Vector Fields

Mongi BLEL

King Saud University

March 25, 2024

The Dot Product

Definition

In \mathbb{R}^{2}, if $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$, the dot product of u and v is the number $\langle u, v\rangle=u_{1} v_{1}+u_{2} v_{2}$.
$\ln \mathbb{R}^{3}$, if $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$, the dot product of u and v is the number $\langle u, v\rangle=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$.
The norm of a vector u is $\|u\|=\sqrt{\langle u, u\rangle}$.

Recall that if θ is the angle between the vectors \vec{u} and \vec{v}, then

$$
\langle u, v\rangle=\|u\|\|v\| \cos \theta .
$$

The direction angles associated to a vector u are given by: $\cos \alpha=\frac{\langle u, i\rangle}{\|u\|}$, $\cos \beta=\frac{\langle u, j\rangle}{\|u\|}, \quad \cos \gamma=\frac{\langle u, k\rangle}{\|u\|}$.

The Cross Product

Definition

If $u_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $u_{2}=\left(x_{2}, y_{2}, z_{2}\right)$, then the cross product of u_{1} and u_{2} is the vector

$$
u_{1} \wedge u_{2}=\left|\begin{array}{ll}
y_{1} & z_{1} \\
y_{2} & z_{2}
\end{array}\right| \overrightarrow{\mathbf{i}}+\left|\begin{array}{ll}
x_{1} & z_{1} \\
x_{2} & z_{2}
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right| \overrightarrow{\mathbf{k}}
$$

Remark

(1) The vector $u_{1} \wedge u_{2}$ is orthogonal to the vectors u_{1} and u_{2} and its direction is given by the right-hand rule i.e. the determinant $\left|u_{1}, u_{2}, u_{1} \wedge u_{2}\right|$ is non negative.
(2) $\left|u_{1} \wedge u_{2}\right|$ is the area of the parallelogram spanned by u_{1} and u_{2}, i.e.,

$$
\left|u_{1} \wedge u_{2}\right|=\left|u_{1}\right|\left|u_{2}\right| \sin \theta
$$

(3) Two vectors u_{1} and u_{2} are parallel if and only if $u_{1} \wedge u_{2}=0$.

Theorem (Cross Product Properties)

Let u_{1}, u_{2}, and u_{3} be vectors and let c be a constant:
(1) $u_{1} \wedge u_{2}=-u_{2} \wedge u_{1}$;
(2) $\left(c u_{1}\right) \wedge u_{2}=c\left(u_{1} \wedge u_{2}\right)=u_{1} \wedge\left(c u_{2}\right)$;
(3) $u_{1} \wedge\left(u_{2}+u_{3}\right)=u_{1} \wedge u_{2}+u_{1} \wedge u_{3}$;
(9) $\left(u_{1}+u_{2}\right) \wedge u_{3}=u_{1} \wedge u_{3}+u_{2} \wedge u_{3}$;
(5) $u_{1} \cdot\left(u_{2} \wedge u_{3}\right)=\left(u_{1} \wedge u_{2}\right) \cdot u_{3}$;
(0) $u_{1} \wedge\left(u_{2} \wedge u_{3}\right)=\left(u_{1} \cdot u_{3}\right) u_{2}-\left(u_{1} \cdot u_{2}\right) u_{3}$.

Scalar Triple Product

The scalar triple product of three vectors u_{1}, u_{2}, and u_{3} is the determinant

$$
\left\langle u_{1},\left(u_{2} \wedge u_{3}\right)\right\rangle=\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right| .
$$

The volume of the parallelepiped formed by the vectors u_{1}, u_{2}, and u_{3} is given by

$$
\left|\left\langle u_{1},\left(u_{2} \wedge u_{3}\right)\right\rangle\right| .
$$

The Directional Derivative

Let f be a function defined on a domain $D \subset \mathbb{R}^{2}$. For $\left(x_{0}, y_{0}\right) \in D$, the partial derivatives of f with respect to x and y it they exist are defined by:

$$
\begin{aligned}
f_{x}\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h} \\
f_{y}\left(x_{0},, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
\end{aligned}
$$

Consider a smooth scalar field $f: D \longrightarrow \mathbb{R}$. The partial derivatives of f in the point $\mathbf{r}=x \overrightarrow{\mathbf{i}}+y \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}} \in D$ when these limits exist:
$\frac{\partial f}{\partial x}(\mathbf{r})=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h} ;$
$\frac{\partial f}{\partial y}(\mathbf{r})=\lim _{h \rightarrow 0} \frac{f(x, y+h, z)-f(x, y, z)}{h} ;$
$\frac{\partial f}{\partial z}(\mathbf{r})=\lim _{h \rightarrow 0} \frac{f(x, y, z+h)-f(x, y, z)}{h}$.

The Directional Derivative

Let f be a function defined on a domain $D \subset \mathbb{R}^{2}$. For $\left(x_{0}, y_{0}\right) \in D$ and $u=(a, b)$ a unit vector in \mathbb{R}^{2}. The directional derivative of f in the direction of u at $\left(x_{0}, y_{0}\right)$ if it exists is

$$
\begin{aligned}
D_{u} f\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(\left(x_{0}, y_{0}\right)+h u\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+a h, y_{0}+b h\right)-f\left(x_{0}, y_{0}\right)}{h} .
\end{aligned}
$$

Example

(1) If $u=(a, b), D_{u} f\left(x_{0}, y_{0}\right)$ is the same as the derivative of $f\left(x_{0}+a t, y_{0}+b t\right)$ at $t=0$. We can compute this by the chain rule and get

$$
D_{u} f\left(x_{0}, y_{0}\right)=a f_{x}\left(x_{0}, y_{0}\right)+b f_{y}\left(x_{0}, y_{0}\right)
$$

(2) Find the directional derivative of $f(x, y)=x y^{3}-x^{2}$ at $(1,2)$ in the direction $u=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
(3) Find the directional derivative of $f(x, y)=x^{2} \ln y$ at $(3,1)$ in the direction of $u=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

Definition

A two-dimensional vector field is a function f that maps each point (x, y) in \mathbb{R}^{2} to a two-dimensional vector $f(x, y)=(u(x, y), v(x, y))$. We denote $f(x, y)=u(x, y) \overrightarrow{\mathbf{i}}+v(x, y) \overrightarrow{\mathbf{j}}$, where $\overrightarrow{\mathbf{i}}=(1,0)$ and $\overrightarrow{\mathbf{j}}=(0,1)$.
Similarly a three-dimensional vector field maps (x, y, z) to $f(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))$. We denote $f(x, y, z)=u(x, y, z) \overrightarrow{\mathbf{i}}+v(x, y, z) \overrightarrow{\mathbf{j}}+w(x, y, z) \overrightarrow{\mathbf{k}}$, where $\overrightarrow{\mathbf{i}}=(1,0,0), \overrightarrow{\mathbf{j}}=(0,1,0)$ and $\overrightarrow{\mathbf{k}}=(0,0,1)$.

Example

The vector fields have many important significations, as they can be used to represent many physical quantities: gravity, electricity, magnetism or a velocity of fluid.
Let $r(t)=x(t) \overrightarrow{\mathbf{i}}+y(t) \overrightarrow{\mathbf{j}}+z(t) \overrightarrow{\mathbf{k}}$ be the position vector of an object. We can define various physical quantities associated with the object as follows:
velocity: $v(t)=r^{\prime}(t)=\frac{d r}{d t}=x^{\prime}(t) \overrightarrow{\mathbf{i}}+y^{\prime}(t) \overrightarrow{\mathbf{j}}+z^{\prime}(t) \overrightarrow{\mathbf{k}}$, acceleration:
$a(t)=v^{\prime}(t)=\frac{d v}{d t}=r^{\prime \prime}(t)=\frac{d^{2} r}{d t^{2}}=x^{\prime \prime}(t) \overrightarrow{\mathbf{i}}+y^{\prime \prime}(t) \overrightarrow{\mathbf{j}}+z^{\prime \prime}(t) \overrightarrow{\mathbf{k}}$, The norm $\|v(t)\|$ of the velocity vector is called the speed of the object.

Example

The gravitational force field between the Earth with mass M and a point particle with mass m is given by:

$$
F(x, y, z)=-G m M \frac{x \overrightarrow{\mathbf{i}}+y \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}},
$$

where G is the gravitational constant, and the (x, y, z) coordinates are chosen so that $(0,0,0)$ is the center of the Earth.

Gradient Fields

Let f be a scalar function of two variables, the gradient of f is defined by

$$
\nabla f(x, y)=\left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right)
$$

If f is a scalar function of three variables, its gradient is a vector field on \mathbb{R}^{3} given by

$$
\nabla f(x, y, z)=\left(\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right)
$$

The operator ∇ will be denoted by:
$\nabla=\frac{\partial}{\partial x} \overrightarrow{\mathbf{i}}+\frac{\partial}{\partial y} \overrightarrow{\mathbf{j}}+\frac{\partial}{\partial z} \overrightarrow{\mathbf{k}}$ or $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ as a vector.

Remark

Let f be a function. The vector $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is orthogonal to the level surface of $f S=\left\{(x, y, z) \in \mathbb{R}^{3}: f(x, y, z)=C\right\}$ that contains $\left(x_{0}, y_{0}, z_{0}\right)$.

Consider f and g two smooth scalar functions defined on a domain $D \subset \mathbb{R}^{3}$ and consider $F=\left(f_{1}, f_{2}, f_{3}\right)$ and $G=\left(g_{1}, g_{2}, g_{3}\right)$ two smooth vector fields.

$$
\begin{aligned}
\nabla(f g) & =\left(\frac{\partial(f g)}{\partial x}, \frac{\partial(f g)}{\partial y}, \frac{\partial(f g)}{\partial z}\right) \\
& =f \nabla(g)+g \nabla(f)
\end{aligned}
$$

$$
\begin{aligned}
\nabla(\langle F, G\rangle)= & \nabla\left(f_{1} g_{1}+f_{2} g_{2}+f_{3} g_{3}\right) \\
= & \nabla\left(f_{1} g_{1}\right)+\nabla\left(f_{2} g_{2}\right)+\nabla\left(f_{3} g_{3}\right) \\
= & f_{1} \nabla\left(g_{1}\right)++f_{2} \nabla\left(g_{2}\right)+f_{3} \nabla\left(g_{3}\right) \\
& g_{1} \nabla\left(f_{1}\right)+g_{2} \nabla\left(f_{2}\right)+g_{3} \nabla\left(f_{3}\right) .
\end{aligned}
$$

Definition

A vector field F is called conservative, if F is the gradient of a function, $F=\nabla f$. In this case, the function f is called a potential of the vector field F.

For example the vector field

$$
\begin{aligned}
F & =\left(\frac{-x}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \frac{-y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \frac{-z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right) \\
& =\nabla \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} .
\end{aligned}
$$

Example (The inverse square field)

Let $\mathbf{r}(x, y, z)=x \overrightarrow{\mathbf{i}}+y \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}}$ be the position vector of the point $M(x, y, z)$. The vector field $F(x, y, z)=\frac{c}{\|\mathbf{r}\|^{3}} \mathbf{r}(x, y, z)$ is called the inverse square field, where $c \in \mathbb{R}$.
The inverse field is conservative.

Test of Conservative

If $F=(P, Q)=\nabla f$. Then $P=\frac{\partial f}{\partial x}$ and $Q=\frac{\partial f}{\partial y}$, and provided that f is smooth, from Schwarz's Theorem, $\frac{\partial P}{\partial y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2}}{\partial y \partial x} f=\frac{\partial Q}{\partial x}$. Hence, if $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}, F$ is not conservative.

For a vector field $F=(P, Q, R)$, suppose that $(P, Q, R)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$. If z is constant, then $f(x, y, z)$ is a function of x and y, and by Schwarz's Theorem, $\frac{\partial P}{\partial y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial Q}{\partial y}$. Likewise, if y is constant, then
$\frac{\partial P}{\partial z}=\frac{\partial^{2} f}{\partial x \partial z}=\frac{\partial^{2} f}{\partial z \partial x}=\frac{\partial R}{\partial x}$, and if x is constant, we get $\frac{\partial Q}{\partial z}=\frac{\partial^{2} f}{\partial y \partial z}=\frac{\partial^{2} f}{\partial z \partial y}=\frac{\partial R}{\partial y}$.
Conversely, if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}$, and $\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y}$ then F is conservative.

Example

(1) The vector field $\left(1+3 x y, 2 x^{2}-3 y^{2}\right)$ is not conservative because, $\frac{\partial(1+3 x y)}{\partial y}=3 x$ and $\frac{\partial\left(2 x^{2}-3 y^{2}\right)}{\partial x}=4 x$.
(2) The vector field $F=\left(y^{2} z+y \cos x, 2 x y z+\sin x-\sin y, x y^{2}\right)$ is conservative because, $F=\nabla\left(x y^{2} z+y \sin x+\cos y\right)$.

The Divergence

Definition

The divergence of a vector field $F=(P, Q, R)$ is

$$
\langle\nabla, F\rangle=\left\langle\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right),(P, Q, R)\right\rangle=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} .
$$

The curl of a vector field

The curl of $F=(P, Q, R)$ is

$$
\nabla \times F=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) .
$$

If $F=P \overrightarrow{\mathbf{i}}+Q \overrightarrow{\mathbf{j}}$ is a two dimensional vector field, the curl $\nabla \times F$ can also be defined by regarding the k-component to be zero, i.e. $F=P \overrightarrow{\mathbf{i}}+Q \overrightarrow{\mathbf{j}}+0 \overrightarrow{\mathbf{k}}$, then $\operatorname{curl} F=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \overrightarrow{\mathbf{k}}$.

Theorem (The Curl Test)

Given a vector field $F=(P, Q, R)$ is defined and continuously differentiable everywhere in \mathbb{R}^{3} (or everywhere in \mathbb{R}^{2} for vector fields in \mathbb{R}^{2}), then F is conservative if and $\operatorname{curl} F=0$.

Here are two simple but useful facts about divergence and curl.

Theorem

$\langle\nabla,(\nabla \times F)\rangle=0$. In other words, the divergence of the curl is zero.

Theorem

$\nabla \times(\nabla f)=0$. That is, the curl of a gradient is the zero vector.

Exercises

Exercise 1:

A vector field F is said to be incompressible if $\langle\nabla, F\rangle=0$.
Prove that any vector field of the form $F(x, y, z)=(f(y, z), g(x, z), h(x, y))$ is incompressible.
Exercise 2 :
Find an f so that $\nabla f=\left(2 x+y^{2}, 2 y+x^{2}\right)$, or explain why there is no such f.

Exercise 3 :

Find an f so that $\nabla f=\left(x^{3},-y^{4}\right)$, or explain why there is no such f.

Exercise 4 :

Find an f so that $\nabla f=\left(x e^{y}, y e^{x}\right)$, or explain why there is no such f.

Exercise 5 :

Find an f so that $\nabla f=(y \cos x, y \sin x)$, or explain why there is no such f.

Exercise 6 :

Find an f so that $\nabla f=(y \cos x, \sin x)$, or explain why there is no such f.

Exercise 7 :

Find an f so that $\nabla f=\left(x^{2} y^{3}, x y^{4}\right)$, or explain why there is no such f.

Exercise 8 :

Find an f so that $\nabla f=(y z, x z, x y)$, or explain why there is no such f.

