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Vector Calculus

rectional Derivative

The Dot Product

Definition

In R?, if u = (u1,us) and v = (v1, v»), the dot product of u and v
is the number (u, v) = uivi + pvo.

In R3, if u= (u1, U, u3) and v = (v1, v2, v3), the dot product of u
and v is the number (u,v) = ut1v1 + wpvo + u3vs.

The norm of a vector u is ||ul| = \/(u, u).
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Recall that if 6 is the angle between the vectors o and 7 then

(u, v) = [lul[ [Iv]l cos 6.

The direction angles associated to a

vector u are given by: cosa = ﬁ
{u)) _ (uk)
N ; cos 3 = Tull cosy = [
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The Cross Product

Definition
If u1 = (x1,y1,21) and up = (x2, y2, 22), then the cross product of
u1 and wus is the vector

yi a4 e

Y2 2

X1 21
Xo 22

X1
X2 Y2

- -
up A\ up = i k.
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Remark

© The vector u; A up is orthogonal to the vectors u; and up and
its direction is given by the right-hand rule i.e. the
determinant |uy, up, u3 A up| is non negative.

@ |u1 A up| is the area of the parallelogram spanned by u; and
U, i.e.,

luy A up| = |ur||ug| sinf

© Two vectors w1 and wp are parallel if and only if uy A up = 0.
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Theorem (Cross Product Properties)

Let w1, up, and u3 be vectors and let ¢ be a constant:
Q u1 Nup=—up Aug;

Q (ctn) Nup = c(nn A ) =1 A (cw2);

©Q ui AN (w4 w3) = w1 Ao+ ug A us;

Q (1 +w)ANuzs=u1 ANuz+ up A us;

Q ur-(wAu3)=(u1Auw)- us;

Q ui A (w2 Auz) = (u1-uz)up — (u1 - u2)us.
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Scalar Triple Product

The scalar triple product of three vectors vy, up, and us is the
determinant

X1 Y1 a
(U, (A W) =|x2 y2 2.
X3 y3 Z3

The volume of the parallelepiped formed by the vectors uy, up, and
u3 is given by
[(u1, (u2 A uz))].
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The Directional Derivative

Let f be a function defined on a domain D C R?. For
(x0,¥0) € D, the partial derivatives of f with respect to x and y it
they exist are defined by:

f(x0 + h, o) — f(x0, y0)
h )

fi(x0, 0) = ,|7i_f>“o

. f(x0, Y0 + h) — f(x0, ¥
00, y0) = fim [0 D)= TG00,

V Ol’lgl B Vector Fields



The Dot (or the inner) Product
The Cross Product

Scalar Triple Product

The Directional Derivative

Vector Calculus

Consider a smooth scalar field f: D — R. The partial derivatives
of f in the pointr=x1i +yj +zk € D when these limits exist:

of . flx+hyz)—Ff(xy,2)
g?(r)_mf( he)— flxuy.z)

P X7y+ 7Z - X7y7z_
ay ") = fim, h '
of v . flxy,z+h)—f(xy,2)
g(r)_}’ino h '
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The Directional Derivative

Let f be a function defined on a domain D C R?. For (xg, y0) € D
and u = (a, b) a unit vector in R?. The directional derivative of f
in the direction of u at (xp, yo) if it exists is

f((x0, ¥0) + hu) — f(x0, y0)

Duf(x0,y0) = lim p
. f(xo + ah, yo + bh) — f(x0, y0)
= l|lim .
h—0 h
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Example

Q If u=(a,b), D,f(x0,¥0) is the same as the derivative of
f(xo + at,yo + bt) at t = 0. We can compute this by the
chain rule and get

D,f(x0, y0) = afi(x0, yo) + bf,(x0, yo)-

@ Find the directional derivative of f(x,y) = xy® — x? at (1,2)

in the direction u = (%, ?)

© Find the directional derivative of f(x,y) = x2Iny at (3,1) in

the direction of u = (-3, ?)
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Vector Fields

Definition

A two-dimensional vector field is a function f that maps each point
(x,y) in R? to a two—dimensiogal vector f(x,y) = (u(x,y), v(x,y)).
V_\/}e denote f(x,y) = u(x,y) i + v(x,y)j, where i =(1,0) and
i =(0,1).
Similarly a three-dimensional vector field maps (x, y, z) to
f(x,y,z) = (u(x,y,2), v(x,y,2), w(x, y, 2)).

= 2 -
We denote f(x,y,2) = ulx,y,2) T +v(x,y,2) § +wlx,y,2)k,
where i =(1,0,0), j =(0,1,0) and k =(0,0,1).
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Vector Fields

Example

The vector fields have many important significations, as they can
be used to represent many physical quantities: gravity, electricity,
magnetism or a velocity of fluid.

Let r(t) = x(t) i +y(t)j + z(t) k be the position vector of an
object. We can define various physical quantities associated with
the object as follows:

velocity: v(t) = r'(t) = & = X() T +y'(t) ] +Z(t)K,
acceleration: N N N
at)=v() =L =r"(t)= 2 =x"(t) T +y"(t)] +2"(t)k,
The norm ||v(t)|| of the velocity vector is called the speed of the
object.
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Vector Fields

Example

The gravitational force field between the Earth with mass M and a
point particle with mass m is given by:

- -, T
xi+yj+zk

F(x,y,z) = —GmM ,
(X2 +y2 + 22)3

where G is the gravitational constant, and the (x,y, z) coordinates
are chosen so that (0,0, 0) is the center of the Earth.

V Ol’lgl B Vector Fields



Vector Fields

Gradient Fields

Let f be a scalar function of two variables, the gradient of f is

defined by
of of
Vf(X,y) = (&(Xay% @(va))

If f is a scalar function of three variables, its gradient is a vector
field on R3 given by

of of of
vf(xayaz) = (&()Qy?Z)v @(Xayvz)a E(Xv)@z))'

The operator V W|II be denoted by:
_>
V:a%| —{—8yj +8 k or V = (8@ 8@ g) as a vector.
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Vector Fields

Remark

Let f be a function. The vector Vf(xo, o, 20) is orthogonal to the
level surface of f S = {(x,y,z) € R3: f(x,y,z) = C} that
contains (xo, Yo, 20)-
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Vector Fields

Consider f and g two smooth scalar functions defined on a domain
D c R3 and consider F = (f1,f, ;) and G = (g1, 8, g3) two
smooth vector fields.

= fV(g)+gV(f).

)

V((F,G)) = V(hg + fg + fg3)
= V(fig)+ V(fg2) + V(figs)
= A(V(g)+ +£LV(g)+ :V(gs)
g V(f) + &V(k) + &V(h).
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Vector Fields

Definition

A vector field F is called conservative, if F is the gradient of a
function, F = V{. In this case, the function f is called a potential
of the vector field F.

For example the vector field

F = —X -y —Z
(2 +y2+22)2 (x2+y2+22)7 (x2+y2 + 22)
1

= V—-—-—.
/X2+y2+22
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Vector Fields

Example (The inverse square field)

T =
Let r(x,y,z) =xi +yj +zk be the position vector of the
point M(x,y, z). The vector field F(x,y,z) = ﬁr(x,y,z) is

called the inverse square field, where ¢ € R.
The inverse field is conservative.
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Vector Fields

Test of Conservative

f f
IfF=(P,Q) = VF. Then P= 2 and @ = 2 and provided
ox dy

that f is s2mooth, frzom Schwarz's Theorem

oP o“f 0 2Q

— = = f= Hen f— — Fi t
dy  0OxQdy  OyOx Ox ence, ;é s no

conservative.
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Vector Fields

For a vector field F = (P, Q, R), suppose that

(P,Q,R) = (gf gf gf) If z is constant, then f(x,y,z) is a

functionQOf X an2d y, and by Schwarz's Theorem,

g—}’f = aiafy = aayafx = %. Likewise, if y is constant, then
op o il ok and if x is constant, we get
— = = = nd if x is constant, w

0z 0x0z 0z0x  Ox' &

0Q 9 5 0R
0z ayﬁz 328y Ay’

Conversely, if oP _9Q 9P = oR d @ or then F is

dy  Ox' 9z  ox’ e 5z dy

conservative.
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Vector Fields

Example

© The vector field (1 + 3xy,2x? — 3y?) is not conservative
2 2 _ 2
O(L+3xy) _ 5 4 9(2x° = 3y7)
Oy ox
@ The vector field F = (y2z + y cos x, 2xyz + sin x — sin y, xy?)
is conservative because, F = V(xy?z + y sinx + cos y).

because, = 4x.
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The Divergence

The Divergence

Definition
The divergence of a vector field F = (P, Q, R) is

B o 0 0 0P 9@  OR
<V’F>_<<6X’ay’az>’(P,Q’R)>_aX+(9y+8Z
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The Divergence

The curl of a vector field
The curl of F = (P, Q,R) is

- o o
oor b Kl or 90 0P oR 00 P
_‘9?; % ‘9;2_ dy 90z 0z 9Ox dx Oy)’

- - .
If F=Pi + Q] isatwo dimensional vector field, the curl V x F
can also be defined by regarding the k—component to be zero, i.e.

F=PT +Qj +0K, then curlF = (52 — 22} %

Theorem (The Curl Test)

Given a vector field F = (P, Q, R) is defined and continuously
differentiable everywhere in R3 (or everywhere in R? for vector
fields in R?), then F is conservative if and curlF = 0.
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The Divergence

Here are two simple but useful facts about divergence and curl.

(V,(V x F)) = 0. In other words, the divergence of the curl is zero.

V x (Vf) = 0. That is, the curl of a gradient is the zero vector.
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The Divergence

Exercises

Exercise 1 :

A vector field F is said to be incompressible if (V, F) = 0.
Prove that any vector field of the form

F(x,y,z) = (f(y,z),8(x, z), h(x,y)) is incompressible.

Exercise 2 :
Find an f so that V£ = (2x + y?, 2y + x2), or explain why there is
no such f.
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The Divergence

Exercise 3 :

Find an f so that Vf = (x3, —y*), or explain why there is no such
f.

Exercise 4 :

Find an f so that Vf = (xe”, ye¥), or explain why there is no such
f.
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The Divergence

Exercise 5 :
Find an f so that Vf = (y cos x, y sin x), or explain why there is
no such f.

Exercise 6 :
Find an f so that Vf = (y cos x, sin x), or explain why there is no
such f.

Exercise 7 :
Find an f so that Vf = (x?y3, xy*), or explain why there is no
such f.
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The Divergence

Exercise 8 :
Find an f so that Vf = (yz, xz,xy), or explain why there is no
such f.
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