
Vector Calculus
Vector Fields

The Divergence

Vector Fields

Mongi BLEL

King Saud University

March 25, 2024

Mongi BLEL Vector Fields



Vector Calculus
Vector Fields

The Divergence

1 Vector Calculus
The Dot (or the inner) Product
The Cross Product
Scalar Triple Product
The Directional Derivative

2 Vector Fields
3 The Divergence

Mongi BLEL Vector Fields



Vector Calculus
Vector Fields

The Divergence

The Dot (or the inner) Product
The Cross Product
Scalar Triple Product
The Directional Derivative

The Dot Product

Definition

In R2, if u = (u1, u2) and v = (v1, v2), the dot product of u and v
is the number ⟨u, v⟩ = u1v1 + u2v2.
In R3, if u = (u1, u2, u3) and v = (v1, v2, v3), the dot product of u
and v is the number ⟨u, v⟩ = u1v1 + u2v2 + u3v3.
The norm of a vector u is ∥u∥ =

√
⟨u, u⟩.
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Recall that if θ is the angle between the vectors −→u and −→v , then

⟨u, v⟩ = ∥u∥ ∥v∥ cos θ.

α

βγ

The direction angles associated to a
vector u are given by: cosα = ⟨u,i⟩

∥u∥ ,

cosβ = ⟨u,j⟩
∥u∥ , cos γ = ⟨u,k⟩

∥u∥ .
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The Cross Product

Definition

If u1 = (x1, y1, z1) and u2 = (x2, y2, z2), then the cross product of
u1 and u2 is the vector

u1 ∧ u2 =

∣∣∣∣y1 z1
y2 z2

∣∣∣∣−→i +

∣∣∣∣x1 z1
x2 z2

∣∣∣∣−→j +

∣∣∣∣x1 y1
x2 y2

∣∣∣∣−→k .
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Remark

1 The vector u1 ∧ u2 is orthogonal to the vectors u1 and u2 and
its direction is given by the right-hand rule i.e. the
determinant |u1, u2, u1 ∧ u2| is non negative.

2 |u1 ∧ u2| is the area of the parallelogram spanned by u1 and
u2, i.e.,

|u1 ∧ u2| = |u1| |u2| sin θ
3 Two vectors u1 and u2 are parallel if and only if u1 ∧ u2 = 0.
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Theorem (Cross Product Properties)

Let u1, u2, and u3 be vectors and let c be a constant:

1 u1 ∧ u2 = −u2 ∧ u1;

2 (cu1) ∧ u2 = c(u1 ∧ u2) = u1 ∧ (cu2);

3 u1 ∧ (u2 + u3) = u1 ∧ u2 + u1 ∧ u3;

4 (u1 + u2) ∧ u3 = u1 ∧ u3 + u2 ∧ u3;

5 u1 · (u2 ∧ u3) = (u1 ∧ u2) · u3;
6 u1 ∧ (u2 ∧ u3) = (u1 · u3)u2 − (u1 · u2)u3.
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Scalar Triple Product

The scalar triple product of three vectors u1, u2, and u3 is the
determinant

⟨u1, (u2 ∧ u3)⟩ =

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ .
The volume of the parallelepiped formed by the vectors u1, u2, and
u3 is given by

|⟨u1, (u2 ∧ u3)⟩|.
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The Directional Derivative

Let f be a function defined on a domain D ⊂ R2. For
(x0, y0) ∈ D, the partial derivatives of f with respect to x and y it
they exist are defined by:

fx(x0, y0) = lim
h→0

f (x0 + h, y0)− f (x0, y0)

h
,

fy (x0, , y0) = lim
h→0

f (x0, y0 + h)− f (x0, y0)

h
.
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Consider a smooth scalar field f : D −→ R. The partial derivatives

of f in the point r = x
−→
i + y

−→
j + z

−→
k ∈ D when these limits exist:

∂f

∂x
(r) = lim

h→0

f (x + h, y , z)− f (x , y , z)

h
;

∂f

∂y
(r) = lim

h→0

f (x , y + h, z)− f (x , y , z)

h
;

∂f

∂z
(r) = lim

h→0

f (x , y , z + h)− f (x , y , z)

h
.
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The Directional Derivative

Let f be a function defined on a domain D ⊂ R2. For (x0, y0) ∈ D
and u = (a, b) a unit vector in R2. The directional derivative of f
in the direction of u at (x0, y0) if it exists is

Duf (x0, y0) = lim
h→0

f ((x0, y0) + hu)− f (x0, y0)

h

= lim
h→0

f (x0 + ah, y0 + bh)− f (x0, y0)

h
.
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Example

1 If u = (a, b), Duf (x0, y0) is the same as the derivative of
f (x0 + at, y0 + bt) at t = 0. We can compute this by the
chain rule and get

Duf (x0, y0) = afx(x0, y0) + bfy (x0, y0).

2 Find the directional derivative of f (x , y) = xy3 − x2 at (1, 2)

in the direction u = (12 ,
√
3
2 )

3 Find the directional derivative of f (x , y) = x2 ln y at (3, 1) in

the direction of u = (−1
2 ,

√
3
2 ).
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Definition

A two-dimensional vector field is a function f that maps each point
(x,y) in R2 to a two-dimensional vector f (x , y) = (u(x , y), v(x , y)).

We denote f (x , y) = u(x , y)
−→
i + v(x , y)

−→
j , where

−→
i = (1, 0) and

−→
j = (0, 1).
Similarly a three-dimensional vector field maps (x , y , z) to
f (x , y , z) = (u(x , y , z), v(x , y , z),w(x , y , z)).

We denote f (x , y , z) = u(x , y , z)
−→
i + v(x , y , z)

−→
j + w(x , y , z)

−→
k ,

where
−→
i = (1, 0, 0),

−→
j = (0, 1, 0) and

−→
k = (0, 0, 1).
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Example

The vector fields have many important significations, as they can
be used to represent many physical quantities: gravity, electricity,
magnetism or a velocity of fluid.

Let r(t) = x(t)
−→
i + y(t)

−→
j + z(t)

−→
k be the position vector of an

object. We can define various physical quantities associated with
the object as follows:

velocity: v(t) = r ′(t) = dr
dt = x ′(t)

−→
i + y ′(t)

−→
j + z ′(t)

−→
k ,

acceleration:
a(t) = v ′(t) = dv

dt = r
′′
(t) = d2r

dt2
= x

′′
(t)

−→
i + y

′′
(t)

−→
j + z

′′
(t)

−→
k ,

The norm ∥v(t)∥ of the velocity vector is called the speed of the
object.
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The gravitational force field between the Earth with mass M and a
point particle with mass m is given by:

F (x , y , z) = −GmM
x
−→
i + y

−→
j + z

−→
k

(x2 + y2 + z2)
3
2

,

where G is the gravitational constant, and the (x , y , z) coordinates
are chosen so that (0, 0, 0) is the center of the Earth.

Mongi BLEL Vector Fields



Vector Calculus
Vector Fields

The Divergence

Gradient Fields

Let f be a scalar function of two variables, the gradient of f is
defined by

∇f (x , y) = (
∂f

∂x
(x , y),

∂f

∂y
(x , y)).

If f is a scalar function of three variables, its gradient is a vector
field on R3 given by

∇f (x , y , z) = (
∂f

∂x
(x , y , z),

∂f

∂y
(x , y , z),

∂f

∂z
(x , y , z)).

The operator ∇ will be denoted by:

∇ = ∂
∂x

−→
i + ∂

∂y

−→
j + ∂

∂z

−→
k or ∇ =

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
as a vector.
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Remark

Let f be a function. The vector ∇f (x0, y0, z0) is orthogonal to the
level surface of f S = {(x , y , z) ∈ R3 : f (x , y , z) = C} that
contains (x0, y0, z0).
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Consider f and g two smooth scalar functions defined on a domain
D ⊂ R3 and consider F = (f1, f2, f3) and G = (g1, g2, g3) two
smooth vector fields.

∇(fg) = (
∂(fg)

∂x
,
∂(fg)

∂y
,
∂(fg)

∂z
)

= f∇(g) + g∇(f ).

∇(⟨F ,G⟩) = ∇(f1g1 + f2g2 + f3g3)

= ∇(f1g1) +∇(f2g2) +∇(f3g3)

= f1∇(g1) + +f2∇(g2) + f3∇(g3)

g1∇(f1) + g2∇(f2) + g3∇(f3).
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Definition

A vector field F is called conservative, if F is the gradient of a
function, F = ∇f . In this case, the function f is called a potential
of the vector field F .

For example the vector field

F =

(
−x

(x2 + y2 + z2)
3
2

,
−y

(x2 + y2 + z2)
3
2

,
−z

(x2 + y2 + z2)
3
2

)
= ∇ 1√

x2 + y2 + z2
.
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Example (The inverse square field)

Let r(x , y , z) = x
−→
i + y

−→
j + z

−→
k be the position vector of the

point M(x , y , z). The vector field F (x , y , z) =
c

∥r∥3
r(x , y , z) is

called the inverse square field, where c ∈ R.
The inverse field is conservative.
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Test of Conservative

If F = (P,Q) = ∇f . Then P =
∂f

∂x
and Q =

∂f

∂y
, and provided

that f is smooth, from Schwarz’s Theorem,
∂P

∂y
=

∂2f

∂x∂y
=

∂2

∂y∂x
f =

∂Q

∂x
. Hence, if

∂P

∂y
̸= ∂Q

∂x
, F is not

conservative.
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For a vector field F = (P,Q,R), suppose that

(P,Q,R) = (
∂f

∂x
,
∂f

∂y
,
∂f

∂z
). If z is constant, then f (x , y , z) is a

function of x and y , and by Schwarz’s Theorem,
∂P
∂y = ∂2f

∂x∂y = ∂2f
∂y∂x = ∂Q

∂y . Likewise, if y is constant, then

∂P

∂z
=

∂2f

∂x∂z
=

∂2f

∂z∂x
=

∂R

∂x
, and if x is constant, we get

∂Q

∂z
=

∂2f

∂y∂z
=

∂2f

∂z∂y
=

∂R

∂y
.

Conversely, if
∂P

∂y
=

∂Q

∂x
,
∂P

∂z
=

∂R

∂x
, and

∂Q

∂z
=

∂R

∂y
then F is

conservative.

Mongi BLEL Vector Fields



Vector Calculus
Vector Fields

The Divergence

Example

1 The vector field (1 + 3xy , 2x2 − 3y2) is not conservative

because,
∂(1 + 3xy)

∂y
= 3x and

∂(2x2 − 3y2)

∂x
= 4x .

2 The vector field F = (y2z + y cos x , 2xyz + sin x − sin y , xy2)
is conservative because, F = ∇(xy2z + y sin x + cos y).
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The Divergence

Definition

The divergence of a vector field F = (P,Q,R) is

⟨∇,F ⟩ =
〈(

∂

∂x
,
∂

∂y
,
∂

∂z

)
, (P,Q,R)

〉
=

∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.
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The curl of a vector field

The curl of F = (P,Q,R) is

∇× F =

∣∣∣∣∣∣∣
−→
i

−→
j

−→
k

∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣ =
(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)
.

If F = P
−→
i +Q

−→
j is a two dimensional vector field, the curl ∇× F

can also be defined by regarding the k−component to be zero, i.e.

F = P
−→
i + Q

−→
j + 0

−→
k , then curlF =

(
∂Q
∂x − ∂P

∂y

)−→
k .

Theorem (The Curl Test)

Given a vector field F = (P,Q,R) is defined and continuously
differentiable everywhere in R3 (or everywhere in R2 for vector
fields in R2), then F is conservative if and curlF = 0.
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Here are two simple but useful facts about divergence and curl.

Theorem

⟨∇, (∇×F )⟩ = 0. In other words, the divergence of the curl is zero.

Theorem

∇× (∇f ) = 0. That is, the curl of a gradient is the zero vector.
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Exercises

Exercise 1 :
A vector field F is said to be incompressible if ⟨∇,F ⟩ = 0.
Prove that any vector field of the form
F (x , y , z) = (f (y , z), g(x , z), h(x , y)) is incompressible.

Exercise 2 :
Find an f so that ∇f = (2x + y2, 2y + x2), or explain why there is
no such f .

Mongi BLEL Vector Fields



Vector Calculus
Vector Fields

The Divergence

Exercise 3 :
Find an f so that ∇f = (x3,−y4), or explain why there is no such
f .

Exercise 4 :
Find an f so that ∇f = (xey , yex), or explain why there is no such
f .
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Exercise 5 :
Find an f so that ∇f = (y cos x , y sin x), or explain why there is
no such f .

Exercise 6 :
Find an f so that ∇f = (y cos x , sin x), or explain why there is no
such f .

Exercise 7 :
Find an f so that ∇f = (x2y3, xy4), or explain why there is no
such f .
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Exercise 8 :
Find an f so that ∇f = (yz , xz , xy), or explain why there is no
such f .
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