Water Chemistry

•	A substance (matter) is composed of <i>molecules</i> , and a molecule is composed of
	atoms.
	o e.g. Water is composed of "H ₂ O" molecules and each "H ₂ O" is composed of
	"H") and "O" atoms.
•	Substances:
	o Compounds: composed of different atoms (e.g. H ₂ O) (NaCl).
	o Elements: composed of same atoms (e.g. gases N2, H2, O2) liquid: mercury;
	solids: carbon, sulfur).
•	The Atom consists of:
	(1) A nucleus containing protons (+ ve charged) and neutrons (uncharged), and
	(2) Electrons (- ve charged) moving constantly around the nucleus in orderly
N#	rings (orbits).
	بالكرون برولون س
-151 - 1714	o An atom normally has the same number of protons as electrons, so that the
	net electric charge carried is zero.
2	مران محتوب بسواة
	o The nucleus constitutes about 99.9% of the weight of the atom.
	■ Weight of proton: 1.673 x 10 ⁻²⁴ grams
	■ Weight of neutron: 1.675 x 10 ⁻²⁴ grams
	■ Weight of electron: 9.11 x 10 ⁻²⁸ grams
	ليد ليدي
	The atomic number
	o The number of protons (or electrons)
	الموزم ليذري
•	The atomic weight (g/mol)
	O Atomic weight AW = number of protons and neutrons

- o A mole is the quantity of a substance which contains Avogador's number (6.02×10^{23}) of elementary entities (atoms, molecules, ..).
- o Thus, one mole of any element has 6.02x1023 atoms, and one mole of any molecules has 6.02x10²³ elements.

o Example:

- One mole of carbon (C) has 6.02×10^{23} carbon atoms.
- The carbon atom has 6 protons and 6 neutrons in the nucleus, and 6 electrons.
- \therefore the atomic number = 6
- and the AW = 12 g/mol
 - o The weight of protons = $6 * 6.02 \times 10^{23} * 1.673 \times 10^{-24} = 6.04 \text{ g/mol}$ ≈ number of protons
 - o The weight of neutrons = $6*6.02 \times 10^{23} * 1.675 \times 10^{-24} = 6.05$ g/mol ≈ number of neutrons
 - o : the atomic weight of carbon = 12 g/mol

 \approx number of protons + number of neutrons

o Example:

- The nitrogen atom (N) has 7 protons and 7 neutrons in its nucleus.
- \therefore the atomic number = 7, and the AW = 14 g/mol

Isotopes

o Isotopes are elements that have the same number of protons (but) different number of neutrons

o Example and are isotopes of carbon

atomic no. = 6 AW = 12 g/mol

AW = 13 g/mol

• Radicals

• Radicals are groups of atoms act together as one unit (they are not compounds)

• Examples:

- OH (hydroxide)
 - SO₄ (sulfate)
 - \bullet CO₃ (carbonate)
 - NO₃ (nitrate)
 - NH₄⁺ (ammonium)
- o Radicals join with other elements forming compounds
 - Examples:
 - H₂SO₄ (sulfuric acid)
 - NaOH (sodium hydroxide)
 - Fe₂(SO₄)₃ (ferric sulfate)

Co	ipounds and Elements Formation
0	Compounds/elements are formed when two or more atoms are joined
0	together through chemical bonds. Bonds are formed by
	Transfer of electrons from one atom to another (ionic bonds). For
	example, a sodium atom (Na) gives up an electron to chlorine
	atom (Cl) to form sodium chloride, NaCl
	 Sharing of electrons equally between identical atoms (covalent
	bonds). Examples are oxygen (O_2) and hydrogen (H_2) gases.
0	If electrons are lost, the atom becomes +ve charged ion (cation), and the
184	atom is oxidized.

- o If electrons are gained, the atom becomes -ve charged ion (anion), and the atom is reduced.
- o Example (ionic bonding)
 - Sodium atom (Na) → atomic no. = 11 (i.e. 11 electrons)
 - Chlorine atom (Cl) \rightarrow atomic no. = 17 (i.e. 11 electrons)

• One sodium atom combines with one chlorine atom to form sodium chloride (NaCl)

Electron transfer during a chemical reaction, producing a sodium ion (+) and a chloride ion (-)

- .: the valency of Na (oxidation state) = 1+
- and the valency of Cl = 1-
- <u>The valency</u> is the number of electrons that an atom can take, give-up, or share with other atoms. (see Table 2-1)
- وراط المناخ من من المناخ المن
 - Nitrogen atom (N) \rightarrow atomic no. = 7 (i.e. 7 electrons)

■ Hydrogen atom (H) \rightarrow atomic no. = 1 (i.e. 1 electron)

- One nitrogen atom combines with three hydrogen atoms by sharing electrons to form ammonia gas (NH₃)
- Valency of N = 3-, and valency of H = 1+

- Example (covalent bonding)
 - Hydrogen (H) \rightarrow atomic no. = 1 (i.e. 1 electrons)
 - Two hydrogen atoms combine by sharing two electrons between them to form hydrogen gas (H₂).

H:H

Valency of H = 1+

Note: Some elements can assume several oxidation states from which a variety of ions, and molecules can result.

- لرزم الجريمي. المحريميي. المحريميي. Molecular weight, MW (g/mole) [for compounds and elements]
 - o Molecular weight: the sum of atomic weights of the combined elements.
 - o Example: the MW of methane gas, $CH_4 = 12 + (4 \times 1) = 16 \text{ g/mol}$
 - o Example: the MW of sodium carbonate, Na₂CO₃

$$= [23x2 + 12 + 16x3] = 46 + 12 + 48 = 106 \text{ g/mol}$$

Equivalent weight, EW (g/eq > gram per equivalent)

Where Z = absolute value of the ion charge, (e.g. 1 for Na⁺ and Cl⁻. 2 for Ca⁺⁺) = absolute value of the electrical charge of the compound.

- o Examples:
 - EW of calcium $(Ca^{++}) = 40/2 = 20$ g/eq
 - EW of sodium $(Na^+) = 23/1 = 23 \text{ g/eq}$

• EW of Sodium hydroxide, NaOH = (23 + 16 + 1) / 1 = 40 g/eq NaOH is made of Na+ and OH. The Na+ has a valency of 1+, thus a compound with one Na ion has a total electrical charge of 1+. Similarly, the OH has a charge of 1-, thus a compound with one OH has a total of 1electrical charge.

■ EW of Ferric sulfate,
$$Fe_2(SO_4)_3 = [2x55.8 + (32+4x16)x3]$$
 6
= 400 / 6 = 66.7 g/eq

Note: The ferric ion has a valency of 3+, thus a compound with 2 ferric ions has a total electrical charge of 6+. Similarly, the sulfate radical has a charge of 2-, thus a compound with 3 sulfate radicals has a total charge of 6-

Chemical Analysis of Water

- o When inorganic compounds are placed in water, they ionize or dissociate into ions:
 - $^{\circ}$ MgSO₄ \rightarrow Mg⁺⁺ + SO⁼
 - $^{\circ}$ Na₂SO₄ \rightarrow Na⁺ + SO₄⁼
 - $^{\circ}$ NaCl \rightarrow Na⁺ + Cl⁻
- Concentrations of ions, elements and molecules in water are expressed in:

 o mg()

 liter from water

o ppm (part per million) ≡ mg/L (because one liter of water weighs 1,000,000 mg)

o milliequivalent per liter (meq/L)

$$mg/L = mg/L = mg/L$$

$$equivalent weight = EW (g/eq)$$

Note: 1 equivalent (eq) = 1000 milliequivalent (meq)

- Advantages of reporting concentrations in meq/L:
 - o Can check the accuracy of the analyses for major ions,

$$\sum$$
 meq/L of cations = \sum meq/L of anions

- o Can present the results graphically.
- o One "eq" or "meq" of an ion or molecule is chemically equivalent to one "eq" or "meq" of a different ion or molecule. Thus, Concentrations in meq/L can be added, subtracted or converted easily.

o Example:

Water has the following chemical characteristics:

Calcium,
$$Ca^{++} = 35.8 \text{ mg/L}$$

Sodium,
$$Na^+ = 4.6 \text{ mg/L}$$

Potassium,
$$K^+ = 3.9 \text{ mg/L}$$

Bicarbonate,
$$HCO_3 = 131 \text{ mg/L}$$

Sulfate,
$$SO_4^{=} = 26.4 \text{ mg/L}$$

Chloride,
$$Cl = 7.1 \text{ mg/L}$$

Draw the milliequivalent per liter bar graph and list the hypothetical combinations of chemicals for this water.

Solution:

Component	mg/L	Equivalent weight	meg/L
Ca ⁺⁺	35.8	40/2 = 20	35.8/20 = 1.79
Mg ⁺⁺	9.9	24.4/2 = 12.2	9.9/12.2 = 0.81
Na ⁺	4.6	23/1 = 23	4.6/23 = 0.20
K ⁺	3.9	39.1/1 = 39.1	3.9/39.1 = 0.10
2:		\(\sum_{\text{cations}} \)	2.9
HCO ₃	131	61/1 = 61	131/61 = 2.15
SO ₄ =	26.4	96/2 = 48	26.4/48 = 0.55
C1 ⁻	7.1	35.5/1 = 35.5	7.1/35.5 = 0.20
		\(\simeq \anions \)	2.9

Hypothetical combinations

50,000

Note:

- o The concentration of Ca(HCO₃)₂ is 1.79 meq/L
- The concentration of Ca(HCO₃)₂ in mg/L = 1.79 meg/L x EW of Ca(HCO₃)₂ = 1.79 x 81 = 145 mg/L
- o The concentration of Ca(HCO₃)₂ in mg/L as $CaCO_3 = 1.79$ meg/L x EW of $CaCO_3 = 1.79$ x 50 = 89.5 mg/L

Standard Solutions

- o A standard solution is a solution whose strength or reacting value per unit volume is known.
- o Standards solutions are used in volumetric analysis for many determinations such as chlorides, acidity, alkalinity, etc.

□ Molar solutions

- o A molar solution is a solution that contains one molecular weight of a substance per liter of water.
- o The symbol "M" is used as the abbreviation for "molar" or "molarity".

- o A half-molar solution is expressed either as 0.5 M or M/2.
- o To prepare one liter of a 1.0 M (or M/1) sulfuric acid solution [H₂SO₄] (MW = 98 g/mol), add 98 g of concentrated H₂SO₄ to distilled water in a 1-L volumetric flask, mix and then add enough distilled water to the 1-L mark.
- o To make a 1-L of 0.02 M (or M/50) acid from the 1.0 M solution, we can calculated how many mL of the 1.0 M solution to add to 1-L of water:

$$mL_1 \times M_1 = mL_2 \times M_2$$

 $mL_1 \times 1.0 = 1000 \times 0.02 \rightarrow mL_1 = 20 \text{ mL}$

That is, dilute 20 mL of 1 M acid solution to 1000 mL with distilled water and mix thoroughly to make a 1-L 0.02 M acid solution.

□ Normal solutions

- o A normal solution is a solution that contains one equivalent weight of a substance per liter of water.
- o The symbol "N" is used as the abbreviation for "normal" or "normality".
- o To make a 1.0 N H_2SO_4 solution, add 49 g of concentrated H_2SO_4 to distilled water and dilute to the 1-L mark. [EW of $H_2SO_4 = 98/2 = 49$ g/eq].

Normality (eg/L) = Weight of a substance per unit volume of water (g/L) / EW (g/eq)
$$= \frac{9 / l}{EW (9/eq)}$$

$$H = 1$$

 $S = 32$
 $D = 16$

□ Example

If a solution contains 5 g of NaOH per Liter, calculate the concentration of NaOH in terms of weight/volume units expressed as (a) mg/L, (b) molarity, and (c) normality.

MW of NaOH =
$$23 + 16 + 1 = 40$$
 g/mol
EW of NaOH = $40 / 1 = 40$ g/eq

Solution:

- (a) concentration in mg/L = 5000 mg/L
- (b) concentration in molarity = 5 (g/L) / 40 (g/mol) = 0.125 mol/L = 0.125 M
- (c) concentration normality = 5 (g/L) / 40 (g/eq) = 0.125 eq/L = 0.125 N