outcome of each trial is Bernoulli, that is either a success(S) or failure(F). 

2. The Probability of success is constant 𝑃(𝑆) = 𝑝. 

3. The trials are repeated until ‘r’ successes occur. 

Note 

The geometric distribution is a special case of the negative binomial distribution 

when 𝑟 = 1. 

Moment Generating Function  

If X is a discrete random variable has negative binomial distribution with 

parameters k, p then, the MGF of X is 

𝑀𝑋(𝑡) = (
𝑝𝑒𝑡

1−𝑞𝑒𝑡
)
𝑟

. 

Proof 

Hint: The sum of a negative binomial series ∑ (𝑘+𝑟−1
𝑟−1

)𝑢𝑘∞
𝑘=0 = (1 − 𝑢)−𝑟. 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) = ∑ 𝑒𝑡𝑥𝑓(𝑥)∞

𝑥=𝑟 = ∑ 𝑒𝑡𝑥(𝑥−1
𝑟−1
)𝑝𝑟𝑞𝑥−r∞

𝑥=𝑟   

= 𝑝𝑟𝑒𝑟𝑡 ∑ (𝑥−1
𝑟−1
)𝑒𝑡(𝑥−𝑟)𝑞𝑥−𝑟∞

𝑥=𝑟   
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= 𝑝𝑟𝑒𝑟𝑡 ∑ (𝑥−1
𝑟−1
)(𝑞𝑒𝑡)𝑥−𝑟∞

𝑥=𝑟      (Let 𝑌 = 𝑋 − 𝑟 ⇒ 𝑋 = 𝑌 + 𝑟)  

= 𝑝𝑟𝑒𝑟𝑡 ∑ (𝑦+𝑟−1
𝑟−1

)(𝑞𝑒𝑡)𝑦∞
𝑦=0 = 𝑝𝑟𝑒𝑟𝑡(1 − 𝑞𝑒𝑡)−𝑟 = (

𝑝𝑒𝑡

1−𝑞𝑒𝑡
)
𝑟

. 

Mean and Variance 

If X is a discrete random variable has negative binomial distribution with 

parameters r, p then, 

𝐸(𝑋) = 𝜇 =
𝑟

𝑝
  and 𝑉(𝑥) = 𝜎2 =

𝑟(1−𝑝)

𝑝2
=

𝑟𝑞

𝑝2
. 

Proof 

III. 𝑬(𝑿) =
𝒓

𝒑
. 

𝐸(𝑋) =
𝑑

𝑑𝑡
𝑀𝑋(𝑡)|𝑡=0 =

𝑑

𝑑𝑡
(

𝑝𝑒𝑡

1 − 𝑞𝑒𝑡
)

𝑟

|𝑡=0 

= 𝑟 (
𝑝𝑒𝑡

1−𝑞𝑒𝑡
)
𝑟−1

[
(1−𝑞𝑒𝑡)𝑝𝑒𝑡+𝑝𝑒𝑡𝑞𝑒𝑡

(1−𝑞𝑒𝑡)2
] |𝑡=0 = 𝑟

(𝑝𝑒𝑡)
𝑟

(1−𝑞𝑒𝑡)𝑟+1
|𝑡=0 = 𝑟

𝑝𝑟

(1−𝑞)𝑟+1
= 𝑟

𝑝𝑟

𝑝𝑟+1
=

𝑟

𝑝
 .           

IV. 𝑽(𝑿) =
𝒒

𝒑𝟐
. 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 

𝐸(𝑋2) =
𝑑2

𝑑𝑡2
𝑀𝑋(𝑡)|𝑡=0 =

𝑑

𝑑𝑡
𝑟

(𝑝𝑒𝑡)
𝑟

(1−𝑞𝑒𝑡)𝑟+1
|𝑡=0 =

𝑑

𝑑𝑡
𝑟(𝑝𝑒𝑡)𝑟(1 − 𝑞𝑒𝑡)−(𝑟+1)|𝑡=0  

= [𝑟(𝑝𝑒𝑡)𝑟(−(𝑟 + 1))(1 − 𝑞𝑒𝑡)−(𝑟+2)(−𝑞𝑒𝑡) + 𝑟2(𝑝𝑒𝑡)𝑟−1(𝑝𝑒𝑡)(1 − 𝑞𝑒𝑡)−(𝑟+1)]|𝑡=0  

= [𝑟𝑝𝑟(−(𝑟 + 1))(1 − 𝑞)−(𝑟+2)(−𝑞) + 𝑟2𝑝𝑟(1 − 𝑞)−(𝑟+1)]    

= [𝑟(𝑟 + 1)𝑝−2𝑞 + 𝑟2𝑝−1] =
𝑟2

𝑝
[
𝑞

𝑝
+ 1] +

𝑟𝑞

𝑝2
=

𝑟2

𝑝2
+
𝑟𝑞

𝑝2
=

𝑟2+𝑟𝑞

𝑝2
         (𝑝 + 𝑞 = 1)    

Hence, 

𝑉(𝑋) =
𝑟2+𝑟𝑞

𝑝2
− (

𝑟

𝑝
)
2

=
𝑟𝑞

𝑝2
. 

Example 3.6 

Bob is a high school basketball player. He is a 70% free throw shooter. That means 

his probability of making a free throw is 0.70. During the season, what is the 

probability that Bob makes his third free throw on his fifth shot?. Find the MGF. 

 Solution  

Let X represents the no. of throws until the third free throw is done. The probability 

of successes (free throw) is 𝑝 = 0.7.Thus, 𝑋~𝑁𝐵𝑖𝑛(3,0.7). So, we want to find  
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𝑃(𝑋 = 5) = 𝑓(5) = (5−1
3−1
)(0.7)3(0.3)5−3 = 0.1852. 

𝑀𝑋(𝑡) = (
0.7𝑒𝑡

1 − 0.3𝑒𝑡
)

3

 

Example 3.7 

Sara flips a coin repeatedly and counts the number of heads (successes).. Find the 

probability that Sara gets  

I. The fourth head before the seventh flip. 

II. The first head on the fourth flip. 

Solution 

The probability of successes (getting head) is 𝑝 = 0.5. Let X represents the no. of 

throws until the fourth head is shown. Thus, 𝑋~𝑁𝐵𝑖𝑛(4,0.5). So, we want to find  

I. 𝑃(𝑋 < 6) = 𝑓𝑋(4) + 𝑓𝑋(5) + 𝑓𝑋(6) = (4−1
4−1
)(0.5)4 + (5−1

4−1
)(0.5)5 + (6−1

4−1
)(0.5)6  

= 0.0625 + 0.125 + 0.1563 = 0.3438. 

Now, let Y represents the no. of throws until the first head is shown. Thus, 

𝑌~𝐺𝑒𝑜𝑚(0.5). 

II. 𝑃(𝑌 = 4) = 𝑓𝑌(4) = (0.5)
4 = 0.0625. 

Comparison 

▪ For Bernoulli and binomial distributions the number of trails is fixed (1 for Ber. 

And 𝑛 > 1 for Bin.) while the number of successes is variable. 

▪ For geometric and negative binomial distributions the number of trails is 

variable and the number of successes is fixed (1 for Geom. 𝑟 > 1 for NBin.). 

3.6 Hypergeometric Distribution 

 

 

 

 

In a group of 𝑀 objects, 𝐾 are of Type I and 𝑀 − 𝐾 are of Type II. If 𝑛 objects are 

randomly chosen without replacement from the group of 𝑀, let 𝑋 denote the 

K 
M-K x 

n-x 

n 

M 
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number that are of Type I in the group of 𝑛. Thus, 𝑋 has a hypergeometric 

distribution 𝑋~𝐻(𝑀, 𝑛, 𝐾). The pmf for 𝑋 is  

𝑓(𝑥) = 𝑓(𝑥;𝑀, 𝑛, 𝐾) = {
(𝐾𝑥)(

𝑀−𝐾
𝑛−𝑥 )

(𝑀𝑛)
;   𝑥 = 𝑀𝑎𝑥[0, 𝑛 − (𝑀 − 𝐾)],… ,𝑀𝑖𝑛[𝑛, 𝐾]

0;                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      
  

Parameters of the Distribution: 𝑀 ∈ 𝑁+(population size), 𝑛 ∈ 𝑁+ (sample size),  

𝐾 ∈ 𝑁+(population elements with a certain characteristic). 

Characteristics of Hypergeometric Distribution 

1. ‘n’ trials in a sample taken from a finite population of size M. 

2. The population (outcome of trials) has two outcomes Success (S) and Failure(F). 

3. Sample taken without replacement. 

4. Trials are dependent. 

5. The probability of success changes from trial to trial. 

Mean and Variance 

If X is a discrete random variable has hypergeometric distribution with parameters 

M, n, K then, 

𝐸(𝑋) = 𝜇 =
𝑛𝐾

𝑀
  and 𝑉(𝑥) = 𝜎2 =

𝑛𝑘(𝑀−𝐾)(𝑀−𝑛)

𝑀2(𝑀−1)
. 

Proof 

We will assume that the bounds of X are 0 and n. 

I. 𝑬(𝑿) =
𝒏𝑲

𝑴
. 

𝐸(𝑋) = ∑ 𝑥𝑓(𝑥)𝑛
𝑥=0 = ∑ 𝑥 ∙

(𝐾𝑥)(
𝑀−𝐾
𝑛−𝑥 )

(𝑀𝑛)

𝑛
𝑥=0   

= ∑ 𝑥 ∙
(𝐾𝑥)(

𝑀−𝐾
𝑛−𝑥 )

(𝑀𝑛)

𝑛
𝑥=1   (Set summation from 1, since when 𝑥 = 0 the expression= 0) 

= ∑ 𝑥 ∙

𝐾!

𝑥!(𝐾−𝑥)! 
(𝑀−𝐾𝑛−𝑥 )

𝑀!

𝑛!(𝑀−𝑛)! 

𝑛
𝑥=1 =

𝑛𝐾

𝑀
∑

(𝐾−1)!

(𝑥−1)!(𝐾−𝑥)! 
(𝑀−𝐾𝑛−𝑥 )

(𝑀−1)!

(𝑛−1)!(𝑀−𝑛)! 

𝑛
𝑥=1      

=
𝑛𝐾

𝑀
∑

(𝐾−1𝑥−1)(
𝑀−𝐾
𝑛−𝑥 )

(𝑀−1𝑛−1)

𝑛
𝑥=1                (Let = 𝑋 − 1 , 𝐿 = 𝑀 − 1, 𝑆 = 𝐾 − 1 and 𝑟 = 𝑛 − 1) 

=
𝑛𝐾

𝑀
∑

(𝑆𝑦)(
𝐿−𝑆
𝑟−𝑦)

(𝐿𝑟)

𝑟
𝑦=0 =

𝑛𝐾

𝑀
(1) =

𝑛𝐾

𝑀
                          ( 𝑌~𝐻(𝐿, 𝑟, 𝑆) ⇒ 𝑆𝑢𝑚 𝑜𝑓 𝑝𝑚𝑓 = 1) 
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II. 𝑽(𝑿) =
𝒏𝒌(𝑴−𝑲)(𝑴−𝒏)

𝑴𝟐(𝑴−𝟏)
. 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 

𝐸(𝑋2) = ∑ 𝑥2𝑓(𝑥)𝑛
𝑥=0 = ∑ 𝑥2 ∙

(𝐾𝑥)(
𝑀−𝐾
𝑛−𝑥 )

(𝑀𝑛)

𝑛
𝑥=0   

 = ∑ 𝑥2 ∙
(𝐾𝑥)(

𝑀−𝐾
𝑛−𝑥 )

(𝑀𝑛)

𝑛
𝑥=1   (Set summation from 1, since when 𝑥 = 0 the expression= 0) 

= ∑ 𝑥2 ∙

𝐾!

𝑥!(𝐾−𝑥)! 
(𝑀−𝐾𝑛−𝑥 )

𝑀!

𝑛!(𝑀−𝑛)! 

𝑛
𝑥=1 =

𝑛𝐾

𝑀
∑ 𝑥 ∙

(𝐾−1)!

(𝑥−1)!(𝐾−𝑥)! 
(𝑀−𝐾𝑛−𝑥 )

(𝑀−1)!

(𝑛−1)!(𝑀−𝑛)! 

𝑛
𝑥=1 =

𝑛𝐾

𝑀
∑ 𝑥 ∙

(𝐾−1𝑥−1)(
𝑀−𝐾
𝑛−𝑥 )

(𝑀−1𝑛−1)

𝑛
𝑥=1   

We use the same variable substitution as when deriving the mean. 

𝐸(𝑋2) =
𝑛𝐾

𝑀
∑ (𝑦 + 1) ∙

(𝑆𝑦)(
𝐿−𝑆
𝑟−𝑦)

(𝐿𝑟)

𝑟
𝑦=0 =

𝑛𝐾

𝑀
[∑ 𝑦 ∙

(𝑆𝑦)(
𝐿−𝑆
𝑟−𝑦)

(𝐿𝑟)

𝑟
𝑦=0 + ∑

(𝑆𝑦)(
𝐿−𝑆
𝑟−𝑦)

(𝐿𝑟)

𝑟
𝑦=0 ]  

The first sum is the expected value of a hypergeometric random variable with 

parameters (L,r,S). The second sum is the total sum that random variable's pmf. 

𝐸(𝑋2) =
𝑛𝐾

𝑀
[𝐸(𝑌) + 1] =

𝑛𝐾

𝑀
[
𝑟𝑆

𝐿
+ 1] =

𝑛𝐾

𝑀
[
(𝑛−1)(𝐾−1)

(𝑀−1)
+ 1] ; Thus, 

𝑉(𝑋) =
𝑛𝐾

𝑀
[
(𝑛−1)(𝐾−1)

(𝑀−1)
+ 1] − (

𝑛𝐾

𝑀
)
2

=
𝑛𝐾

𝑀
[
(𝑛−1)(𝐾−1)

(𝑀−1)
+ 1 −

𝑛𝐾

𝑀
]  

=
𝑛𝐾

𝑀
[
𝑀(𝑛−1)(𝐾−1)+𝑀(𝑀−1)−𝑛𝑘(𝑀−1)

𝑀(𝑀−1)
]  

=
𝑛𝐾

𝑀2(𝑀−1)
[𝑀𝑛𝐾 −𝑀𝑛 −𝑀𝐾 +𝑀 +𝑀2 −𝑀 − 𝑛𝑘𝑀 + 𝑛𝑘]  

=
𝑛𝐾

𝑀2(𝑀−1)
[−𝑀𝑛 −𝑀𝐾 +𝑀2 + 𝑛𝑘] =

𝑛𝐾

𝑀2(𝑀−1)
[𝑀(𝑀 − 𝑛) − 𝐾(𝑀 − 𝑛)]   

=
𝑛𝐾(𝑀−𝑛)(𝑀−𝐾)

𝑀2(𝑀−1)
.  

Example 3.8 

Lots of 40 components each are called acceptable if they contain no more than 3 

defectives. The procedure for sampling the lot is to select 5 components at random 

(without replacement) and to reject the lot if a defective is found. What is the 

probability that exactly one defective is found in the sample if there are 3 defectives 

in the entire lot. 

Solution 

𝑀 = 40, 𝑛 = 5, 𝐾 = 3. 



 215 STAT                                                           Probability I                                               Weaam Alhadlaq 

40 

 

Let X represents the no. of defective items in the sample. 𝑋~𝐻(40,5,3). We want to 

find 

𝑃(𝑋 = 1) = 𝑓(1) =
(31)(

37
4 )

(405 )
= 0.3011. 

Does the procedure being used is good? 

3.6.1 Binomial Approximation to Hypergemetric Distribution  

 Suppose we still have the population of size 𝑀 with 𝐾 units labeled as ‘success’ 

and 𝑀 −𝐾 labeled as ‘failure,’ but now we take a sample of size 𝑛 is drawn with 

replacement. Then, with each draw, the units remaining to be drawn look the same: 

still 𝐾 ‘successes’ and 𝑀 −𝐾 ‘failures.’ Thus, the probability of drawing a ‘success’ 

on each single draw is 𝑝 =
𝐾

𝑀
 , and this doesn't change. When we were drawing 

without replacement, the proportions of successes would change, depending on the 

result of previous draws. For example, if we were to obtain a ‘success’ on the first 

draw, then the proportion of ‘successes’ for the second draw would be 
𝐾−1

𝑀−1
, whereas 

if we were to obtain a ‘failure’ on the first draw the proportion of successes for the 

second draw would be 
𝐾

𝑀−1
. 

Proposition 

If the population size 𝑀⟶ ∞  in such a way that the proportion of successes  
𝐾

𝑀
⟶

𝑝 ,and 𝑛 is held constant, then the hypergeometric probability mass function 

approaches the binomial probability mass function i.e. 𝐻(𝑀, 𝑛, 𝐾) ⟶ 𝐵𝑖𝑛 (𝑛, 𝑝 =
𝐾

𝑀
). 

As a rule of thumb, if the population size is more than 20 times the sample size    

(𝑀 >  20 𝑛), then we may use binomial probabilities in place of hypergeometric 

probabilities. 

Example 3.9 

A box contains 6 blue and 4 red balls. An experiment is performed a ball is chosen 

and its color observed. Find the probability, that after 5 trials, 3 blue balls will have 

been chosen when 

I. The balls are replaced. 

II. The balls not replaced. 
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Solution 

I. Let X represents the no. of blue balls in the sample. 𝑋~𝐵𝑖𝑛(5,0.6). So, we want to 

find  

𝑃(𝑋 = 3) = (5
3
)(0.6)3(0.4)2 = 0.3456. 

II. Let Y represents the no. of blue balls in the sample. 𝑌~𝐻(10,5,6). So, we want to 

find  

𝑃(𝑌 = 3) =
(63)(

4
2)

(105 )
= 0.4762. 

Example 3.10 

It is estimated that 4000 of the 10,000 voting residents of a town are against a new 

sales tax. If 15 eligible voters are selected at random and asked their opinion, what 

is the probability that at most 3 favor the new tax? Use binomial approximation. 

Solution 

𝑀 = 10000, 𝑛 = 15, 𝐾 = 6000. To use the binomial approximation we have to check 

if 𝑀 > 20𝑛? 

𝑀 = 10000 > 20 ∙ 15 = 300. 

Thus, X the no. of voting that favor the new sales tax in the sample has binomial 

distribution with parameters 𝑛 = 15, 𝑝 =
𝐾

𝑀
= 0.6. 

𝑃(𝑋 ≤ 3) = 𝑓(0) + 𝑓(1) + 𝑓(2) + 𝑓(3) 

= (15
0
)(0.6)0(0.4)15 + (15

1
)(0.6)(0.4)14 + (15

2
)(0.6)2(0.4)13 + (15

3
)(0.6)3(0.4)12  

= 0.0019. 

3.7 Poisson Distribution 

The Poisson distribution is often used as a model for counting the number of events 

of a certain type that occur in a certain period of time (or space). If the r.v. X has 

Poisson distribution 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)then its pmf is given by 

𝑓(𝑥) = 𝑓(𝑥; 𝜆) = {
𝑒−𝜆𝜆𝑥

𝑥!
;   𝑥 = 0,1,2, …

0;           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

Parameter of the Distribution: 𝜆 > 0 (The average) 
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For example 

▪ The number of births per hour during a given day. 

▪ The number of failures of a machine in one month. 

▪ The number of typing errors on a page. 

▪ The number of postponed baseball games due to rain. 

Note 

Suppose that X represents the number of customers arriving for service at bank in a 

one hour period, and that a model for X is the Poisson distribution with parameter 𝜆. 

Under some reasonable assumptions (such as independence of the numbers 

arriving in different time intervals) it is possible to show that the number arriving in 

any time period also has a Poisson distribution with the appropriate parameter that 

is "scaled" from 𝜆. Suppose that 𝜆 = 40 ‘meaning that X, the number of bank 

customers arriving in one hour, has a mean of 40’. If Y represents the number of 

customers arriving in 2 hours, then Y has a Poisson distribution with a parameter of 

80. In general, for any time interval of length t, the number of customers arriving in 

that time interval has a Poisson distribution with parameter 𝜆𝑡 = 40𝑡. So, the 

number of customers arriving during a 15-minute period (𝑡 =
1

4
 hour) will have a 

Poisson distribution with parameter 40 ∙
1

4
= 10. In general, If W represents the 

number of customers arriving in t hours 𝑊~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡) therefore, 

𝑓(𝑤) =
𝑒−𝜆𝑡(𝜆𝑡)𝑤

𝑤!
;      𝑤 = 0, 1, 2, …. 

Mean and Variance 

If X is a discrete random variable has Poisson distribution with parameter 𝜆 then, 

𝐸(𝑋) = 𝑉(𝑥) = 𝜆. 

Proof 

Hint:   𝑒𝑥 = ∑
𝑥𝑛

𝑛!
∞
𝑛=0 . 

I. 𝑬(𝑿) = 𝝀. 

𝐸(𝑋) = ∑ 𝑥𝑓(𝑥)∞
𝑥=0   

= ∑ 𝑥 ∙
𝑒−𝜆𝜆𝑥

𝑥!
∞
𝑥=1           (Set summation from 1, since when 𝑥 = 0 the expression= 0) 
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= ∑
𝑒−𝜆𝜆𝑥

(𝑥−1)!
∞
𝑥=1 = 𝜆𝑒−𝜆 ∑

𝜆𝑥−1

(𝑥−1)!
∞
𝑥=1                    (Let 𝑌 = 𝑋 − 1)  

= 𝜆𝑒−𝜆 ∑
𝜆𝑦

𝑦!
∞
𝑦=0 = 𝜆𝑒−𝜆𝑒𝜆 = 𝜆.  

II. 𝑽(𝑿) = 𝝀. 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 

𝐸(𝑋2) = 𝐸(𝑋2 − 𝑋 + 𝑋) = 𝐸[𝑋(𝑋 − 1) + 𝑋] = 𝐸[𝑋(𝑋 − 1)] + 𝐸(𝑋) 

= 𝐸[𝑋(𝑋 − 1)] + 𝜆 = ∑ 𝑥(𝑥 − 1)𝑓(𝑥)∞
𝑥=0 + 𝜆  

= ∑ 𝑥(𝑥 − 1)
𝑒−𝜆𝜆𝑥

𝑥!
∞
𝑥=2 + 𝜆 (Set summation from 2, since when 𝑥 = 0,1 the expression= 0) 

= ∑
𝑒−𝜆𝜆𝑥

(𝑥−2)!
∞
𝑥=2 + 𝜆 = 𝜆2𝑒−𝜆 ∑

𝜆𝑥−2

(𝑥−2)!
∞
𝑥=2 + 𝜆             (Let 𝑍 = 𝑋 − 2) 

= 𝜆2𝑒−𝜆 ∑
𝜆𝑧

𝑧!
∞
𝑧=0 + 𝜆 = 𝜆2𝑒−𝜆𝑒𝜆 + 𝜆 = 𝜆2 + 𝜆. 

Hence, 

𝑉(𝑋) = 𝜆2 + 𝜆 − 𝜆2 = 𝜆. 

Moment Generating Function  

If X is a discrete random variable has Poisson distribution with parameter 𝜆 then, 

the MGF of X is 

𝑀𝑋(𝑡) = 𝑒
𝜆(𝑒𝑡−1). 

Proof 

Hint: 𝑒𝑥 = ∑
𝑥𝑛

𝑛!
∞
𝑛=0 . 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) = ∑ 𝑒𝑡𝑥𝑓(𝑥)∞

𝑥=0 = ∑ 𝑒𝑡𝑥 ∙
𝑒−𝜆𝜆𝑥

𝑥!
∞
𝑥=0 = 𝑒−𝜆 ∑

(𝑒𝑡𝜆)
𝑥

𝑥!
∞
𝑥=0  = 𝑒−𝜆𝑒𝑒

𝑡𝜆  

= 𝑒𝜆(𝑒
𝑡−1). 

 Example 3.11 

Suppose that the number of typing errors per page has a Poisson distribution with 

average 6 typing errors. What is the probability that 

I. the number of typing errors in a page will be 7. 

II. the number of typing errors in a page will be at least 2. 

III.  in 2 pages there will be 10 typing errors. 

IV.  in a half page there will be no typing errors. 
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Solution 

I. Let X represents the no. of typing errors per page.  

Therefore, 𝜆𝑋 = 6 ⇒ 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(6). 

𝑃(𝑋 = 7) =
𝑒−667

7!
= 0.1377. 

II. 𝑃(𝑋 ≥ 2) = 𝑓(2) + 𝑓(3) + ⋯ = 1 − 𝑃(𝑋 < 2) = 1 − 𝑓(0) − 𝑓(1)  

= 1 −
𝑒−660

0!
−
𝑒−66

1!
= 0.9826. 

III. Let Y represents the no. of typing errors in 2 pages.  

Therefore,  𝜆𝑌 = 𝜆𝑋𝑡 = 6 ∙ 2 = 12 ⇒ 𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(12). 

𝑃(𝑌 = 10) =
𝑒−12(12)10

10!
= 0.1048. 

IV.  Let Z represents the no. of typing errors in a half pages.  

Therefore,  𝜆𝑍 = 𝜆𝑋𝑡 = 6 ∙
1

2
= 3 ⇒ 𝑍~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(3). 

𝑃(𝑍 = 0) =
𝑒−330

0!
= 0.0498. 

 3.7.1 Poisson Approximation to Binomial Distribution 

For those situations in which n is large (≥100) and p is very small (≤0.1), the 

Poisson distribution can be used to approximate the binomial distribution. The 

larger the n and the smaller the p, the better is the approximation. The following 

mathematical expression for the Poisson model is used to approximate the true 

(binomial) result: 

𝑓(𝑥) =
𝑒−(𝑛𝑝)(𝑛𝑝)𝑥

𝑥!
 

Where n is the sample size and p is the true probability of success (i.e. 𝜆 = 𝑛𝑝). 

Example 3.12 

Given that 5% of a population are left-handed, use the Poisson distribution to 

estimate the probability that a random sample of 100 people contains 2 or more 

left-handed people, then compare the result with the true probability using the 

binomial distribution. 

Solution 

Let X represents the no. of left-handed on the sample. 

To use Poisson approximation we should check if 𝒏 ≥ 𝟏𝟎𝟎 and 𝒑 ≤ 𝟎. 𝟏. 
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Since 𝒏 = 𝟏𝟎𝟎 ≥ 𝟏𝟎𝟎, 𝒑 = 𝟎. 𝟎𝟓 ≤ 𝟎. 𝟏 we can use Poisson approximation. 

𝜆 = 𝑛𝑝 = 100 ∙ 0.05 = 5 ⇒ 𝑿~𝑷𝒐𝒊𝒔𝒔𝒐𝒏(𝟓). 

Thus,  

𝑷(𝑿 ≥ 𝟐) = 𝟏 − 𝑷(𝑿 < 𝟐) = 𝟏 − 𝒇(𝟎) − 𝒇(𝟏) = 𝟏 −
𝒆−𝟓(𝟓)𝟎

𝟎!
−
𝒆−𝟓(𝟓)

𝟏!
= 𝟎. 𝟗𝟓𝟗𝟔 ≅

𝟎. 𝟗𝟔.   

Now, let us use binomial distribution. 

𝑷(𝑿 ≥ 𝟐) = 𝟏 − 𝑷(𝑿 < 𝟐) = 𝟏 − 𝒇(𝟎) − 𝒇(𝟏)  

= 𝟏 − (𝟏𝟎𝟎
𝟎
)(𝟎. 𝟎𝟓)𝟎(𝟎. 𝟗𝟓)𝟏𝟎𝟎 − (𝟏𝟎𝟎

𝟏
)(𝟎. 𝟎𝟓)𝟏(𝟎. 𝟗𝟓)𝟗𝟗 = 𝟎. 𝟗𝟔𝟐𝟗 ≅ 𝟎. 𝟗𝟔.  
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Chapter Four                                                                          

Frequently Used Continuous Probability Distributions 

Distributions to be Covered 

▪ Uniform distribution. 

▪ Exponential distribution. 

▪ Gamma distribution. 

▪ Chi-squared distribution. 

▪ Beta distribution. 

▪ Normal distribution. 

▪ Standard normal distribution. 

4.1 Uniform Distribution 

A uniform distribution, sometimes also known as a rectangular distribution, is a 

distribution that has constant probability. 

 

The probability density function for a continuous uniform distribution on the 

interval [𝑎, 𝑏] is 

𝑓(𝑥) = 𝑓(𝑥; 𝑎, 𝑏) = {
1

𝑏 − 𝑎
;        𝑎 ≤ 𝑥 ≤ 𝑏     

0;                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
 

We write 𝑋~𝑈(𝑎, 𝑏)  

Parameters of the Distribution: 𝑎, 𝑏 ∈ ℛ (The limits of the interval) 

  

𝑎 𝑏 

𝑓(𝑥) 

𝑥 
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Mean and Variance 

If X is a continuous random variable has uniform distribution with parameters 𝑎 and 

𝑏 then, 

𝐸(𝑋) =
𝑎+𝑏

2
      and      𝑉(𝑥) =

(𝑏−𝑎)2

12
. 

Proof 

Hint 

 𝑏2 − 𝑎2 = (𝑏 − 𝑎)(𝑏 + 𝑎),  

 𝑏3 − 𝑎3 = (𝑏 − 𝑎)(𝑏2 + 𝑎𝑏 + 𝑎2) and 

(𝑏 − 𝑎)2 = 𝑏2 − 2𝑎𝑏 + 𝑎2. 

I. 𝑬(𝑿) =
𝒂+𝒃

𝟐
. 

𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫

𝑥

𝑏−𝑎
𝑑𝑥

𝑏

𝑎
=

1

𝑏−𝑎
[
𝑥2

2
] |𝑎
𝑏 =

1

𝑏−𝑎
[
𝑏2−𝑎2

2
] =

1

𝑏−𝑎
[
(𝑏−𝑎)(𝑏+𝑎)

2
] =

𝑎+𝑏

2
.  

II. 𝑽(𝑿) =
(𝒃−𝒂)𝟐

𝟏𝟐
. 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 

𝐸(𝑋2) = ∫ 𝑥2𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫

𝑥2

𝑏−𝑎
𝑑𝑥

𝑏

𝑎
=

1

𝑏−𝑎
[
𝑥3

3
] |𝑎
𝑏 =

1

𝑏−𝑎
[
𝑏3−𝑎3

3
]  

=
1

𝑏−𝑎
[
(𝑏−𝑎)(𝑏2+𝑎𝑏+𝑎2)

3
] =

𝑏2+𝑎𝑏+𝑎2

3
 . 

Hence, 

𝑉(𝑋) =
𝑏2+𝑎𝑏+𝑎2

3
− (

𝑎+𝑏

2
)
2

=
𝑏2+𝑎𝑏+𝑎2

3
−
𝑏2+2𝑎𝑏+𝑎2

4
=

4𝑏2+4𝑎𝑏+4𝑎2−3𝑏2−6𝑎𝑏−3𝑎2

12
  

=
𝑏2−2𝑎𝑏+𝑎2

12
=

(𝑏−𝑎)2

12
. 

Moment Generating Function  

If X is a continuous random variable has uniform distribution with parameters 𝑎 and 

𝑏 then, the MGF of X is 

𝑀𝑋(𝑡) =
𝑒𝑏𝑡−𝑒𝑎𝑡

𝑡(𝑏−𝑎)
. 

Proof 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥

𝑏

𝑎
= ∫

𝑒𝑡𝑥

𝑏−𝑎
𝑑𝑥

𝑏

𝑎
=

𝑒𝑡𝑥

𝑡(𝑏−𝑎)
|𝑎
𝑏  =

𝑒𝑏𝑡−𝑒𝑎𝑡

𝑡(𝑏−𝑎)
. 

Note that the above derivation is valid only when 𝑡 ≠ 0. However, remember that it 

always when 𝑡 = 0, 𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡(0)) = 𝐸(1) = 1. 
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Example 4.1 

The daily amount of coffee, in liters, dispensed by a machine located in an airport 

lobby is a random variable X having a continuous uniform distribution with 𝑎 = 7 

and 𝑏 = 10. Find the probability that on a given day the amount of coffee dispensed 

by this machine will be  

I. at most 8.8 liters. 

II. more than 7.4 liters but less than 9.5 liters. 

III. at least 12.5 liters. 

Solution 

𝒇(𝒙) =
𝟏

𝟏𝟎−𝟕
=

𝟏

𝟑
. 

I. 𝑷(𝑿 ≤ 𝟖. 𝟖) = ∫
𝟏

𝟑
𝒅𝒙

𝟖.𝟖

𝟕
=

𝒙

𝟑
|𝟕
𝟖.𝟖 =

𝟖.𝟖−𝟕

𝟑
= 𝟎. 𝟔. 

II. 𝑷(𝟕. 𝟒 ≤ 𝑿 ≤ 𝟗. 𝟓) =
𝟗.𝟓−𝟕.𝟒

𝟑
= 𝟎. 𝟕. 

III.𝑷(𝑿 ≥ 𝟏𝟐. 𝟓) = 𝟎. 

Example 4.2 

A bus arrives every 10 minutes at a bus stop. It is assumed that the waiting time for 

a particular individual is a r.v. with a continuous uniform distribution. What is the 

probability that the individual waits more than 7 minutes. Find the mean and the 

standard deviation. 

Solution 

Let X is the waiting time for the individual. Thus, 𝑋~𝑈(0,10). 

𝑃(𝑋 > 7) =
10−7

10
= 0.3.  

𝜇 =
0+10

2
= 5    and 𝜎 = √

(10−0)2

12
= 2.89. 

4.2 Exponential Distribution 

A continuous random variable X is said to have an exponential distribution 

𝑋~𝐸𝑥𝑝(𝜃) if it has probability density function 

𝑓(𝑥) = 𝑓(𝑥; 𝜃) = {𝜃𝑒
−𝜃𝑥;      𝑥 ≥ 0         

0;               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,  

where 𝜃 > 0. 
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The exponential distribution is usually used to model the time until something 

happens in the process.  

For example 

▪ The exponential random variable is used to measure the waiting time for 

elevator to come.  

▪ The time it takes to load a truck.  

▪ The waiting time at a car wash.  

Another form of exponential distribution is 𝑓(𝑥) =
1

𝜇
𝑒
−
𝑥

𝜇;      𝑥 ≥ 0. However, for the 

rest of this course, we will use the first form. 

Parameter of the Distribution: 𝜃 > 0. 

Cumulative Distribution Function 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝜃𝑒−𝜃𝑥
𝑥

0
𝑑𝑥 = −𝑒−𝜃𝑥|0

𝑥 = 1 − 𝑒−𝜃𝑥.  

Direct way to find probabilities 

I. 𝑃(𝑋 ≤ 𝑎) = 𝐹(𝑎) = 1 − 𝑒−𝜃𝑎.  

II. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) = 𝑒−𝜃𝑎 − 𝑒−𝜃𝑏 . 

III.𝑃(𝑋 ≥ 𝑏) = 𝑒−𝜃𝑏. 

Mean and Variance 

If X is a continuous random variable has exponential distribution with parameter 𝜃 

then, 

𝐸(𝑋) =
1

𝜃
      and      𝑉(𝑥) =

1

𝜃2
. 

Proof 

I. 𝑬(𝑿) =
𝟏

𝜽
. 

𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

0
= ∫ 𝜃𝑥𝑒−𝜃𝑥𝑑𝑥

∞

0
= 𝜃 ∫ 𝑥𝑒−𝜃𝑥𝑑𝑥

∞

0
.  

Use integration by parts:  

 𝑢 = 𝑥             𝑑𝑣 = 𝑒−𝜃𝑥𝑑𝑥 

𝑑𝑢 = 𝑑𝑥           𝑣 = −
𝑒−𝜃𝑥

𝜃
  

𝐸(𝑋) = 𝜃 ∫ 𝑥𝑒−𝜃𝑥𝑑𝑥
∞

0
= 𝜃 [−

𝑥𝑒−𝜃𝑥

𝜃
|0
∞ + ∫

𝑒−𝜃𝑥

𝜃
𝑑𝑥

∞

0
] = 0 + ∫ 𝑒−𝜃𝑥𝑑𝑥

∞

0
= −

𝑒−𝜃𝑥

𝜃
|0
∞  

=
1

𝜃
.  
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II. 𝑽(𝑿) =
𝟏

𝜽𝟐
. 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 

𝐸(𝑋2) = ∫ 𝑥2𝑓(𝑥)𝑑𝑥
∞

0
= ∫ 𝜃𝑥2𝑒−𝜃𝑥𝑑𝑥

∞

0
= 𝜃 ∫ 𝑥2𝑒−𝜃𝑥𝑑𝑥

∞

0
 . 

Use integration by parts:  

 𝑢 = 𝑥2                𝑑𝑣 = 𝑒−𝜃𝑥𝑑𝑥 

𝑑𝑢 = 2𝑥 𝑑𝑥           𝑣 = −
𝑒−𝜃𝑥

𝜃
  

𝐸(𝑋2) = 𝜃 ∫ 𝑥2𝑒−𝜃𝑥𝑑𝑥
∞

0
= 𝜃 [−

𝑥2𝑒−𝜃𝑥

𝜃
|0
∞ + 2∫

𝑥𝑒−𝜃𝑥

𝜃
𝑑𝑥

∞

0
] = 0 + 2∫ 𝑥𝑒−𝜃𝑥𝑑𝑥

∞

0
  

= 2 [−
𝑥𝑒−𝜃𝑥

𝜃
|0
∞ + ∫

𝑒−𝜃𝑥

𝜃
𝑑𝑥

∞

0
] = 2∫

𝑒−𝜃𝑥

𝜃
𝑑𝑥

∞

0
= −2

𝑒−𝜃𝑥

𝜃2
|0
∞ =

2

𝜃2
.  

Hence, 

𝑉(𝑋) =
2

𝜃2
− (

1

𝜃
)
2

=
1

𝜃2
. 

Moment Generating Function  

If X is a continuous random variable has exponential distribution with parameter 𝜃 

then, the MGF of X is 

𝑀𝑋(𝑡) =
𝜃

𝜃−𝑡
. 

Proof 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥

∞

0
= ∫ 𝑒𝑡𝑥 ∙ 𝜃𝑒−𝜃𝑥𝑑𝑥

∞

0
= 𝜃 ∫ 𝑒−(𝜃−𝑡)𝑥𝑑𝑥

∞

0
  

= −
𝜃

𝜃−𝑡
𝑒−(𝜃−𝑡)𝑥|0

∞ =
𝜃

𝜃−𝑡
. 

Note that the above derivation is valid only when 𝑡 < 𝜃.  

Example 4.3 

The time between arrivals of cars at Al’s full-service gas pump follows an 

exponential distribution with a mean time between arrivals of 3 minutes. Al would 

like to know the probability that the time between two successive arrivals will be 2 

minutes or less. Then find the variance. 

Solution 

Let X represents the time between two successive arrivals. 

 𝜃 =
1

3
  ⇒ 𝑋~𝐸𝑥𝑝 (

1

3
). 
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𝑃(𝑋 ≤ 2) = 𝐹(2) = 1 − 𝑒−
2

3 = 0.4866. 

 𝑉(𝑋) =
1

𝜃2
= 32 = 9. 

4.2.1 Lack of Memory Property (Memoryless) 

Let X be exponentially distributed with parameter 𝜃. Suppose we know 𝑋 >  𝑡. 

What is the probability that X is also greater than some value 𝑠 +  𝑡? That is, we 

want to know 𝑃(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡). This type of problem shows up frequently when 

we are interested in the time between events; (Such as, queuing system). For 

example, suppose that costumers in a particular system have exponentially 

distributed service times. If we have a costumer that’s been waiting for one minute, 

what’s the probability that it will continue to wait for more than two minutes? 

Using the definition of conditional probability, we have 

𝑃(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡) =
𝑃(𝑋>𝑠+𝑡 ∩ 𝑋>𝑡)

𝑃(𝑋>𝑡)
  

If 𝑋 > 𝑠 + 𝑡, then 𝑋 > 𝑡 is redundant, so we can simplify the numerator as 

𝑃(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡) =
𝑃(𝑋>𝑠+𝑡)

𝑃(𝑋>𝑡)
  

Using the CDF of the exponential distribution, 

𝑃(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡) =
𝑃(𝑋>𝑠+𝑡)

𝑃(𝑋>𝑡)
=

𝑒−𝜃(𝑠+𝑡)

𝑒−𝜃𝑡
= 𝑒−𝜃𝑠  

It turns out that the conditional probability does not depend on t. Thus, In our queue 

example, the probability that a costumer waits for one additional minute is the same 

as the probability that it wait for one minute originally, regardless of how long it’s 

been waiting.  

This is called the lack of memory property,  

𝑃(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡) = 𝑃(𝑋 > 𝑠). 

Example 4.4 

On average, it takes about 5 minutes to get an elevator at stat building. Let X be the 

waiting time until the elevator arrives. Find the pdf of X then calculate the 

probability that 

I. you will wait less than 3 minutes? 

II. you will wait for more than 10 minutes? 
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III.you will wait for more than 7 minutes? 

IV. you will wait for more than 10 minutes given that you already wait for more than 

3 minutes? 

Solution 

𝑿~𝑬𝒙𝒑(
𝟏

𝟓
)  

𝒇(𝒙) =
𝟏

𝟓
𝒆−

𝒙

𝟓 ;   𝒙 ≥ 𝟎. 

I. 𝑷(𝑿 < 𝟑) = 𝟏 − 𝒆−
𝟑

𝟓 = 𝟎. 𝟒𝟓𝟏𝟐 . 

II. 𝑷(𝑿 > 𝟏𝟎) = 𝒆−𝟐 = 𝟎. 𝟏𝟑𝟓𝟑. 

III.𝑷(𝑿 > 𝟕) = 𝒆−
𝟕

𝟓 = 𝟎. 𝟐𝟒𝟔𝟔. 

IV. 𝑷(𝑿 > 𝟏𝟎|𝑿 > 𝟑) = 𝑷(𝑿 > 𝟕 + 𝟑|𝑿 > 𝟑) = 𝑷(𝑿 > 𝟕) = 𝟎. 𝟐𝟒𝟔𝟔. 

4.3 Gamma Distribution 

The gamma distribution is another widely used distribution. Its importance is 

largely due to its relation to exponential and normal distributions. Before 

introducing the gamma random variable, we need to introduce the gamma function. 

4.3.1 Gamma function 

The gamma function denoted by 𝛤(𝛼), is an extension of the factorial function to 

real (and complex) numbers. Specifically, if 𝑛 ∈ {1,2,3, . . . }, then 

𝛤(𝑛) = (𝑛 − 1)! 

More generally, for any positive real number 𝛼, 𝛤(𝛼) is defined as 

𝛤(𝛼) = ∫ 𝑥𝛼−1
∞

0
𝑒−𝑥𝑑𝑥;   𝛼 > 0. 

4.3.2 Some useful Properties for Gamma distribution 

I. 𝛤 (
1

2
) = √𝜋.  

II. 𝛤(𝛼 + 1) = 𝛼𝛤(𝛼),     𝛼 > 0. 

Proof 

𝛤(𝛼 + 1) = ∫ 𝑥𝛼
∞

0
𝑒−𝑥𝑑𝑥      (Form gamma function definition). 

Use integration by parts:  

 𝑢 = 𝑥𝛼                          𝑑𝑣 = 𝑒−𝑥𝑑𝑥 
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𝑑𝑢 = 𝛼𝑥𝛼−1𝑑𝑥           𝑣 = −𝑒−𝑥 

𝛤(𝛼 + 1) = −𝑥𝛼𝑒−𝑥|0
∞ + ∫ 𝛼𝑥𝛼−1𝑒−𝑥

∞

0
𝑑𝑥  

= 𝛼 ∫ 𝑥𝛼−1𝑒−𝑥
∞

0
𝑑𝑥 = 𝛼𝛤(𝛼).  (Form gamma function definition) 

III. ∫ 𝑥𝛼
∞

0
𝑒−𝛽𝑥𝑑𝑦 = 

𝛤(𝛼+1)

𝛽𝛼+1
;     𝛼, 𝛽 > 0.  

Proof 

Let 𝑦 = 𝛽𝑥 ⇒ 𝑑𝑦 = 𝛽𝑑𝑥 ⇒ 𝑑𝑥 =
𝑑𝑦

𝛽
, thus, 𝑥: 0 → ∞ ⇒ 𝑦: 0 → ∞ then, 

∫ 𝑥𝛼
∞

0
𝑒−𝛽𝑥𝑑𝑥 = ∫ (

𝑦

𝛽
)
𝛼∞

0
𝑒−𝑦

𝑑𝑦

𝛽
=

1

𝛽𝛼+1
 ∫ 𝑦𝛼
∞

0
𝑒−𝑦𝑑𝑦  

=
𝛤(𝛼+1)

𝛽𝛼+1
                                          (Form gamma function definition) 

Example 4.6 

I. Find 𝛤 (
7

2
). 

II. Find the value of the following integral    𝐼 = ∫ 𝑥6𝑒−5𝑥𝑑𝑥
∞

0
. 

Solution 

I. 𝛤 (
7

2
) =

5

2
∙ 𝛤 (

5

2
) =

5

2
∙
3

2
𝛤 (

3

2
) =

5

2
∙
3

2
∙
1

2
𝛤 (

1

2
) =

5

2
∙
3

2
∙
1

2
∙ √𝜋 =

15

8
√𝜋. 

II. 𝐼 = ∫ 𝑥6𝑒−5𝑥𝑑𝑥
∞

0
=
𝛤(6+1)

56+1
=

6!

57
= 0.0092. 

4.3.3 Definition of Gamma Distribution 

We now define the gamma distribution by providing its PDF. 

A continuous random variable X is said to have a gamma distribution with 

parameters 𝛼 > 0 and 𝛽 > 0, denoted by 𝑋 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽), if its pdf is given by 

𝑓𝑋(𝑥) = 𝑓(𝑥; 𝛼, 𝛽) = {

𝛽𝛼

𝛤(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥;      𝑥 ≥ 0         

0;                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Parameters of the Distribution: 𝛼 > 0, 𝛽 > 0. 

Mean and Variance 

If X is a continuous random variable has gamma distribution with parameters 𝛼, 𝛽 

then, 

𝐸(𝑋) =
𝛼

𝛽
      and      𝑉(𝑥) =

𝛼

𝛽2
. 

Proof 



 215 STAT                                                           Probability I                                               Weaam Alhadlaq 

54 

 

III.𝑬(𝑿) =
𝜶

𝜷
. 

𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

0
= ∫ 𝑥 ∙

𝛽𝛼

𝛤(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥𝑑𝑥

∞

0
=

𝛽𝛼

𝛤(𝛼)
∫ 𝑥𝛼𝑒−𝛽𝑥𝑑𝑥
∞

0
  

=
𝛽𝛼

𝛤(𝛼)
∙
𝛤(𝛼+1)

𝛽𝛼+1
            (Using property III) 

=
1

𝛤(𝛼)
∙
𝛼𝛤(𝛼)

𝛽
=

𝛼

𝛽
.     (Using property II) 

IV. 𝑽(𝑿) =
𝜶

𝜷𝟐
. 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 

𝐸(𝑋2) = ∫ 𝑥2𝑓(𝑥)𝑑𝑥
∞

0
= ∫ 𝑥2 ∙

𝛽𝛼

𝛤(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥𝑑𝑥

∞

0
=

𝛽𝛼

𝛤(𝛼)
∫ 𝑥𝛼+1𝑒−𝛽𝑥𝑑𝑥
∞

0
  

=
𝛽𝛼

𝛤(𝛼)
∙
𝛤(𝛼+2)

𝛽𝛼+2
            (Using property III) 

=
1

𝛤(𝛼)
∙
(𝛼+1)𝛼𝛤(𝛼)

𝛽2
=

𝛼(𝛼+1)

𝛽2
.     (Using property II) 

Hence, 

𝑉(𝑋) =
𝛼(𝛼+1)

𝛽2
− (

𝛼

𝛽
)
2

=
𝛼

𝛽2
. 

Moment Generating Function  

If X is a continuous random variable has gamma distribution with parameters 𝛼, 𝛽 

then, the MGF of X is 

𝑀𝑋(𝑡) = (
𝛽

𝛽−𝑡
)
𝛼

.  

Proof 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥

∞

0
= ∫ 𝑒𝑡𝑥 ∙

𝛽𝛼

𝛤(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥𝑑𝑥

∞

0
  

=
𝛽𝛼

𝛤(𝛼)
∫ 𝑥𝛼−1𝑒−(𝛽−𝑡)𝑥𝑑𝑥
∞

0
=

𝛽𝛼

𝛤(𝛼)
∙
𝛤(𝛼)

(𝛽−𝑡) 𝛼
     (Using property III) 

=
𝛽𝛼

(𝛽−𝑡) 𝛼
= (

𝛽

𝛽−𝑡
)
𝛼

. 

Note that the above derivation is valid only when 𝑡 < 𝛽.  

4.3.4 Special Cases 

First Case 

If we let  𝛼 = 1, we obtain 𝑓(𝑥; 1, 𝛽) = 𝛽𝑒−𝛽𝑥;   𝑥 ≥ 0. Thus, we conclude that 

𝐺𝑎𝑚𝑚𝑎(1, 𝛽) = 𝐸𝑥𝑝(𝛽). 
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Second Case 

If we let  𝛼 =
𝜐

2
, 𝛽 =

1

2
, we obtain 𝑓 (𝑥;

𝜐

2
,
1

2
) =

1

2
(
𝜐
2
)
𝛤(

𝜐

2
)
𝑥
𝜐

2
−1𝑒−

𝑥

2;   𝑥 ≥ 0, which is the 

pdf of the Chi-squared distribution with 𝜐 degrees of freedom. (This distribution will 

be discussed in section 4.4).  

Third Case 

If we let  𝛽 = 1, we obtain 𝑓(𝑥; 𝛼, 1) =
1

𝛤(𝛼)
𝑥𝛼−1𝑒−𝑥;   𝑥 ≥ 0, which is called the 

standard gamma distribution with parameter 𝛼.  

4.3.5 Incomplete Gamma Function 

When X follows the standard Gamma distribution then its cdf is 

𝐹∗(𝑥; 𝛼) = ∫
𝑥𝛼−1𝑒−𝑥

𝛤(𝛼)
 𝑑𝑥

∞

0
;     𝑥 ≥ 0. 

This is also called the incomplete gamma function. 

Proposition 

If 𝑋~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽), then  

𝐹(𝑥;  𝛼, 𝛽) =  𝑃(𝑋 ≤  𝑥) =  𝐹∗(𝛽𝑥; 𝛼), 

where 𝐹∗ is the incomplete gamma function, and 𝐹 is the cdf of the gamma 

distribution. 

Note 

Table 4.1 in appendix (A) provides some values of 𝐹∗(𝑥; 𝛼) for 𝛼 =  1,2, … ,10 and 

𝑥 =  1,2, . . ,15. 

Example 4.7 

Let X represents the survival time in weeks, where 𝑋~𝐺𝑎𝑚𝑚𝑎(6,0.05). Find the 

mean and the variance, then calculate the probabilities 𝑃(60 < 𝑋 < 120),

𝑃(𝑋 < 30). 

Solution 

𝜇 =
𝛼

𝛽
=

6

0.05
= 120 weeks, and 𝜎2 =

𝛼

𝛽2
=

6

(0.05)2
= 2400. 

𝑃(60 < 𝑋 < 120) = 𝑃(𝑋 < 120) − 𝑃(𝑋 < 60) = 𝐹(120; 6,0.05) − 𝐹(60; 6,0.05) 

 𝐹∗(120 ∙ 0.05; 6) − 𝐹∗(60 ∙ 0.05; 6) = 𝐹∗(6; 6) − 𝐹∗(3; 6) = 0.554 − 0.084 = 0.47. 
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Example 4.8 

Suppose that the time, in hours, taken to repair a heat pump is a r.v. X having a 

gamma distribution with parameters 𝛼 = 𝛽 = 2. What is the probability that the 

next service call will required  

I. at least 2 hours to repair the heat pump. 

II. at most 1.25 hours to repair the heat pump. 

Solution 

𝒇(𝒙) =
22

𝛤(2)
𝑥2−1𝑒−2𝑥 = 4𝑥𝑒−2𝑥. 

I. 𝑷(𝑿 ≥ 𝟐) = 𝟏 − 𝑷(𝑿 < 𝟐) = 𝟏 − 𝑭(𝟐; 𝟐, 𝟐) = 𝟏 − 𝑭∗(𝟒; 𝟐) = 𝟏 − 𝟎. 𝟗𝟎𝟖 =

𝟎. 𝟎𝟗𝟐. 

II. 𝑷(𝑿 ≤ 𝟏. 𝟐𝟓) = ∫ 4𝑥𝑒−2𝑥𝑑𝑥
𝟏.𝟐𝟓

𝟎
 

Use integration by parts:  

 𝑢 = 4𝑥                𝑑𝑣 = 𝑒−2𝑥𝑑𝑥 

𝑑𝑢 = 4 𝑑𝑥           𝑣 = −
𝑒−2𝑥

2
 

𝑷(𝑿 ≤ 𝟏. 𝟐𝟓) = −2𝑥𝑒−2𝑥|0
1.25 + ∫ 2𝑒−2𝑥𝑑𝑥

1.25

0
= −2(1.25)𝑒−2(1.25) + 0 −

𝑒−2𝑥|0
1.25  

= 1 − 3.5𝑒−2.5 = 0.7127. 

 

4.4 Chi-squared Distribution 

The r.v. X is said to has a Chi-Squared distribution with parameter 𝜐  (𝑋~𝜒𝜐
2) if its 

pdf is given by 

𝑓(𝑥) = 𝑓(𝑥; 𝜐) = {

1

2
(
𝜐
2
)
𝛤(

𝜐

2
)
𝑥
𝜐

2
−1𝑒−

𝑥

2;    𝑥 ≥ 0         

0;                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

Parameter of the Distribution: 𝜐 > 0 (The degrees of freedom ‘df’). 

Mean and Variance 

If X is a continuous random variable has chi-squared distribution with parameter 𝜐 

then, 
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𝐸(𝑋) = 𝜐   and  𝑉(𝑥) = 2𝜐 . 

Moment Generating Function  

If X is a continuous random variable has Chi-squared distribution with parameter 𝜐 

then, the MGF of X is 

𝑀𝑋(𝑡) = (
1

1−2𝑡
)

𝜐

2
= (1 − 2𝑡)−

𝜐

2. 

Note 

Table 4.2 in appendix (A) provides some Lower Critical values for Chi-square 

distribution. 

Example 4.9 

If 𝑋~𝜒7
2 find 𝑎, 𝑏 if 

I. 𝑃(𝑋 < 𝑎) = 0.1. 

Solution 

𝒂 = 2.83. (From the table) 

II. 𝑃(𝑋 ≥ 𝑏) = 0.99. 

Solution 

𝑃(𝑋 ≥ 𝑏) = 1 − 𝑃(𝑋 < 𝑏) = 0.99  ⇒   𝑃(𝑋 < 𝑏) = 1 − 0.99 = 0.01. 

Therefore, 𝑏 = 1.24. 

4.5 Beta Distribution 

A continuous random variable X is said to have a beta distribution 𝑋~𝐵𝑒𝑡𝑎(𝛼, 𝛽) if it 

has probability density function 

𝑓(𝑥) = 𝑓(𝑥; 𝛼, 𝛽) = {

1

𝐵(𝛼,𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1;     0 < 𝑥 < 1.

0;                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

Where the beta function is defined as 𝐵(𝛼, 𝛽) = ∫ 𝑥𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥
1

0
=

𝛤(𝛼)𝛤(𝛽)

𝛤(𝛼+𝛽)
. 

Thus, 𝑓(𝑥) =
𝛤(𝛼+𝛽)

𝛤(𝛼)𝛤(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1.  

Parameters of the Distribution: 𝛼, 𝛽 > 0. 

Mean and Variance 
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If X is a continuous random variable has beta distribution with parameters 𝛼 and 𝛽 

then, 

𝐸(𝑋) =
𝛼

𝛼+𝛽
   and  𝑉(𝑥) =

𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
 .  

Moment Generating Function  

The moment-generating function for the beta distribution is complicated. Therefore, 

we will not mention it. 

 Example 4.10 

If 𝑋~𝐵𝑒𝑡𝑎(3,2), Find 𝑃(𝑋 < 3), 𝑃(𝑋 = 7) and 𝑃(𝑋 < 0.5). 

Solution 

𝑓(𝑥) =
𝛤(3+2)

𝛤(3)𝛤(2)
 𝑥3−1(1 − 𝑥)2−1 =

4!

2!
 𝑥2(1 − 𝑥) = 12 𝑥2(1 − 𝑥); 0 < 𝑥 < 1.     

𝑃(𝑋 < 3) = ∫ 12 𝑥2(1 − 𝑥)
1

0
𝑑𝑥 = 1. 

𝑃(𝑋 = 7) = 0. 

𝑃(𝑋 < 0.5) = ∫ 12 𝑥2(1 − 𝑥)
0.5

0
𝑑𝑥 = 12∫  (𝑥2 − 𝑥3)

0.5

0
𝑑𝑥 = 12 (

𝑥3

3
−
𝑥4

4
) |0

0.5  

= (4𝑥3 − 3𝑥4)|0
0.5 = 0.3125.   

4.6 Normal Distribution 

The normal distribution is one of the most important continuous distributions. 

Many measurable characteristics are normally or approximately normally 

distributed, such as, height and weight. The graph of the probability density function 

pdf of a normal distribution, called the normal curve, is a bell-shaped curve.  

 

A continuous random variable X is said to have a normal distribution 𝑋~𝑁(𝜇, 𝜎) if it 

has probability density function 
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𝑓(𝑥) = 𝑓(𝑥; 𝜇, 𝜎) = {

1

𝜎√2𝜋
 𝑒−

1
2
(
𝑥−𝜇
𝜎
)
2

;    −∞ < 𝑥 < ∞.

0;                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 

Parameters of the Distribution: −∞ < 𝜇 < ∞ (The mean), 𝜎 > 0 (The standard 

deviation). 

Mean and Variance 

If X is a continuous random variable has normal distribution with parameters 𝜇 and 

𝜎 then, 

𝐸(𝑋) = 𝜇   and  𝑉(𝑥) = 𝜎2 . 

Moment Generating Function  

If X is a continuous random variable has normal distribution with parameters 𝜇 and 

𝜎 then, the MGF of X is 

𝑀𝑋(𝑡) = 𝑒
𝜇𝑡+

1

2
𝜎2𝑡2 . 

Note 

The proof for the normal distribution MGF will be reviewed later in this chapter. 

4.6.1 Some properties of the normal curve 𝒇(𝒙) of 𝑵(𝝁,𝝈) 

I. 𝑓(𝑥) is symmetric about the mean 𝜇. 

II. The total area under the curve of 𝑓(𝑥)  = 1. 

III. The highest point of the curve of 𝑓(𝑥) at the mean 𝜇.  

IV. The mode, which is the point on the horizontal axis where the curve is a 

maximum, occurs at = 𝜇 , (Mode = Median = Mean).  

V.  The curve has its points of inflection at 𝑋 = 𝜇 ± 𝜎 is concave downward if 𝜇 −

𝜎 < 𝑋 < 𝜇 + 𝜎 and is concave upward otherwise. 

VI. The normal curve approaches the horizontal axis asymptotically as we proceed 

in either direction away from the mean.  

VII. The location of the normal distribution depends on 𝜇 and its shape depends on 

𝜎. 
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𝜇1 < 𝜇2;  𝜎1 = 𝜎2 𝜇1 = 𝜇2;  𝜎1 < 𝜎2 𝜇1 < 𝜇2;  𝜎1 < 𝜎2 

Where the solid line represents 𝑁(𝜇1, 𝜎1), and the dashed line represents 𝑁(𝜇2, 𝜎2). 

4.6.2 Standard Normal Distribution 

The special case of the normal distribution where the mean 𝜇 = 0 and the variance 

𝜎2 = 1 called the standard normal distribution denote𝑁(0,1). Thus, the pdf is 

reduced to  

𝑓(𝑧) = 𝑓(𝑧; 0,1) = {
1

√2𝜋
 𝑒−

1

2
𝑧2;    −∞ < 𝑧 < ∞.

0;                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
  

Notations 

▪ The random variable which has a standard normal distribution is usually 

denoted by Z. 

▪ If 0 < 𝛼 < 1 the notation 𝑧𝛼 refers to the point in the standard normal distribution Z 

such that 𝑃(𝑍 < 𝑧𝛼) = 𝛼.  

Moment Generating Function  

If Z is a continuous random variable has standard normal distribution then, the MGF 

of Z is 

𝑀𝑍(𝑡) = 𝑒
𝑡2

2 . 

Proof 

𝑀𝑍(𝑡) = 𝐸(𝑒𝑡𝑍) = ∫ 𝑒𝑡𝑧𝑓(𝑧) 𝑑𝑧
∞

−∞
= ∫ 𝑒𝑡𝑧 ∙

1

√2𝜋
 𝑒−

1

2
𝑧2 𝑑𝑧

∞

−∞
= ∫  

1

√2𝜋
𝑒−

1

2
(𝑧2−2𝑡𝑧) 𝑑𝑧

∞

−∞
  

= ∫  
1

√2𝜋
𝑒−

1

2
(𝑧2−2𝑡𝑧+𝑡2−𝑡2) 𝑑𝑧

∞

−∞
         (add and subtract 𝑡2)  

= 𝑒−
𝑡2

2 ∫  
1

√2𝜋
𝑒−

1

2
(𝑧2−2𝑡𝑧+𝑡2) 𝑑𝑧

∞

−∞
= 𝑒−

𝑡2

2 ∫  
1

√2𝜋
𝑒−

1

2
(𝑧−𝑡)2 𝑑𝑧

∞

−∞
 = 𝑒−

𝑡2

2 ∙ 1 = 𝑒−
𝑡2

2 .       

(∫  
1

√2𝜋
𝑒−

1

2
(𝑧−𝑡)2 𝑑𝑧

∞

−∞
= 1 because it is a pdf of a 𝑁(𝑡, 1)). 
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Deriving the MGF of a Normal Distribution 

Recall the MGF of the normal distribution 𝑀𝑋(𝑡) = 𝑒𝜇𝑡+
1

2
𝜎2𝑡2 . 

Proof  

We know that 𝑍 =
𝑋−𝜇

𝜎
⇒ 𝑋 = 𝜎𝑍 + 𝜇. Where 𝑍~𝑁(0,1) and 𝑋~𝑁(𝜇, 𝜎). 

Using the theorem: If 𝑌 = 𝑎 + 𝑏𝑋 ⇒ 𝑀𝑌(𝑡) = 𝑒𝑎𝑡𝑀𝑋(𝑏𝑡), we get 

𝑀𝑋(𝑡) = 𝑀𝜎𝑍+𝜇(𝑡) = 𝑒
𝜇𝑡𝑀𝑍(𝜎𝑡) = 𝑒𝜇𝑡 ∙ 𝑒

1

2
𝜎2𝑡2 = 𝑒𝜇𝑡+

1

2
𝜎2𝑡2 . 

Note 

Table 4.3 in appendix (A) provides the area to the left of Z for standard normal 

distribution. 

4.6.3 Calculating Probabilities of Standard Normal Distribution 

The standard normal distribution is very important because probabilities of any 

normal distribution can be calculated from the probabilities of the standard normal 

distribution.  

I. 𝑃(𝑍 ≤ 𝑎) from the table. 

II. 𝑃(𝑍 ≥ 𝑏) =  1 −  𝑃(𝑍 ≤ 𝑏) where 𝑃(𝑍 ≤ 𝑏) from the table. 

III. 𝑃(𝑎 ≤ 𝑍 ≤ 𝑏) = 𝑃(𝑍 ≤ 𝑏) − 𝑃(𝑍 ≤ 𝑎), where 𝑃(𝑍 ≤ 𝑎) and 𝑃(𝑍 ≤ 𝑏) from the 

table. 

Proposition 

If 𝑋~𝑁(𝜇, 𝜎), then 𝑍 =
𝑋−𝜇

𝜎
~𝑁(0,1). 

4.6.4 Calculating Probabilities of Normal Distribution 

I. 𝑃(𝑋 ≤ 𝑎) = 𝑃 (𝑍 ≤
𝑎−𝜇

𝜎
) from the table. 

II. 𝑃(𝑋 ≥ 𝑏) = 𝑃 (𝑍 ≥
𝑏−𝜇

𝜎
) = 1 − 𝑃 (𝑍 ≤

𝑏−𝜇

𝜎
), where 𝑃 (𝑍 ≤

𝑏−𝜇

𝜎
) from the table. 

III. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃 (
𝑎−𝜇

𝜎
≤ 𝑍 ≤

𝑏−𝜇

𝜎
) = 𝑃 (𝑍 ≤

𝑏−𝜇

𝜎
) − 𝑃 (𝑍 ≤

𝑎−𝜇

𝜎
),  

where 𝑃 (𝑍 ≤
𝑏−𝜇

𝜎
) and 𝑃 (𝑍 ≤

𝑎−𝜇

𝜎
) from the table. 

Example 4.11 
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If 𝑍~𝑁(0,1). Find 𝑃(𝑍 < 1.5), 𝑃(𝑍 > 0.98), 𝑃(𝑍 < 0) and 𝑃(−1.33 < 𝑍 < 2.42). 

Solution 

𝑃(𝑍 < 1.5) = 0.9332. 

𝑃(𝑍 > 0.98) = 1 − 0.8365 = 0.1635. 

𝑃(𝑍 < 0) = 0.5. 

𝑃(−1.33 < 𝑍 < 2.42) = 𝑃(𝑍 < 2.42) − 𝑃(𝑍 < −1.33) = 0.9922 − 0.0918 = 0.9004. 

Example 4.12 

Suppose that the birth weight of Saudi babies X has a normal distribution with mean 

𝜇 = 3.4 and standard deviation 𝜎 = 0.35.  

I. Find the probability that a randomly chosen Saudi baby has a birth weight 

between 3.0 and 4.0 kg.  

II. What is the percentage of Saudi babies who have a birth weight between 3.0 

and 4.0 kg. 

Solution 

I. 𝑃(3 < 𝑋 < 4) = 𝑃 (
3−3.4

0.35
< 𝑍 <

4−3.4

0.35
) = 𝑃(−1.14 < 𝑍 < 1.71)  

= 𝑃(𝑍 < 1.711) − 𝑃(𝑍 < −1.14) = 0.9564 − 0.1271 = 0.8293. 

II.  𝑃(3 < 𝑋 < 4) ∙ 100% = 0.8293 ∙ 100% = 82.93%. 

 

 

 

 

 

 



 215 STAT                                                           Probability I                                               Weaam Alhadlaq 

63 

 

Chapter Five                                                                                       

Joint, Marginal, and Conditional Distributions 

In the study of probability, given at least two random variables X, Y, ..., that are 

defined on a probability space, the joint probability distribution for X, Y, ... is 

a probability distribution that gives the probability that each of X, Y, ... falls in any 

particular range or discrete set of values specified for that variable. In the case of 

only two random variables, this is called a bivariate (joint) distribution, but the 

concept generalizes to any number of random variables, giving a multivariate 

distribution. 

For both discrete and continuous random variables we will discuss the 

following  

▪ Joint Distributions. 

▪ Cumulative distribution. 

▪ Marginal Distributions (computed from a joint distribution).  

▪ Joint Mathematical Expectation 

▪ Conditional Distributions (e.g. 𝑃(𝑌 = 𝑦|𝑋 = 𝑥)).  

▪ Joint Moment Generating Function. 

5.1 Joint Distributions 

5.1.1 Joint Probability function 

Joint distribution of two random variables X and Y has a probability function or 

probability density function 𝑓(𝑥, 𝑦) that is a function of two variables (sometimes 

denoted 𝑓𝑋,𝑌(𝑥, 𝑦)). 

Discrete Case 

If 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑌 = 𝑦1, 𝑦2, … , 𝑦𝑚 are two discrete random variables, then the 

values of the joint probability function of 𝑋 and 𝑌 ‘𝑓(𝑥, 𝑦)’ is  

  

https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_space
https://en.wikipedia.org/wiki/Probability_distribution
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𝑓(𝑥, 𝑦) 𝑦1 𝑦2 … 𝑦𝑗  … 𝑦𝑚 ∑ 𝑓(𝑥, 𝑦)𝑦   

𝑥1 𝑓(𝑥1, 𝑦1) 𝑓(𝑥1, 𝑦2) … 𝑓(𝑥1, 𝑦𝑗) … 𝑓(𝑥1, 𝑦𝑚) 𝑓𝑋(𝑥1) 

𝑥2 𝑓(𝑥2, 𝑦1) 𝑓(𝑥2, 𝑦2) … 𝑓(𝑥2, 𝑦𝑗) … 𝑓(𝑥2, 𝑦𝑚) 𝑓𝑋(𝑥2) 

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 

𝑥𝑖  𝑓(𝑥𝑖, 𝑦1) 𝑓(𝑥𝑖, 𝑦2) … 𝑓(𝑥𝑖 , 𝑦𝑗) … 𝑓(𝑥𝑖, 𝑦𝑚) 𝑓𝑋(𝑥𝑖) 

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 

𝑥𝑛 𝑓(𝑥𝑛, 𝑦1) 𝑓(𝑥𝑛, 𝑦2) … 𝑓(𝑥𝑛, 𝑦𝑗) … 𝑓(𝑥𝑛, 𝑦𝑚) 𝑓𝑋(𝑥𝑛) 

∑ 𝑓(𝑥, 𝑦)𝑥   𝑓𝑌(𝑦1) 𝑓𝑌(𝑦2) … 𝑓𝑌(𝑦𝑗) … 𝑓𝑌(𝑦𝑚) 1 

𝑓(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) must satisfy 

I. 0 ≤ 𝑓(𝑥, 𝑦) ≤ 1. 

II. ∑ ∑ 𝑓(𝑥, 𝑦)𝑦𝑥 = 1. 

Continuous Case 

If X and Y are continuous random variables, then 𝑓(𝑥, 𝑦) must satisfy 

I. 𝑓(𝑥, 𝑦) ≥ 0. 

II. ∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦𝑑𝑥
 

𝑦

 

𝑥
= 1. 

5.1.2 Joint distribution function  

If random variables X and Y have a joint distribution, then the cumulative 

distribution function is 

𝐹(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = {
∑ ∑ 𝑓(𝑠, 𝑡)𝑥

𝑠=−∞
𝑦
𝑡=−∞ ;     If X, Y are discrete r. v.′ s     

∫ ∫ 𝑓(𝑠, 𝑡)
𝑥

−∞
𝑑𝑠

𝑦

−∞
𝑑𝑡 ;     If X, Y are continouos r. v. ′s

     

Note 

In the continuous case,  
𝜕2

𝜕𝑥𝜕𝑦
 𝐹(𝑥, 𝑦) = 𝑓(𝑥, 𝑦). 

Some Properties of the Joint CDF 

▪ 𝐹(𝑥, 𝑦) is non-decreasing in both 𝑥 and 𝑦. 

▪ 𝐹(𝑥,∞) = 𝐹(𝑥). 

▪ 𝐹(∞, 𝑦) = 𝐹(𝑦). 

▪ 𝐹(∞,∞) = 1. 

▪ 𝐹(𝑥,−∞) = 𝐹(−∞,𝑦) = 𝐹(−∞,−∞) = 0. 



 215 STAT                                                           Probability I                                               Weaam Alhadlaq 

65 

 

5.1.3 Marginal probability Distributions 

If X and Y have a joint distribution with joint density or probability function 𝑓(𝑥, 𝑦) 

then  

▪ The marginal distribution of X has a probability function or density function 

denoted 𝑓𝑋(𝑥) is equal to 

𝑓𝑋(𝑥) = {
∑ 𝑓(𝑥, 𝑦)𝑦 ;         In the discrete case    

∫ 𝑓(𝑥, 𝑦) 𝑑𝑦
∞

−∞
;    In the continouos case

     

▪ The marginal distribution of Y has a probability function or density function 

denoted 𝑓𝑌(𝑦) is equal to 

𝑓𝑌(𝑦) = {
∑ 𝑓(𝑥, 𝑦)𝑥 ;         In the discrete case    

∫ 𝑓(𝑥, 𝑦) 𝑑𝑥
∞

−∞
;   In the continouos case

     

5.1.4 Joint Mathematical Expectation 

If 𝑔(𝑥, 𝑦) is a function of two variables, and X and Y are jointly distributed random 

variables with joint probability function 𝑓(𝑥, 𝑦), then the expected value of  𝑔(𝑥, 𝑦) 

is defined to be 

𝐸[𝑔(𝑋, 𝑌)] = {
∑ ∑ 𝑔(𝑥, 𝑦)𝑓(𝑥, 𝑦)𝑥𝑦 ;                 In the discrete case    

∫ ∫ 𝑔(𝑥, 𝑦)𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
;    In the continouos case

     

Special cases 

I. If 𝑔(𝑋, 𝑌) = 𝑋, we get 

𝐸[𝑔(𝑋, 𝑌)] = {
∑ ∑ 𝑥𝑓(𝑥, 𝑦)𝑥𝑦 ;                                           In the discrete case     

∫ ∫ 𝑥𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
;                             In the continouos case

     

= {
∑ 𝑥 ∑ 𝑓(𝑥, 𝑦)𝑦𝑥 = ∑ 𝑥𝑓(𝑥)𝑥 = 𝐸(𝑋);                          In the discrete case     

∫ 𝑥 ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦𝑑𝑥
∞

−∞

∞

−∞
= ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

−∞
= 𝐸(𝑋);    In the continouos case

     

Similarly for 𝑔(𝑋, 𝑌) = 𝑌. 

II. If 𝑔(𝑋, 𝑌) = (𝑋 − 𝜇)2, we get 

𝐸[𝑔(𝑋, 𝑌)] = {
∑ ∑ (𝑥 − 𝜇)2𝑓(𝑥, 𝑦)𝑥𝑦 ;                  In the discrete case      

∫ ∫ (𝑥 − 𝜇)2𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
;    In the continouos case
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= {
∑ (𝑥 − 𝜇)2∑ 𝑓(𝑥, 𝑦)𝑦𝑥 ;                  In the discrete case      

∫ (𝑥 − 𝜇)2 ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦𝑑𝑥
∞

−∞

∞

−∞
;   In the continouos case

   

= {
∑ (𝑥 − 𝜇)2𝑓(𝑥)𝑥 = 𝑉(𝑋);              In the discrete case      

∫ (𝑥 − 𝜇)2𝑓(𝑥)𝑑𝑥
∞

−∞
= 𝑉(𝑋);      In the continouos case

   

Similarly for 𝑔(𝑋, 𝑌) = (𝑌 − 𝜇)2. 

Example 5.1 

A company that services air conditioner units in residences and office blocks is 

interested in how to schedule its technicians in the most efficient manner. The 

random variable X, taking the values 1,2,3 and 4, is the service time in hours. The 

random variable Y, taking the values 1,2 and 3, is the number of air conditioner 

units. The joint probability function for X and Y is given in the table below 

  X: Service Time 

  1 2 3 4 
Y: Number of 

Air 
Conditions 

Units 

1 0.12 0.08 0.07 0.05 
2 0.08 0.15 0.21 0.13 

3 0.01 0.01 0.02 0.07 

I. Proof that 𝑓(𝑥, 𝑦) is a joint probability function. 

II. Find: 𝑓(2,1), 𝑓𝑋(3), 𝐹(2,3), 𝑃(𝑋 < 3, 𝑌 > 2), 𝑃(𝑋 + 𝑌 ≤ 4). 

III. Find the marginal function 𝑓𝑌(𝑦). 

IV. Find 𝐸(𝑌), 𝑉(𝑌), 𝐸(𝑋𝑌). 

Solution 

I. First, it is clear that 0 ≤ 𝑓(𝑥, 𝑦) ≤ 1, ∀ 𝑥, 𝑦. 

Second, ∑ ∑ 𝑓(𝑥, 𝑦)𝑦𝑥 = 0.12 + 0.08 +⋯+ 0.07 = 1. 

II. 𝑓(2,1) = 0.08. 

𝑓𝑋(3) = 0.07 + 0.21 + 0.02 = 0.3.  

𝐹(2,2) = 𝑓(1,1) + 𝑓(1,2) + 𝑓(2,1) + 𝑓(2,2) = 0.12 + 0.08 + 0.08 + 0.15 =

0.43.   

𝑃(𝑋 < 3, 𝑌 > 2) = 𝑓(1,3) + 𝑓(2,3) = 0.01 + 0.01 = 0.02.  

𝑃(𝑋 + 𝑌 ≤ 4) = 𝑓(1,1) + 𝑓(1,2) + 𝑓(1,3) + 𝑓(2,1) + 𝑓(2,2) + 𝑓(3,1) = 0.51. 
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III.  

Y 1 2 3 Sum 

𝑓𝑌(𝑦) 0.32 0.57 0.11 1 

IV.  

Y 1 2 3 Sum 

𝑓𝑌(𝑦) 0.32 0.57 0.11 1 

𝑦𝑓(𝑦) 0.32 1.14 0.33 𝐸(𝑌) = 1.79 

𝑦2𝑓(𝑦) 0.32 2.28 0.99 𝐸(𝑌2) = 3.59 

Thus, 𝐸(𝑌) = 1.79, and 𝑉(𝑌) = 𝐸(𝑌2) − [𝐸(𝑌)]2 = 3.59 − (1.79)2 = 0.3859. 

Now,  

𝐸(𝑋𝑌) = ∑ ∑ 𝑥𝑦𝑓(𝑥, 𝑦)4
x=1

3
y=1 = (1)(1)(0.12) + (1)(2)(0.08) + (1)(3)(0.01) + ⋯+

(4)(3)(0.07) = 4.86. 

Example 5.2 

Consider the joint probability function  

𝑓(𝑥, 𝑦) = 𝑐(𝑥 + 𝑦);      0 < 𝑥, 𝑦 < 2. 

Find 𝑐, 𝑓𝑋(𝑥), 𝑓𝑌(𝑦), 𝐹(1,1), 𝑉(𝑋), 𝐸[𝑋(𝑋 + 6)].  

Solution 

▪ To find c we know that  

∫ ∫ 𝑓(𝑥, 𝑦) 𝑑𝑦𝑑𝑥
 

𝑦

 

𝑥
= 1 ⇒    1 = 𝑐 ∫ ∫ (𝑥 + 𝑦) 𝑑𝑦𝑑𝑥

2

0

2

0
= 𝑐 ∫ [𝑥𝑦 +

𝑦2

2
] |0
2𝑑𝑥

2

0
  

= 𝑐 ∫ (2𝑥 + 2)𝑑𝑥
2

0
= 𝑐[𝑥2 + 2𝑥]|0

2 = 8𝑐 ⇒ 𝑐 =
1

8
.  

Thus, 𝑓(𝑥, 𝑦) =
𝑥+𝑦

8
. 

▪ 𝑓𝑋(𝑥) =
1

8
∫ (𝑥 + 𝑦) 𝑑𝑦
2

0
=

1

8
[𝑥𝑦 +

𝑦2

2
] |0
2 =

1

8
(2𝑥 + 2) =

𝑥+1

4
;   0 < 𝑥 < 2. 

▪ 𝑓𝑌(𝑦) =
1

8
∫ (𝑥 + 𝑦) 𝑑𝑥
2

0
=

1

8
[
𝑥2

2
+ 𝑥𝑦] |0

2 =
1

8
(2𝑦 + 2) =

𝑦+1

4
;   0 < 𝑦 < 2. 

▪ 𝐹(1,1) = 𝑃(𝑋 ≤ 1, 𝑌 ≤ 1) =
1

8
∫ ∫ (𝑥 + 𝑦) 𝑑𝑦𝑑𝑥

1

0

1

0
=

1

8
∫ [𝑥𝑦 +

𝑦2

2
] |0
1𝑑𝑥

1

0
=

1

8
∫ (𝑥 +

1

2
) 𝑑𝑥

1

0
=

1

8
[
𝑥2

2
+
𝑥

2
] |0
1 =

1

8
. 

▪ 𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 

𝐸(𝑋) =
1

4
∫ 𝑥(𝑥 + 1) 𝑑𝑥
2

0
=

1

4
∫ (𝑥2 + 𝑥) 𝑑𝑥
2

0
=

1

4
[
𝑥3

3
+
𝑥2

2
] |0
2 =

1

4
[
8

3
+ 2] =

7

6
.  
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𝐸(𝑋2) =
1

4
∫ 𝑥2(𝑥 + 1) 𝑑𝑥
2

0
=

1

4
∫ (𝑥3 + 𝑥2) 𝑑𝑥
2

0
=

1

4
[
𝑥4

4
+
𝑥3

3
] |0
2 =

1

4
[
16

4
+
8

3
] =

5

3
.  

⇒ 𝑉(𝑋) =
5

3
− [

7

6
]
2

=
11

36
. 

▪ 𝐸[𝑋(𝑋 + 6)] = 𝐸(𝑋2 + 6𝑋) = 𝐸(𝑋2) + 6𝐸(𝑋) =
5

3
+ 6(

7

6
) =

26

3
. 

5.1.5 Joint Moment Generating Function 

Given jointly distributed random variables X and Y, the moment generating 

function of the joint distribution is 

𝑀𝑋,𝑌(𝑡1, 𝑡2) = 𝐸(𝑒𝑋𝑡1+𝑌𝑡2) = {
∑ ∑ 𝑒𝑥𝑡1+𝑦𝑡2𝑓(𝑥, 𝑦)𝑦𝑥 ;                 In the discrete case

∫ ∫ 𝑒𝑥𝑡1+𝑦𝑡2𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
;  In the discrete case

 ,     

where, −∞ < 𝑡1, 𝑡2 < ∞. 

Some Properties  

If X, Y are r.v’s and 𝑟1, 𝑟2 are integer values, then 

I. 𝑀𝑋,𝑌(0,0) = 1. 

II. 𝑀𝑋,𝑌(t1, 0) = 𝑀𝑋(𝑡1). 

III. 𝑀𝑋,𝑌(0, t2) = 𝑀𝑌(𝑡2). 

IV. 
𝜕𝑟1

𝜕𝑡1
𝑟1𝑀𝑋,𝑌(𝑡1, 𝑡2)|t1=t2=0 = 𝐸(𝑋𝑟1). 

V. 
𝜕𝑟2

𝜕𝑡2
𝑟2𝑀𝑋,𝑌(𝑡1, 𝑡2)|t1=t2=0 = 𝐸(𝑌𝑟2). 

VI. 
𝜕𝑟1+𝑟2

𝜕𝑡1
𝑟1𝜕𝑡2

𝑟2𝑀𝑋,𝑌(𝑡1, 𝑡2)|t1=t2=0 = 𝐸(𝑋𝑟1𝑌𝑟2). (The (𝑟1 + 𝑟2)th joint raw moment) 

 Example 5.3 

Consider the joint probability function  

  Y 

 𝑓(𝑥, 𝑦) -2 0 5 

X 
1 0.15 0.25 0.2 

3 0.2 0.05 0.15 

Find 𝑀(𝑡1, 𝑡2), then use it to find 𝐸(𝑋), 𝐸(𝑋𝑌). 

Solution 

𝑀(𝑡1, 𝑡2) = ∑ ∑ 𝑒𝑥𝑡1+𝑦𝑡2𝑓(𝑥, 𝑦)5
𝑦=−2

3
𝑥=1   
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= 0.15𝑒𝑡1−2𝑡2 + 0.25𝑒𝑡1 + 0.2𝑒𝑡1+5𝑡2 + 0.2𝑒3𝑡1−2𝑡2 + 0.05𝑒3𝑡1 + 0.15𝑒3𝑡1+5𝑡2   

  𝐸(𝑋) =
𝜕

𝜕𝑡1
𝑀𝑋,𝑌(𝑡1, 𝑡2)|t1=t2=0  

= 0.15𝑒𝑡1−2𝑡2 + 0.25𝑒𝑡1 + 0.2𝑒𝑡1+5𝑡2 + 0.6𝑒3𝑡1−2𝑡2 + 0.15𝑒3𝑡1 + 0.45𝑒3𝑡1+5𝑡2|t1=t2=0  

= 1.8. 

𝐸(𝑋𝑌) =
𝜕2

𝜕𝑡1𝜕𝑡2
𝑀𝑋,𝑌(𝑡1, 𝑡2)|t1=t2=0 =

𝜕

𝜕𝑡2
[0.15𝑒𝑡1−2𝑡2 + 0.25𝑒𝑡1 + 0.2𝑒𝑡1+5𝑡2 +

0.6𝑒3𝑡1−2𝑡2 + 0.15𝑒3𝑡1 + 0.45𝑒3𝑡1+5𝑡2]|t1=t2=0 

= [−0.3𝑒𝑡1−2𝑡2 + 𝑒𝑡1+5𝑡2 − 1.2𝑒3𝑡1−2𝑡2 + 2.25𝑒3𝑡1+5𝑡2]|t1=t2=0 = 1.75.     

Extra Example 
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Extra Example

 

 

5.2 Conditional Distributions 

5.2.1 Conditional Probability function 

The probability of the random variable X under the knowledge provided by the 

value of Y is given by 

𝑓𝑋|𝑌=𝑦(𝑥|𝑦) =
𝑓(𝑥,𝑦)

𝑓(𝑦)
;   𝑓(𝑦) > 0. 

Note that 𝑓𝑋|𝑌=𝑦(𝑥|𝑦) must satisfy 

I. 𝑓𝑋|𝑌=𝑦(𝑥|𝑦) ≥ 0.  

II. {
∑ 𝑓𝑋|𝑌=𝑦(𝑥|𝑦)𝑥 = 1;             In the discrete case      

∫ 𝑓𝑋|𝑌=𝑦(𝑥|𝑦)
∞

−∞
𝑑𝑥 = 1;     In the continuous case

. 

Similarly,  

𝑓𝑌|𝑋=𝑥(𝑦|𝑥) =
𝑓(𝑥,𝑦)

𝑓(𝑥)
;   𝑓(𝑥) > 0. 
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5.2.2 Conditional Distribution Function 

The conditional CDF is as follows 

𝐹(𝑥|𝑦) = 𝑃[𝑋 ≤ 𝑥|𝑌 ≤ 𝑦] = {
∑ 𝑓(𝑠|𝑦)𝑥
𝑠=−∞ ;     In the discrete case      

∫ 𝑓(𝑢|𝑦)
𝑥

−∞
𝑑𝑢;     In the continuous case

  

Note 

𝜕

𝜕𝑥
𝐹(𝑥|𝑦) = 𝑓(𝑥|𝑦). 

Example 5.4 

If the joint probability function of X and Y is given by 𝑓(𝑥, 𝑦) = 2;      0 < 𝑥 < 𝑦 < 1. 

Find 𝑓(𝑥), 𝑓(𝑦), 𝑓(𝑥|𝑦), 𝑓(𝑦|𝑥), 𝐹(𝑥|𝑦), 𝐹(𝑦|𝑥), 𝑓(𝑥|0.5), 𝐹(𝑦|0.25). 

Solution 

▪ 𝑓(𝑥) = ∫ 2 𝑑𝑦
1

𝑥
= 2𝑦|𝑥

1 = 2 − 2𝑥 = 2(1 − 𝑥);   0 < 𝑥 < 1. 

▪ 𝑓(𝑦) = ∫ 2 𝑑𝑥
𝑦

0
= 2𝑥|0

𝑦
= 2𝑦;   0 < 𝑦 < 1. 

▪ 𝑓𝑋|𝑌=𝑦(𝑥|𝑦) =
𝑓(𝑥,𝑦)

𝑓(𝑦)
=

2

2𝑦
=

1

𝑦
;   0 < 𝑥 < 𝑦 < 1. 

▪ 𝑓𝑌|𝑋=𝑥(𝑦|𝑥) =
𝑓(𝑥,𝑦)

𝑓(𝑥)
=

2

2(1−𝑥)
=

1

1−𝑥
;   0 < 𝑥 < 𝑦 < 1.  

▪ 𝐹(𝑥|𝑦) = ∫ 𝑓(𝑥|𝑦) 𝑑𝑥
𝑥

0
= ∫

1

𝑦
 𝑑𝑥

𝑥

0
=

𝑥

𝑦
|0
𝑥 =

𝑥

𝑦
;    0 < 𝑥 < 𝑦 < 1.  

▪ 𝐹(𝑦|𝑥) = ∫ 𝑓(𝑦|𝑥) 𝑑𝑦
𝑦

𝑥
= ∫

1

1−𝑥
 𝑑𝑦

𝑦

𝑥
=

𝑦

1−𝑥
|𝑥
𝑦
=

𝑦−𝑥

1−𝑥
;    0 < 𝑥 < 𝑦 < 1.  

▪ 𝑓(𝑥|0.5) =
1

0.5
= 2;   0 < 𝑥 <

1

2
. 

▪ 𝐹(𝑦|0.25) =
𝑦−0.25

0.75
=

1

3
(4𝑦 − 1);  

1

4
< 𝑦 < 1.  
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Extra Example 

 

 

Extra Example 
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Extra Example 

 

5.2.3 Conditional Expectation 

If X and Y are two r.v’s have a joint probability distribution 𝑓(𝑥, 𝑦), then the 

conditional expectation of any function of X, 𝑔(𝑥) given Y = 𝑦 is  

𝐸[g(𝑋)|𝑌 = 𝑦] = {
∑ 𝑔(𝑥)𝑓𝑋|𝑌=𝑦(𝑥|𝑦)𝑥 ;            In the discrete case      

∫ 𝑔(𝑥)𝑓𝑋|𝑌=𝑦(𝑥|𝑦)
∞

−∞
𝑑𝑥;     In the continuous case

  

Similarly for 𝐸[ℎ(𝑌)|𝑋 = 𝑥], where ℎ(𝑦) is a function of the r.v. Y. 

Special Cases 

I. If 𝑔(𝑋) = 𝑋, we get 

𝐸(𝑋|𝑌 = 𝑦) = {
∑ 𝑥𝑓𝑋|𝑌=𝑦(𝑥|𝑦)𝑥 ;            In the discrete case      

∫ 𝑥𝑓𝑋|𝑌=𝑦(𝑥|𝑦)
∞

−∞
𝑑𝑥;     In the continuous case

= 𝜇𝑋|𝑌 ,  

which is the conditional expectation of X given Y (this expectation is considered 

as a variable of Y). 

II. If 𝑔(𝑋) = (𝑋 − 𝜇𝑋|𝑌)
2

, we get  
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𝐸 [(𝑋 − 𝜇𝑋|𝑌)
2
|𝑌 = 𝑦] = 𝑉(𝑋|𝑌 = 𝑦) = 𝜎𝑋|𝑌

2 ,    

which is the conditional variance of X given Y  

Corollary    

The conditional variance can be expressed as  

𝑉(𝑋|𝑌 = 𝑦) = 𝐸(𝑋2|𝑌 = 𝑦) − [𝐸(𝑋|𝑌 = 𝑦)]2 = 𝐸(𝑋2|𝑌 = 𝑦) − 𝜇𝑋|𝑌
2 . 

Theorem 

Let X, Y be random variables, 𝑎, 𝑏 ∈  𝑅, and 𝑔 ∶  𝑅 →  𝑅. Assuming all the following 

expectations exist, we have 

I. 𝐸(𝑎|𝑌) = 𝑎. 

II. 𝐸[(𝑎𝑋 +  𝑏)|𝑌] = 𝑎𝐸(𝑋|𝑌) + 𝑏. 

III. 𝐸[𝐸(𝑋|𝑌)] = 𝐸(𝑋), similarly 𝐸[𝐸(𝑌|𝑋)] = 𝐸(𝑌). 

Proof 

The first two are not hard to prove, and we leave them to the reader. 

Consider (III). We prove the continuous case and leave the discrete case to the 

reader.  

𝐸(𝑋|𝑌) = ∫ 𝑥𝑓𝑋|𝑌=𝑦(𝑥|𝑦)
∞

−∞
𝑑𝑥 (a function of Y). Thus, 

𝐸[𝐸(𝑋|𝑌)] = ∫ 𝐸(𝑋|𝑌)𝑓𝑌(y)
∞

−∞
𝑑𝑦 = ∫ [∫ 𝑥𝑓𝑋|𝑌=𝑦(𝑥|𝑦)

∞

−∞
𝑑𝑥]𝑓𝑌(y)

∞

−∞
𝑑𝑦  

= ∫ ∫ 𝑥 ∙
𝑓(𝑥,𝑦)

𝑓(𝑦)

∞

−∞
∙ 𝑓𝑌(y)

∞

−∞
𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑥𝑓(𝑥, 𝑦)

∞

−∞

∞

−∞
𝑑𝑥𝑑𝑦 ∫ 𝑥[∫ 𝑓(𝑥, 𝑦)

∞

−∞
𝑑𝑦]

∞

−∞
𝑑𝑥  

= ∫ 𝑥𝑓(𝑥)
∞

−∞
𝑑𝑥 = 𝐸(𝑋). 

Theorem 

If X,Y have a joint distribution, then the marginal variance of X  can be factored in 

the form 

𝑉(𝑋) = 𝐸𝑌[𝑉(𝑋|𝑌)] + 𝑉𝑌[𝐸(𝑋|𝑌)]. 

Similarly, 

𝑉(𝑌) = 𝐸𝑋[𝑉(𝑌|𝑋)] + 𝑉𝑋[𝐸(𝑌|𝑋)]. 

Example 5.5 
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If  𝑓(𝑥|𝑦) =
1

𝑦
; 0 < 𝑥 < 𝑦 < 1. Find 𝐸(𝑋|𝑌), 𝑉(𝑋|𝑌). 

Solution 

𝐸(𝑋|𝑌) = ∫ 𝑥𝑓(𝑥|𝑦)𝑑𝑥
𝑦

0
= ∫

𝑥

𝑦
𝑑𝑥

𝑦

0
=

𝑥2

2𝑦
|0
𝑦
=

𝑦

2
;   0 < 𝑦 < 1. 

𝐸(𝑋2|𝑌) = ∫ 𝑥2𝑓(𝑥|𝑦)𝑑𝑥
𝑦

0
= ∫

𝑥2

𝑦
𝑑𝑥

𝑦

0
=

𝑥3

3𝑦
|0
𝑦
=

𝑦2

3
;   0 < 𝑦 < 1. Thus, 

𝑉(𝑋|𝑌) =  𝐸(𝑋2|𝑌) − [𝐸(𝑋|𝑌)]2 =
𝑦2

3
−
𝑦2

4
=

𝑦2

12
;   0 < 𝑦 < 1. 

Extra Example 
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5.2.4 Moment Generating Function for Conditional Distributions 

If X, Y have a joint probability distribution, and 𝑓(𝑥|𝑦) is the conditional probability 

function of X, then the moment generating function for the conditional  distribution 

(if it exist) defined as  

𝑀𝑋|𝑌(𝑡) = 𝐸(𝑒
𝑡𝑋|𝑌 = 𝑦) = {

∑ 𝑒𝑥𝑡𝑓(𝑥|𝑦)𝑥        

∫ 𝑒𝑥𝑡𝑓(𝑥|𝑦) 𝑑𝑥
∞

−∞

  

Properties 

I. 𝑀𝑋|𝑌(0) = 1. 

II. 
𝑑𝑟

𝑑𝑡𝑟
𝑀𝑋|𝑌(𝑡)|𝑡=0 = 𝐸(𝑋

𝑟|𝑌 = 𝑦), which is the rth conditional raw moment. 

Example 5.6 

If  𝑓(𝑥|𝑦) =
1

𝑦
; 0 < 𝑥 < 𝑦 < 1. Find 𝑀𝑋|𝑌(𝑡) then use it to compute 𝐸(𝑋|𝑌), 𝑉(𝑋|𝑌). 

Solution 

𝑀𝑋|𝑌(𝑡) = ∫ 𝑒𝑥𝑡𝑓(𝑥|𝑦) 𝑑𝑥
𝑦

0
= ∫

𝑒𝑥𝑡

𝑦
 𝑑𝑥

𝑦

0
=

𝑒𝑥𝑡

𝑦𝑡
|0
𝑦
=

𝑒𝑦𝑡−1

𝑦𝑡
. 

Now, 

𝑀𝑋|𝑌(𝑡) =
𝑒𝑦𝑡−1

𝑦𝑡
=

1

𝑦𝑡
(∑

(𝑦𝑡)𝑟

𝑟!
∞
𝑟=0 − 1) =

1

𝑦𝑡
(1 + 𝑦𝑡 +

𝑦2𝑡2

2!
+
𝑦3𝑡3

3!
+⋯+

𝑦𝑟𝑡𝑟

𝑟!
+⋯− 1)  

= 1 +
𝑦𝑡

2!
+
𝑦2𝑡2

3!
+⋯+

𝑦𝑟𝑡𝑟

(𝑟+1)!
+⋯ = 1 +

𝑦

2
∙
𝑡

1!
+
𝑦2

3
∙
𝑡2

2!
+⋯+

𝑦𝑟

(𝑟+1)
∙
𝑡𝑟

𝑟!
+⋯.  

Therefore, 

𝜇𝑟
′ =

𝑦𝑟

(𝑟 + 1)
. 

Hence, 

𝐸(𝑋|𝑌) = 𝜇𝑋|𝑌
′ =

𝑦

2
. 

𝐸(𝑋2|𝑌) = 𝜇2
′ =

𝑦2

3
. 

𝑉(𝑋|𝑌) =
𝑦2

12
. 
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Chapter Six                                                                                         

Covariance, Correlation, Independence of Variables 

(Stochastic Independence) 

6.1 Covariance of random variables 

If random variables X and Y are jointly distributed with joint probability function 

𝑓(𝑥, 𝑦), then the covariance between X and Y is defined as 

𝜎𝑋,𝑌 = 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸{[𝑋 − 𝐸(𝑋)][𝑌 − 𝐸(𝑌)]} = 𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] 

= 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌). 

Proof 

𝜎𝑋,𝑌 = 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] = 𝐸(𝑋𝑌 − X𝜇𝑌 − 𝑌𝜇𝑋 + 𝜇𝑋𝜇𝑌)  

= 𝐸(𝑋𝑌) − 𝐸(X𝜇𝑌) − 𝐸(𝑌𝜇𝑋) + 𝐸(𝜇𝑋𝜇𝑌) = 𝐸(𝑋𝑌) − 𝜇𝑌𝐸(𝑋) − 𝜇𝑋𝐸(𝑌) + 𝜇𝑋𝜇𝑌  

= 𝐸(𝑋𝑌) − 𝜇𝑌𝜇𝑋 − 𝜇𝑋𝜇𝑌 + 𝜇𝑋𝜇𝑌 = 𝐸(𝑋𝑌) − 2𝜇𝑋𝜇𝑌 + 𝜇𝑋𝜇𝑌  

= 𝐸(𝑋𝑌) − 𝜇𝑋𝜇𝑌 = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌).    

Some Properties for Covariance 

If X, Y, Z are r.v’s and a,b are constants, then 

I. 𝐶𝑜𝑣(𝑋, 𝑋) = 𝑉(𝑋). 

II. 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐶𝑜𝑣(𝑌, 𝑋). 

III. 𝐶𝑜𝑣(𝑋, 𝑎) = 0. 

IV. 𝐶𝑜𝑣(𝑎𝑋, 𝑏𝑌) = 𝑎𝑏𝐶𝑜𝑣(𝑋, 𝑌). 

V. 𝐶𝑜𝑣(𝑋 + 𝑌, 𝑍) = 𝐶𝑜𝑣(𝑋, 𝑍) + 𝐶𝑜𝑣(𝑌, 𝑍),  this property can be generalized to 

𝐶𝑜𝑣(∑ 𝑋𝑖
𝑛
𝑖=1 , ∑ 𝑌𝑗

𝑚
𝑗=1 ) = ∑ ∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑌𝑗)

𝑚
𝑗=1

𝑛
𝑖=1 . 

VI. 𝑉(𝑋 ± 𝑌) = 𝑉(𝑋) + 𝑉(𝑌) ± 2𝐶𝑜𝑣(𝑋, 𝑌). 

Proof 

II, III, IV  are not hard to prove, and we leave them to the reader. 

I. 𝐶𝑜𝑣(𝑋, 𝑋) = 𝐸(𝑋 ∙ 𝑋) − 𝐸(𝑋)𝐸(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 = 𝑉(𝑋). 

V. 𝐶𝑜𝑣(𝑋 + 𝑌, 𝑍) = 𝐸[(𝑋 + 𝑌)𝑍] − 𝐸(𝑋 + 𝑌)𝐸(𝑍)  

= 𝐸(𝑋𝑍 + 𝑌𝑍) − [𝐸(𝑋) + 𝐸(𝑌)]𝐸(𝑍) = 𝐸(𝑋𝑍) + 𝐸(𝑌𝑍) − 𝐸(𝑋)𝐸(𝑍) − 𝐸(𝑌)𝐸(𝑍) 
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= [𝐸(𝑋𝑍) − 𝐸(𝑋)𝐸(𝑍)] + [𝐸(𝑌𝑍) − 𝐸(𝑌)𝐸(𝑍)] = 𝐶𝑜𝑣(𝑋, 𝑍) + 𝐶𝑜𝑣(𝑌, 𝑍). 

VI. 𝑉(𝑋 + 𝑌) = 𝐶𝑜𝑣(𝑋 + 𝑌, 𝑋 + 𝑌) (From I) 

= 𝐶𝑜𝑣(𝑋, 𝑋) + 𝐶𝑜𝑣(𝑋, 𝑌) + 𝐶𝑜𝑣(𝑌, 𝑋) + 𝐶𝑜𝑣(𝑌, 𝑌)   (From V) 

= 𝐶𝑜𝑣(𝑋, 𝑋) + 𝐶𝑜𝑣(𝑋, 𝑌) + 𝐶𝑜𝑣(𝑋, 𝑌) + 𝐶𝑜𝑣(𝑌, 𝑌)   (From II) 

= 𝑉(𝑋) + 𝑉(𝑌) + 2𝐶𝑜𝑣(𝑋, 𝑌).    (From I) 

We can prove the case 𝑉(𝑋 − 𝑌)by the same way. 

Extra Example

 

Extra Example 

 

Extra Example 
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Extra Example 

 

 

6.2 Correlation Coefficient 

The correlation is a measure of the linear relationship between X and Y. It is 

obtained by 

𝜌𝑋,𝑌 = 𝐶𝑜𝑟𝑟(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋,𝑌)

√𝑉(𝑋)𝑉(𝑌)
=

𝐶𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
,  

where 𝜎𝑋 and 𝜎𝑌  are the standard deviations of X and Y respectively. 

Some Properties for Correlation 

If X, Y are r.v’s and a,b,c,d are constants, then 

I. 𝜌𝑋,𝑌 = 𝜌𝑌,𝑋 . 

II. 𝜌𝑋,𝑋 = 1. (strong positive relationship) 

III. 𝜌𝑋,−𝑋 = −1. (strong negative relationship) 

IV. −1 ≤ 𝜌𝑋,𝑌 ≤ 1. 
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V. 𝜌(𝑎𝑋±𝑏),(c𝑌±𝑑) = 𝜌𝑋,𝑌. 

Proof 

VI. 𝜌(𝑎𝑋±𝑏),(c𝑌±𝑑) =
𝐶𝑜𝑣(𝑎𝑋±𝑏,c𝑌±𝑑)

√𝑉(𝑎𝑋±𝑏)𝑉(c𝑌±𝑑)
=

𝑎𝑐𝐶𝑜𝑣(𝑋,𝑌)

√𝑎2𝑉(𝑋)𝑐2𝑉(𝑌)
=

𝐶𝑜𝑣(𝑋,𝑌)

√𝑉(𝑋)𝑉(𝑌)
= 𝜌𝑋,𝑌.  

Example 6.1 

If  𝑓(𝑥, 𝑦) =
𝑥+𝑦

8
;   0 < 𝑥, 𝑦 < 2. Find 𝐶𝑜𝑣(𝑋, 𝑌), 𝑉(𝑋 + 𝑌), 𝜌𝑋,𝑌. 

Solution 

From example 5.2 we got 

𝐸(𝑋) = 𝐸(𝑌) =
7

6
, and 𝑉(𝑋) = 𝑉(𝑌) =

11

36
. 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) 

𝐸(𝑋𝑌) = ∫ ∫ (𝑥𝑦)
𝑥+𝑦

8
 

2

0
𝑑𝑥𝑑𝑦

2

0
=

1

8
∫ ∫ (𝑥2𝑦 + 𝑥𝑦2)

2

0
𝑑𝑥𝑑𝑦

2

0
  

=
1

8
∫ (

𝑥3𝑦

3
+
𝑥2𝑦2

2
) |0

2𝑑𝑦
2

0
=

1

8
∫ (

8𝑦

3
+ 2𝑦2) 𝑑𝑦

2

0
=

1

8
(
4𝑦2+2𝑦3

3
) |0

2 =
4

3
= 1.333.  

▪ 𝐶𝑜𝑣(𝑋, 𝑌) =
4

3
− (

7

6
)
2

= −0.0278.  

▪ 𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋,𝑌)

√𝑉(𝑋)𝑉(𝑌)
= −

0.0278

√(
11

36
)
2
= −0.0909.   

▪ 𝑉(𝑋 + 𝑌) = 𝑉(𝑋) + 𝑉(𝑌) + 2𝐶𝑜𝑣(𝑋, 𝑌) =
11

36
+
11

36
− 2 ∙ 0.0278 = 0.5556.  

6.3 Independence of random variables 

Random variables X and Y with cumulative distribution functions 𝐹(𝑥) and 𝐹(𝑦) 

are said to be independent (or stochastically independent) if and only if the 

cumulative distribution function of the joint distribution 𝐹(𝑥, 𝑦) can be factored in 

the form  

𝐹(𝑥, 𝑦) = 𝐹(𝑥)𝐹(𝑦);  for all (𝑥, 𝑦). 

Alternatively, stochastic independence can be defined via the probability functions, 

that, X and Y are independent if and only if  

𝑓(𝑥, 𝑦) = 𝑓(𝑥)𝑓(𝑦);  for all (𝑥, 𝑦). 

Corollary 

If X and Y are two independent r.v.’s then 
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𝑓(𝑥|𝑦) =
𝑓(𝑥,𝑦)

𝑓(𝑦)
=

𝑓(𝑥)𝑓(𝑦)

𝑓(𝑦)
= 𝑓(𝑥). 

Similaly,  

𝑓(𝑦|𝑥) = 𝑓(𝑦). 

Note 

To proof that any two variables X and Y are independent we only need to proof one 

of the following  

I. 𝐹(𝑥, 𝑦) = 𝐹(𝑥)𝐹(𝑦). 

II. 𝐹(𝑥|𝑦) = 𝐹(𝑥). 

III. 𝐹(𝑦|𝑥) = 𝐹(𝑦). 

IV. 𝑓(𝑥, 𝑦) = 𝑓(𝑥)𝑓(𝑦). 

V. 𝑓(𝑥|𝑦) = 𝑓(𝑥). 

VI. 𝑓(𝑦|𝑥) = 𝑓(𝑦). 

6.3.1 Joint Expectation Under Independence Condition 

If the two r.v’s X and Y are independent, then   

I. 𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌), 

II. 𝐸(𝑋|𝑌) = 𝐸(𝑋), 

III. 𝐸(𝑌|𝑋) = 𝐸(𝑌), 

(and vise versa). 

Example 6.2 

If  𝑓(𝑥, 𝑦) = {
1;       0 < 𝑥 < 1, 0 < 𝑦 < 1
0;       Otherwis                       

, check if X and Y are independent. 

Solution 

First, let find the marginal probability functions  

𝑓(𝑥) = ∫ 1 𝑑𝑦
1

0
= 𝑦|0

1 = 1, and 

𝑓(𝑦) = ∫ 1 𝑑𝑥
1

0
= 𝑥|0

1 = 1. 

Now, since 

𝑓(𝑥, 𝑦) = 1 = 𝑓(𝑥)𝑓(𝑦). 

Thus, the random variables X and Y are independent.  

What is the distribution of X (or Y)?! 
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Extra Example  

 

 

Extra Example  
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Extra Example  

 

 

 

Example 6.3 

Are the random variables X and Y with the following joint probability density table 

independent? 

  Y values 

  0 1 2 3 

X 

values 

0 
1

8
  0 0 0 

1 0 
1

8
  

1

8
  

1

8
  

2 0 
1

4
  

1

8
   0 

3 0 
1

8
  0 0 
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Solution 

First, let find the marginal probability functions  

  Y values  

  0 1 2 3 𝑓𝑋(𝑥) 

X 

values 

0 
1

8
  0 0 0 

1

8
  

1 0 
1

8
  

1

8
  

1

8
  

3

8
  

2 0 
1

4
  

1

8
  0 

3

8
  

3 0 
1

8
  0 0 

1

8
  

 𝑓𝑌(𝑦) 
1

8
  

4

8
  

2

8
  

1

8
  1 

Now, since 

𝑓(0,0) =
1

8
≠

1

64
=

1

8
∙
1

8
= 𝑓𝑋(0)𝑓𝑌(0). 

Thus, the random variables X and Y are not independent (dependent).  

(We can use any pair other than (0,0) to reject that X and Y are independent). 

6.3.2 Covariance Under Independence Condition 

If X and Y are two independent r.v.’s then 

I. 𝐶𝑜𝑣(𝑋, 𝑌) = 0.   (But the converse is not true in general)  

II. 𝑉(𝑋 ± 𝑌) = 𝑉(𝑋) + 𝑉(𝑌). 

Proof 

I. 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) = 𝐸(𝑋)𝐸(𝑌) − 𝐸(𝑋)𝐸(𝑌) = 0. 

II. 𝑉(𝑋 ± 𝑌) = 𝑉(𝑋) + 𝑉(𝑌) ± 2𝐶𝑜𝑣(𝑋, 𝑌) = 𝑉(𝑋) + 𝑉(𝑌) ± 0          (From I) 

= 𝑉(𝑋) + 𝑉(𝑌). 

6.3.3 Correlation Under Independence Condition 

If X and Y are two independent r.v.’s then 

𝜌𝑋,𝑌 = 𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 0; 

but the converse is not true in general. 

Example 6.4 

Let the joint probability density function of X and Y is 
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  Y values  

  -1 0 1 𝑓(𝑥) 

X 

values 

-1 
1

16
  

3

16
  

1

16
  

5

16
  

0 
3

16
  0 

3

16
  

6

16
  

1 
1

16
  

3

16
  

1

16
  

5

16
  

 𝑓(𝑦) 
5

16
  

6

16
  

5

16
  1 

I. Are X and Y independent. 

II. Find 𝑪𝒐𝒗(𝑿, 𝒀) and 𝜌𝑋,𝑌. 

Solution 

I. Since, 

𝑓(−1,−1) =
1

16
= 0.0625 ≠ 0.0977 =

25

256
=

5

16
∙
5

16
= 𝑓𝑋(−1)𝑓𝑌(−1).  

Therefore, X and Y are dependent. 

II. 𝑪𝒐𝒗(𝑿, 𝒀) = 𝑬(𝑿𝒀) − 𝑬(𝑿)𝑬(𝒀) 

𝐸(𝑋) = 𝐸(𝑌) = −1 ∙
5

16
+ 0 ∙

6

16
+ 1 ∙

5

16
= 0. 

𝐸(𝑋𝑌) = −1 ∙ −1 ∙
1

16
− 1 ∙ 0 ∙

3

16
− 1 ∙ 1 ∙

1

16
+⋯+ 1 ∙ 1 ∙

1

16
= 0. Thus, 

𝑪𝒐𝒗(𝑿, 𝒀) = 𝟎 − 𝟎 = 𝟎. Therefore, 

𝜌𝑋,𝑌 = 0. 

Note 𝑪𝒐𝒗(𝑿, 𝒀) = 𝜌𝑋,𝑌 = 𝟎 even that X and Y are dependent.  
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Chapter Seven                                                                        

Distributions of Functions of Random Variables 

(Transformations)                                                              

In this chapter, we will study how to find the distribution of a function of a random 

variable with known distribution, which is called transformations of variables. 

7.1 Discrete Case 

7.1.1 The Case of One Variable 

Suppose that X is a discrete random variable with probability function 𝑓(𝑥). If 

𝑔(𝑥)is a function of 𝑥, and Y is a random variable defined by the equation 𝑌 = 𝑔(𝑋), 

then Y is a discrete random variable with probability function 𝑓(𝑦) = ∑ 𝑓(𝑥)𝑦=𝑔(𝑥)  -

given a value of 𝑦, find all values of 𝑥 for which 𝑦 = 𝑔(𝑥), (say, 𝑔(𝑥1) = 𝑔(𝑥2) =

⋯ = 𝑔(𝑥𝑡) = 𝑦), and then 𝑔(𝑦) is the sum of those 𝑓(𝑥𝑖) probabilities. 

Corollary 

If X and Y are independent random variables, and 𝑔 and ℎ are functions, then the 

random variables 𝑔(𝑥) and ℎ(𝑥) are independent. 

There are two cases  

I. One-to-one correspondence. 

II. Not one-to-one correspondence. 

However, we will focus on the first case. 

If 𝑔 is a one-to-one function, then the inverse image of a single value is itself a single 

value. For instance, 𝑔(𝑥) = 𝑥3, this inverse function is the cube root, while 𝑔(𝑥) =

𝑥2, this inverse function is the square root which may results in two values. 

Steps to Obtain 𝒇𝒀(𝒚) for One-To-One Functions 

I. Compute Y values that corresponding to X values, 𝑦 = 𝑔−1(𝑥1), 𝑔
−1(𝑥2),…. 

II. Find the inverse 𝑥 = 𝑔−1(𝑦) 

III. 𝑓𝑌(𝑦) = 𝑃(𝑌 = 𝑦) = 𝑃(𝑔(𝑋) = 𝑦) = 𝑃(𝑋 = 𝑔−1(𝑦)) = 𝑓𝑋(𝑔
−1(𝑦)). 
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Hence, the pmf of Y is  

𝑓𝑌(𝑦) = 𝑓𝑋(𝑔
−1(𝑦));       𝑦 = 𝑔(𝑥1), 𝑔(𝑥2), …. 

Example 7.1 

If the r.v. X has pmf 𝑓𝑋(𝑥) =
𝑥

15
; 𝑥 = 1,2,3,4,5. Find the pmf of the r.v. Y whrer 𝑌 =

𝑋 − 3. 

Solution 

Note that 𝑌 = 𝑔(𝑋) = 𝑋 − 3 is a one-to-one function. Thus, 

▪ 𝑥 = 1,2,3,4,5 ⇒ 𝑦 = (1 − 3), (2 − 3), (3 − 3), (4 − 3), (5 − 3) = −2,−1,0,1,2.  

▪ 𝑌 = 𝑋 − 3 ⇒ 𝑔−1(𝑌) = 𝑋 = 𝑌 + 3 ⇒ 𝑔−1(𝑦) = 𝑥 = 𝑦 + 3.  

▪ 𝑓𝑌(𝑦) = 𝑓𝑋(𝑔
−1(𝑦)) = 𝑓𝑋(𝑦 + 3) =

𝑦+3

15
. 

Thus, ;      𝑓𝑌(𝑦) =
𝑦+3

15
;    𝑦 = −2,−1,0,1,2. 

Example 7.2 

If the r.v. X has pmf 𝑓𝑋(𝑥) =
1

3
; 𝑥 = 0,1,2. Find the pmf of the r.v. Y whrer 𝑌 = 𝑋3. 

Solution 

Note that 𝑌 = 𝑔(𝑋) = 𝑋3 is a one-to-one function. Thus, 

▪ 𝑥 = 0,1,2 ⇒ 𝑦 = 03, 13, 23 = 0,1,8.  

▪ 𝑌 = 𝑋3 ⇒ 𝑔−1(𝑌) = 𝑋 = √𝑌
3

= 𝑌
1

3 ⇒ 𝑔−1(𝑦) = 𝑥 = 𝑦
1

3.  

▪ 𝑓𝑌(𝑦) = 𝑓𝑋(𝑔
−1(𝑦)) = 𝑓𝑋 (𝑦

1

3) =
1

3
. 

Thus, ;      𝑓𝑌(𝑦) =
1

3
;    𝑦 = 0,1,8. 

7.1.2 The Case of Two Variables 

Suppose the two discrete r.v.’s (𝑋1, 𝑋2) has joint probability function 𝑓𝑋1𝑋2(𝑥1, 𝑥2) 

and joint sample space Ω𝑋1𝑋2 . Let (𝑌1, 𝑌2) be some function of (𝑋1, 𝑋2) defined by 𝑌1 =

𝑔1(𝑋1, 𝑋2) and 𝑌2 = 𝑔2(𝑋1, 𝑋2) with the single-valued inverse given by 𝑋1 =

𝑔1
−1(𝑌1, 𝑌2) and 𝑋2 = 𝑔2

−1(𝑌1, 𝑌2). Let Ω𝑌1𝑌2 be the sample space of 𝑌1, 𝑌2. Then, the joint 

probability function of (𝑌1, 𝑌2) is given by 

𝑓𝑌1𝑌2(𝑦1, 𝑦2) = 𝑓𝑋1𝑋2(𝑔1
−1(𝑦1, 𝑦2), 𝑔2

−1(𝑦1, 𝑦2)). 
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Example 7.3 

Let the two r.v.’s 𝑋1, 𝑋2 have a joint probability function as follow    

  𝑥2 

 𝑓(𝑥1, 𝑥2) 0 1 2 3 

𝑥1 
0 0.06 0.07 0.11 0.07 
1 0.08 0.09 0.12 0.09 
2 0.06 0.08 0.10 0.07 

Find the pmf of the r.v. Y where 𝑌 = 𝑋1 + 𝑋2. 

Solution 

▪ 𝑥1 = 0,1,2 & 𝑥2 = 0,1,2,3 ⇒  𝑦 = 0,1,2,3,4,5.  

▪ We will compute the values of 𝑓𝑌(𝑦) by equivalency as follow 

▪ 𝑓𝑌(𝑦) = 𝑃(𝑌 = 𝑦), Thus, 

𝑓𝑌(0) = 𝑃(𝑋1 = 0, 𝑋2 = 0) = 0.06, 

𝑓𝑌(1) = 𝑃(𝑋1 = 0, 𝑋2 = 1) + 𝑃(𝑋1 = 1, 𝑋2 = 0) = 0.07 + 0.08 = 0.15,  

𝑓𝑌(2) = 𝑃(𝑋1 = 0, 𝑋2 = 2) + 𝑃(𝑋1 = 1, 𝑋2 = 1) + 𝑃(𝑋1 = 2, 𝑋2 = 0)  

= 0.11 + 0.09 + 0.06 = 0.26,  

𝑓𝑌(3) = 𝑃(𝑋1 = 0, 𝑋2 = 3) + 𝑃(𝑋1 = 1, 𝑋2 = 2) + +𝑃(𝑋1 = 2, 𝑋2 = 1)  

= 0.07 + 0.12 + 0.08 = 0.27, 

𝑓𝑌(4) = 𝑃(𝑋1 = 1, 𝑋2 = 3) + +𝑃(𝑋1 = 2, 𝑋2 = 2) = 0.09 + 0.1 = 0.19, 

𝑓𝑌(5) = 𝑃(𝑋1 = 2, 𝑋2 = 3) = 0.07. 

Therefore, 

y 0 1 2 3 4 5 
𝑓𝑌(𝑦) 0.06 0.15 0.26 0.27 0.19 0.07 

7.2 Continuous Case 

There are three techniques to compute the distribution of function of random 

variable: 

▪ Method of distribution function. (𝑭(𝒙))  

▪ Method of change-of-variable. (One-to-One transformation) 

▪ Method of moment-generating function. (𝑴𝑿(𝒕)) 
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7.2.1 Distribution Function Method (CDF) 

Let 𝑋1, … , 𝑋𝑛~𝑓(𝑥1, … , 𝑥𝑛) and 𝑌 = 𝑔(𝑋1, … , 𝑋𝑛). Then we follow the following steps 

to obtain 𝑓𝑌(𝑦) by using the CDF technique 

I. Find 𝐹𝑋(𝑥). (If it not given) 

II. Find y rang in terms of 𝑥. 

III. Compute 𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(𝑔(𝑋) ≤ 𝑦) = 𝑃(𝑋 ≤ 𝑔−1(𝑦)) = 𝐹𝑋(𝑔
−1(𝑦)) 

over the region where 𝑌 ≤ 𝑦. 

IV. Compute 𝑓𝑦(𝑦) =
𝑑𝐹𝑦(𝑦)

𝑑𝑦
 (by integrating the CDF).  

Example 7.4 

Let the probability density function of a random variable X is  

𝑓𝑋(𝑥) = {
2𝑥        ; 0 < 𝑥 < 1
0       ; 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

  

Use the CDF method to find the probability density function of the random variable 

𝑌 = 8𝑋3. 

Solution 

▪ 𝐹𝑋(𝑥) = ∫ 2𝑥 𝑑𝑥
𝑥

0
= 𝑥2|0

𝑥 = 𝑥2  

▪ The rang of y: 0 < 𝑥 < 1 ⇒ 0 < 𝑥3 < 1 ⇒ 0 < 8𝑥3 < 8 ⇒ 0 < 𝑦 < 8.   

▪ 𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(8𝑋3 ≤ 𝑦) = 𝑃 (𝑋3 ≤
𝑦

8
) = 𝑃 (𝑋 ≤

1

2
𝑦
1

3) = 𝐹𝑋 (
1

2
𝑦
1

3)     

= (
1

2
𝑦
1

3)
2

=
1

4
𝑦
2

3 ;   0 < 𝑦 < 8.       

▪ 𝑓𝑦(𝑦) =
𝑑𝐹𝑦(𝑦)

𝑑𝑦
=

2

12
𝑦−

1

3 =
𝑦
−
1
3

6
   ; 0 < 𝑦 < 8.  

Example 7.5 

Let 𝑋~𝐸𝑥𝑝(𝜃) i.e. 𝑓𝑋(𝑥) = 𝜃𝑒−𝜃𝑥; 𝑥 ≥ 0. Use the CDF method to find the distribution 

of the random variable 𝑌 = 𝑒𝑋. 

Solution 

▪ Since 𝑋~𝐸𝑥𝑝(𝜃) then 𝐹𝑋(𝑥) = 1 − 𝑒−𝜃𝑥. 

▪ The rang of y: 0 ≤ 𝑥 ≤ ∞ ⇒ 𝑒0 ≤ 𝑒𝑥 ≤ 𝑒∞ ⇒ 1 ≤ 𝑦 ≤ ∞. 

▪ 𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(𝑒𝑋 ≤ 𝑦) = 𝑃(𝑙𝑛(𝑒𝑋) ≤ 𝑙𝑛(𝑦)) = 𝑃(𝑋 ≤ 𝑙𝑛(𝑦)) =

𝐹𝑋(𝑙𝑛(𝑦)) = 1 − 𝑒−𝜃 𝑙𝑛(𝑦) = 1 − 𝑒𝑙𝑛(𝑦
−𝜃) = 1 − 𝑦−𝜃 ;   1 ≤ 𝑦 ≤ ∞. 
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𝑓𝑦(𝑦) =
𝑑𝐹𝑦(𝑦)

𝑑𝑦
= 𝜃𝑦−(𝜃+1);  1 ≤ 𝑦 ≤ ∞.   

Example 7.6 

Let 𝑋~𝑁(𝜇, 𝜎). Use the CDF method to find the distribution of the random variable 

𝑍 =
𝑋−𝜇

𝜎
. 

Solution 

𝑓𝑋(𝑥) =
1

𝜎√2𝜋
 𝑒−

1

2𝜎
(𝑋−𝜇)2 .  

Note At this example we notice that it is difficult to compute 𝐹𝑋(𝑥), therefore, we 

will use the differentiation that 
𝑑

𝑑𝑦
𝐹𝑌(𝑦) = 𝑓𝑌(𝑦).  

▪ The rang of z: −∞ < 𝑥 < ∞ ⇒
−∞−𝜇

𝜎
<

𝑥−𝜇

𝜎
<

∞−𝜇

𝜎
⇒ −∞ < 𝑧 < ∞.   

▪ 𝐹𝑍(𝑧) = 𝑃(𝑍 ≤ 𝑧) = 𝑃 (
𝑋−𝜇

𝜎
≤ 𝑧) = 𝑃(𝑋 ≤ 𝜎𝑧 + 𝜇) = 𝐹𝑋(𝜎𝑧 + 𝜇)     

𝑓𝑍(𝑧) =
𝑑𝐹𝑍(𝑧)

𝑑𝑧
=

𝑑𝐹𝑋(𝜎𝑧+𝜇)

𝑑𝑧
=

𝑑𝐹𝑋(𝜎𝑧+𝜇)

𝑑𝑥
∙
𝑑𝑥

𝑑𝑧
  

= 𝑓𝑥(𝜎𝑧 + 𝜇) ∙ 𝜎, (by using the chain rule) thus, 

𝑓𝑍(𝑧) = 𝜎 .
1

𝜎√2𝜋
 𝑒−

1

2𝜎
(𝜎𝑧+𝜇−𝜇)2 = 

1

√2𝜋
 𝑒−

1

2𝜎
(𝜎𝑧)2 =

1

√2𝜋
 𝑒−

1

2
𝑧2 ; −∞ ≤ 𝑍 ≤ ∞;   

i.e. 𝑍~𝑁(0,1). 

Notation:  

▪ |X| ≤ y ⟹ −y ≤ X ≤ y 

▪ X2 ≤ y ⟹ √X2 ≤ √y ⟹ |X| ≤ √y ⟹ −√y ≤ X ≤ √y 

7.2.2 Change-of-Variable Method 

7.2.2.1 One Variable 

Definition  

Let X be a continuous random variable with probability density function 𝑓 (𝑥) 

defined over the rang 𝑐1 <  𝑥 < 𝑐2, and, let 𝑌 = 𝑔(𝑋) be an invertible function 

of X with inverse function 𝑋 =  𝑔−1(𝑌). Then, using the change-of-variable 

technique, the probability density function of Y is 

𝑓𝑌(𝑦) = 𝑓𝑋(𝑔
−1(𝑦)) ∙ |

𝑑𝑔−1(𝑦)

𝑑𝑦
|  

defined over the rang 𝑔−1(𝑐1) < 𝑦 < 𝑔−1(𝑐2). 
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Example 7.7 

Use the change-of-variable method to find the distribution of the random variable 𝑌 

in Example 7.4. 

Solution 

▪ 𝑔−1(𝑦) =
𝑦
1
3

2
 . 

▪ The rang of y: 0 < 𝑥 < 1 ⇒ 0 < 𝑥3 < 1 ⇒ 0 < 8𝑥3 < 8 ⇒ 0 < 𝑦 < 8.   

▪ 𝑓𝑌(𝑦) = 𝑓𝑋(𝑔
−1(𝑦)) ∙ |

𝑑𝑔−1(𝑦)

𝑑𝑦
| = 𝑓𝑋 (

𝑦
1
3

2
) ∙ |

1

6
𝑦−

2

3| = 2(
𝑦
1
3

2
) ∙

1

6
𝑦−

2

3  

=
1

6
𝑦−

1

3 ;   0 < 𝑦 < 8.  

Example 7.8 

If  𝑋~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(2,5). Use the change-of-variable method to find the distribution of 

the random variable 𝑌 =
𝑋

1+𝑋
. 

Solution 

▪ 𝑓𝑋(𝑥) =
1

3
 . 

▪ 𝑌 =
𝑋

1+𝑋
 ⇒  𝑌 + 𝑌𝑋 = 𝑋 ⇒ 𝑌 = 𝑋 − 𝑌𝑋 ⇒  𝑌 = 𝑋(1 − 𝑌)  ⇒  𝑋 =

𝑌

1−𝑌
 . Hence, 

𝑔−1(𝑦) =
𝑌

1−𝑌
 . 

▪ The rang of y: 2 < 𝑥 < 5 ⇒ 3 < 1 + 𝑥 < 6 ⇒
2

3
<

𝑥

1+𝑥
<

5

6
⇒

2

3
< 𝑦 <

5

6
. 

▪ 𝑓𝑌(𝑦) = 𝑓𝑋(𝑔
−1(𝑦)) ∙ |

𝑑𝑔−1(𝑦)

𝑑𝑦
| = 𝑓𝑋 (

𝑦

1−𝑦
) ∙ |

1

(1−𝑦)2
| =

1

3
(1 − 𝑦)−2 

=
(1−𝑦)−2

3
 ;  
2

3
< 𝑦 <

5

6
.  

Example 7.9 

Let 𝑋~𝐸𝑥𝑝(𝜆) i.e.  𝑓𝑋(𝑥) = 𝜆𝑒−𝜆𝑥; 𝑥 ≥ 0. Use the change-of-variable method to find 

the distribution of the random variable 𝑌 = 𝑋
1

𝛽. 

Solution 

▪ 𝑌 = 𝑋
1

𝛽  ⇒ 𝑋 = 𝑌𝛽 . Hence, 𝑔−1(𝑦) = 𝑌𝛽 .  

▪ The rang of y: 0 ≤ 𝑥 ≤ ∞ ⇒ 0
1

𝛽 ≤ 𝑥
1

𝛽 ≤ ∞
1

𝛽 ⇒ 0 ≤ 𝑦 ≤ ∞. 
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▪ 𝑓𝑌(𝑦) = 𝑓𝑋(𝑔
−1(𝑦)) ∙ |

𝑑𝑔−1(𝑦)

𝑑𝑦
| = 𝑓𝑋(𝑦

𝛽) ∙ |𝛽𝑦𝛽−1| = 𝜆𝛽𝑦𝛽−1𝑒−𝜆𝑦
𝛽
;  𝑦 > 0, 𝛽 > 0; 

i.e. 𝑌~Weibull Distribution. 

7.2.2.2 Two Variables 

Definition 

Suppose the two contiuous r.v.’s (𝑋1, 𝑋2) has joint probability function 𝑓𝑋1𝑋2(𝑥1, 𝑥2) 

and joint sample space Ω𝑋1𝑋2 . Let (𝑌1, 𝑌2) be some function of (𝑋1, 𝑋2) defined by 𝑌1 =

𝑔1(𝑋1, 𝑋2) and 𝑌2 = 𝑔2(𝑋1, 𝑋2) with the single-valued inverse given by 𝑋1 =

𝑔1
−1(𝑌1, 𝑌2) and 𝑋2 = 𝑔2

−1(𝑌1, 𝑌2). Let Ω𝑌1𝑌2 be the sample space of 𝑌1, 𝑌2. Then, we 

usually find Ω𝑌1𝑌2 by considering the image of Ω𝑋1𝑋2under the transformation (𝑌1, 𝑌2).  

The joint pdf 𝑌1 and 𝑌2 is 

𝑓𝑌1𝑌2(𝑦1, 𝑦2) = |𝐽|𝑓𝑋1𝑋2(𝑔1
−1(𝑦1, 𝑦2),𝑔2

−1(𝑦1, 𝑦2)), 

where |𝐽| refers to the absolute value of the Jacobian "𝐽" which is given by 

𝐽 = |

𝜕𝑥1

𝜕𝑦1

𝜕𝑥1

𝜕𝑦2
𝜕𝑥2

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

| = |

𝜕𝑔1
−1(𝑦1,𝑦2)

𝜕𝑦1

𝜕𝑔1
−1(𝑦1,𝑦2)

𝜕𝑦2

𝜕𝑔2
−1(𝑦1,𝑦2)

𝜕𝑦1

𝜕𝑔2
−1(𝑦1,𝑦2)

𝜕𝑦2

|  

Example 7.10 

Let 𝑋1 and 𝑋2 are two independent random variables having exponential 

distributions with parameters  𝜆1 and 𝜆2 respectively. Find the distribution of 𝑌1 =

𝑋1 + 𝑋2 and 𝑌2 =
𝑋1

𝑋1+𝑋2
. 

Solution 

▪ 𝑓𝑋1(𝑥1) = 𝜆1𝑒
−𝜆1𝑥1   ; 𝑥1 ≥ 0 and 𝑓𝑋2(𝑥2) = 𝜆2𝑒

−𝜆2𝑥2  ; 𝑥2 ≥ 0.  

Since 𝑋1 and 𝑋2 are independent, hence 

 𝑓(𝑥1, 𝑥2) = 𝜆1𝑒
−𝜆1𝑥1 . 𝜆2𝑒

−𝜆2𝑥2 = 𝜆1𝜆2𝑒
−(𝜆1𝑥1+𝜆2𝑥2) 

▪ 𝑌1 = 𝑋1 + 𝑋2 & 𝑌2 =
𝑋1

𝑋1+𝑋2
⇒ 𝑋1 = 𝑌1𝑌2  ⇒ 𝑋2 = 𝑌1 − 𝑌1𝑌2 = 𝑌1(1 − 𝑌2).  

Hence, 𝑔1
−1(𝑦1, 𝑦2) = 𝑦1𝑦2 &  𝑔2

−1(𝑦1, 𝑦2) = 𝑦1(1 − 𝑦2). 

▪ The rang of 𝑦1 & 𝑦2: 0 ≤
𝑥1

𝑥1+ 𝑥2
≤ 1 ⇒ 0 ≤ 𝑦2 ≤ 1;  

 0 ≤ 𝑦1𝑦2 ≤ ∞ ⇒  0 ≤ 𝑦1 ≤ ∞. 



 215 STAT                                                           Probability I                                               Weaam Alhadlaq 

94 

 

▪ 𝐽 = |

𝜕𝑥1

𝜕𝑦1

𝜕𝑥1

𝜕𝑦2
𝜕𝑥2

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

| = |
𝑦2 𝑦1

1 − 𝑦2 −𝑦1
| = −𝑦

1
𝑦
2
− 𝑦

1
(1 − 𝑦

2
) = −𝑦

1
. 

▪ 𝑓𝑌1𝑌2(𝑦1, 𝑦2) = |𝐽|𝑓𝑋1𝑋2(𝑔1
−1(𝑦1, 𝑦2),𝑔2

−1(𝑦1, 𝑦2)) = |−𝑦1|𝑓 (𝑦1𝑦2,𝑦1(1 − 𝑦2)) 

= 𝜆1𝜆2𝑦1𝑒
−(𝜆1𝑦1𝑦2+𝜆2𝑦1(1−𝑦2))  

= 𝜆1𝜆2𝑦1𝑒
−[(𝜆1−𝜆2)𝑦1𝑦2+𝜆2𝑦1] ;   0 ≤ 𝑦1, 0 ≤ 𝑦2 ≤ 1.  

Example 7.11 

Let 𝑋1 and 𝑋2 are two independent random variables having Gamma distributions 

with parameters  𝛼 = 2 and 𝛽 = 1. Find the distribution of 𝑋1 + 𝑋2. 

Solution 

▪ 𝑓𝑋1(𝑥1) = 𝑥1𝑒
−𝑥1  ; 𝑥1 ≥ 0 and 𝑓𝑋2(𝑥2) = 𝑥2𝑒

−𝑥2   ; 𝑥2 ≥ 0.  

Since 𝑋1 and 𝑋2 are independent, hence 

 𝑓(𝑥1, 𝑥2) = 𝑥1𝑒
−𝑥1 . 𝑥2𝑒

−𝑥2 = 𝑥1 𝑥2𝑒
−(𝑥1+𝑥2). 

▪ Let 𝑌1 = 𝑋1 & 𝑌2 = 𝑋1 + 𝑋2 ⇒ 𝑋1 = 𝑌1. 

Also, 𝑋2 = 𝑌2 − 𝑌1. 

Hence, 𝑔1
−1(𝑦1, 𝑦2) = 𝑦1 &  𝑔2

−1(𝑦1, 𝑦2) = 𝑦2 − 𝑦1 . 

▪ The rang of 𝑦1 & 𝑦2: 0 ≤ 𝑥1 = 𝑦1 ≤ ∞ & 0 ≤ 𝑥2 = 𝑦2 − 𝑦1 ≤ ∞ ⇒ 0 ≤ 𝑦1 ≤ 𝑦2. 

▪ 𝐽 = |

𝜕𝑥1

𝜕𝑦1

𝜕𝑥1

𝜕𝑦2
𝜕𝑥2

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

| = |
1 0
−1 1

| = 1 − 0 = 1. 

▪ 𝑓𝑌1𝑌2(𝑦1, 𝑦2) = |𝐽|𝑓(𝑔1
−1(𝑦1, 𝑦2),𝑔2

−1(𝑦1, 𝑦2)) = |1|𝑓(𝑦1,𝑦2 − 𝑦1)  

= 𝑦
1
 (𝑦

2
− 𝑦

1
)𝑒−(𝑦1+𝑦2−𝑦1) = 𝑦

1
 (𝑦

2
− 𝑦

1
)𝑒−𝑦2  ;  𝑦

2
≥ 𝑦

1
≥ 0.  

▪ 𝑓𝑌2(𝑦2) = ∫ 𝑦1 (𝑦2 − 𝑦1)𝑒
−𝑦2 𝑑𝑦1

𝑦2
0

= 𝑒−𝑦2 ∫  (𝑦1𝑦2 − 𝑦1
2) 𝑑𝑦1

𝑦2
0

 

= 𝑒−𝑦2 (
𝑦1
2𝑦2

2
−
𝑦1
3

3
) |0

𝑦2 = 𝑒−𝑦2 [(
𝑦2
3

2
−
𝑦2
3

3
) − 0] =

𝑦2
3

6
𝑒−𝑦2; 𝑦2 ≥ 0, 

i.e. 𝑌2 = 𝑋1 + 𝑋2~ 𝐺𝑎𝑚𝑚𝑎(4 ,1). 

7.2.3 Moment-Generating Function Method 

Let X & Y are two random variables where 𝑀𝑋(𝑡), 𝑀𝑌(𝑡) exist and equal, then, 

depending on the uniqueness of the moment generating function of a random 

variable X and Y have the same distribution.  



 215 STAT                                                           Probability I                                               Weaam Alhadlaq 

95 

 

Properties (From chapter two)  

▪ If  𝑌 = 𝑎𝑋 + 𝑏, then 𝑀𝑌(𝑡) = 𝑒
𝑏𝑡𝑀𝑋(𝑎𝑡). 

▪ If X and Y are two independent r.v’s, then 𝑀𝑋+𝑌(𝑡) = 𝑀𝑋(𝑡)𝑀𝑌(𝑡). 

Example 7.12  (Sum of Independent Gammas). 

Let 𝑋𝑖~𝐺𝑎𝑚𝑚𝑎(𝛼𝑖, 𝛽) 𝑖 = 1,… , 𝑛. Independent random variables. Use the moment 

generating function to find the distribution of  𝑌 = ∑ 𝑋𝑖
𝑛
𝑖=1 . 

Solution 

▪ 𝑀𝑋𝑖(𝑡) = (
𝛽

𝛽−𝑡
)
𝛼𝑖
 , 𝑖 = 1,… , 𝑛. 

▪ 𝑀𝑦(𝑡) = 𝑀∑ 𝑿𝒊
𝒏
𝒊=𝟏

(𝑡) = 𝐸(𝑒𝑡(𝑋1+⋯+𝑋𝑛)) = 𝐸(𝑒𝑡𝑋1 … 𝑒𝑡𝑋𝑛) = 𝐸(𝑒𝑡𝑋1)…𝐸(𝑒𝑡𝑋𝑛) 

= 𝑀𝑋1
(𝑡)…𝑀𝑋𝑛

(𝑡) = (
𝛽

𝛽−𝑡
)
𝛼1
…(

𝛽

𝛽−𝑡
)
𝛼𝑛
= (

𝛽

𝛽−𝑡
)
∑ 𝛼𝑖
𝑛
𝑖=1

    

Thus,  𝑌 = ∑ 𝑋𝑖
𝑛
𝑖=1 ~ 𝐺𝑎𝑚𝑚𝑎(∑ 𝛼𝑖

𝑛
𝑖=1  , 𝛽). 

Example 7.13  (Linear Function of Independent Normal r.v’s). 

Let 𝑋𝑖 ~ 𝑁(𝜇𝑖, 𝜎𝑖
2) ; 𝑖 = 1,… , 𝑛. Independent random variables. Use the moment 

generating function to find the distribution of  𝑌 = ∑ 𝑎𝑖𝑋𝑖
𝑛
𝑖=1 . 

Solution 

▪ 𝑀𝑋𝑖(𝑡) = 𝑒𝝁𝒊𝒕+
𝝈𝒊
𝟐𝒕𝟐

𝟐  , 𝑖 = 1, … , 𝑛. 

▪ 𝑀𝑦(𝑡) = 𝑀∑ 𝑎𝑖𝑋𝑖
𝑛
𝑖=1

(𝑡) = 𝐸(𝑒𝑡(𝑎1𝑋1+⋯+𝑎𝑛𝑋𝑛)) = 𝐸(𝑒𝑡𝑎1𝑋1 … 𝑒𝑡𝑎𝑛𝑋𝑛) 

= 𝐸(𝑒𝑡𝑎1𝑋1)…𝐸(𝑒𝑡𝑎𝑛𝑋𝑛) = 𝑀𝑋1
(𝑎1𝑡)…𝑀𝑋𝑛

(𝑎𝑛𝑡)  

= 𝑒𝜇1𝑎1𝑡+
𝜎1
2𝑎1
2𝑡2

2 …𝑒𝜇𝑛𝑎𝑛𝑡+
𝜎𝑛
2𝑎𝑛

2𝑡2

2 = 𝑒𝑡
∑ 𝜇𝑖𝑎𝑖
𝑛
𝑖=1 +

𝑡2

2
∑ 𝜎𝑖

2𝑎𝑖
2𝑛

𝑖=1 .  

Thus, 𝑌 = ∑ 𝑎𝑖𝑋𝑖
𝑛
𝑖=1 ~ 𝑁 (∑ 𝛼𝑖𝜇𝑖

𝑛
𝑖=1  , √∑ 𝜎𝑖

2𝑎𝑖
2𝑛

𝑖=1 ).  

Example 7.14   

Use the moment generating function to find the distribution of 𝑍2 where 𝑍~𝑁(0,1). 

Solution 

▪ 𝑓𝑍(𝑧) =
1

√2𝜋
𝑒−

𝑧2

2  ;  −∞ < 𝑧 < ∞. 

▪ 𝑀𝑍2(𝑡) = 𝐸(𝑒
𝑡𝑍2) = ∫ 𝑒𝑡𝑍

2
.
1

√2𝜋
𝑒−

𝑧2

2 𝑑𝑧
∞

−∞
=

1

√2𝜋
∫ 𝑒−(

1−2𝑡

2
)𝑧2𝑑𝑧

∞

−∞
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=
2

√2𝜋
∫ 𝑒−(

1−2𝑡

2
)𝑧2𝑑𝑧

∞

0
 (𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑏𝑜𝑢𝑡 0)   

Let 𝑢 = 𝑧2  ⇒ 𝑧 = 𝑢1/2 , 𝑑𝑧 =
1

2
𝑢−

1

2 𝑑𝑢 and 0 ≤ 𝑢. Hence 

𝑀𝑍2(𝑡) =
2

√2𝜋
∫ 𝑒−(

1−2𝑡

2
)𝑢.

1

2
𝑢−

1

2𝑑𝑢
∞

0
=

1

√2𝜋
∫ 𝑢−

1

2𝑒−(
1−2𝑡

2
)𝑢𝑑𝑢

∞

0
  

=
Γ(
1

2
)(

2

1−2𝑡
)

1
2

√2𝜋
∫

1

Γ(
1

2
)(

2

1−2𝑡
)

1
2

 𝑢−
1

2𝑒−(
1−2𝑡

2
)𝑢𝑑𝑢

∞

0
=

Γ(
1

2
)(

2

1−2𝑡
)

1
2

√2𝜋
. (1) =

√π(
2

1−2𝑡
)

1
2

√2𝜋
  

= (1 − 2𝑡)−
1

2.   

Thus,  𝑍2~ 𝐺𝑎𝑚𝑚𝑎 (
1

2
 ,
1

2
). 

Example 7.15 (Sum of two exponential r.v’s). 

Let 𝑋1, 𝑋2are two independent random variables have the same exponential 

distribution with parameter 𝜃. 𝑓𝑋𝑖(𝑥𝑖) = 𝜃𝑒−𝜃𝑥𝑖 , 𝑥𝑖 ≥ 0. Use the moment generating 

function to find the distribution of  𝑋1 + 𝑋2. 

Solution 

▪ 𝑀𝑋𝑖(𝑡) =
𝜃

𝜃−𝑡
. 

▪ 𝑀𝑈(𝑡) = 𝑀𝑋1+𝑋2
(𝑡) = 𝑀𝑋1(𝑡)𝑀𝑋2(𝑡) =

𝜃

𝜃−𝑡
.
𝜃

𝜃−𝑡
= (

𝜃

𝜃−𝑡
)
2

.  

Thus,  𝑋1 + 𝑋2~𝐺𝑎𝑚𝑚𝑎(2, 𝜃). 
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Table 4.2: Lower Critical values for Chi-square distribution 

df \𝜶 .005 .01 .025 .05 .10 .90 .95 .975 .99 .995 

1 .00004 .00016 .00098 .0039 .0158 2.71 3.84 5.02 6.63 7.88 

2 .0100 .0201 .0506 .1026 .2107 4.61 5.99 7.38 9.21 10.60 

3 .0717 .115 .216 .352 .584 6.25 7.81 9.35 11.34 12.84 

4 .207 .297 .484 .711 1.064 7.78 9.49 11.14 13.28 14.86 

5 .412 .554 .831 1.15 1.61 9.24 11.07 12.83 15.09 16.75 

6 .676 .872 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55 

7 .989 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28 

8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96 

9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59 

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19 

11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76 

12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30 

13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82 

14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32 

15 4.6 5.23 6.26 7.26 8.55 22.31 25 27.49 30.58 32.80 

16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27 

18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16 

20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00 

24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56 

30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67 

40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77 

60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95 

120 83.85 86.92 91.58 95.70 100.62 140.23 146.57 152.21 158.95 163.64 

 

  

𝜒𝛼
2  

𝛼 
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Table 4.3: Area to the Left of the Z score for Standard Normal Distribution.  

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 

-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 

-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 

-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 

-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 

-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 

-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 

-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 

-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 

-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 

-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 

-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 

-2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 

-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 

-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 

-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 

-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 

-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 

-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 

-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 

-1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 

-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 

-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 

-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 

-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 

-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 

-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 

-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 

-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 

-0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 

-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 

-0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 

-0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 

-0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 

-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 
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Table 4.4: Lower Critical Values for t Distribution.  

𝝊 = 𝒅𝒇 t0.90 t0.95 t0.975 t0.99 t0.995 

1 3.078 6.314 12.706 31.821 63.657 
2 1.886 2.920 4.303 6.965 9.925 
3 1.638 2.353 3.182 4.541 5.841 
4 1.533 2.132 2.776 3.747 4.604 
5 1.476 2.015 2.571 3.365 4.032 
6 1.440 1.943 2.447 3.143 3.707 
7 1.415 1.895 2.365 2.998 3.499 
8 1.397 1.860 2.306 2.896 3.355 
9 1.383 1.833 2.262 2.821 3.250 

10 1.372 1.812 2.228 2.764 3.169 
11 1.363 1.796 2.201 2.718 3.106 
12 1.356 1.782 2.179 2.681 3.055 
13 1.350 1.771 2.160 2.650 3.012 
14 1.345 1.761 2.145 2.624 2.977 
15 1.341 1.753 2.131 2.602 2.947 
16 1.337 1.746 2.120 2.583 2.921 
17 1.333 1.740 2.110 2.567 2.898 
18 1.330 1.734 2.101 2.552 2.878 
19 1.328 1.729 2.093 2.539 2.861 
20 1.325 1.725 2.086 2.528 2.845 
21 1.323 1.721 2.080 2.518 2.831 
22 1.321 1.717 2.074 2.508 2.819 
23 1.319 1.714 2.069 2.500 2.807 
24 1.318 1.711 2.064 2.492 2.797 
25 1.316 1.708 2.060 2.485 2.787 
26 1.315 1.706 2.056 2.479 2.779 
27 1.314 1.703 2.052 2.473 2.771 
28 1.313 1.701 2.048 2.467 2.763 
29 1.311 1.699 2.045 2.462 2.756 
30 1.310 1.697 2.042 2.457 2.750 
35 1.3062 1.6896 2.0301 2.4377 2.7238 
40 1.3030 1.6840 2.0210 2.4230 2.7040 
45 1.3006 1.6794 2.0141 2.4121 2.6896 
50 1.2987 1.6759 2.0086 2.4033 2.6778 
60 1.2958 1.6706 2.0003 2.3901 2.6603 
70 1.2938 1.6669 1.9944 2.3808 2.6479 
80 1.2922 1.6641 1.9901 2.3739 2.6387 
90 1.2910 1.6620 1.9867 2.3685 2.6316 

100 1.2901 1.6602 1.9840 2.3642 2.6259 
120 1.2886 1.6577 1.9799 2.3578 2.6174 
140 1.2876 1.6558 1.9771 2.3533 2.6114 
160 1.2869 1.6544 1.9749 2.3499 2.6069 
180 1.2863 1.6534 1.9732 2.3472 2.6034 
200 1.2858 1.6525 1.9719 2.3451 2.6006 
∞ 1.282 1.645 1.960 2.326 2.576 

 


