Vector Fields

Mongi BLEL

King Saud University

March 25, 2024

- Vector Calculus
 - The Dot (or the inner) Product
 - The Cross Product
 - Scalar Triple Product
 - The Directional Derivative
- 2 Vector Fields
- The Divergence

The Dot Product

Definition

In \mathbb{R}^2 , if $u = (u_1, u_2)$ and $v = (v_1, v_2)$, the dot product of u and v is the number $\langle u, v \rangle = u_1 v_1 + u_2 v_2$.

In \mathbb{R}^3 , if $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$, the dot product of u and v is the number $\langle u, v \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3$.

The norm of a vector u is $||u|| = \sqrt{\langle u, u \rangle}$.

Recall that if θ is the angle between the vectors \overrightarrow{u} and \overrightarrow{v} , then

$$\langle u, v \rangle = ||u|| \, ||v|| \cos \theta.$$

The direction angles associated to a vector u are given by: $\cos \alpha = \frac{\langle u,i \rangle}{\|u\|}$, $\cos \beta = \frac{\langle u,j \rangle}{\|u\|}$, $\cos \gamma = \frac{\langle u,k \rangle}{\|u\|}$.

The Cross Product

Definition

If $u_1 = (x_1, y_1, z_1)$ and $u_2 = (x_2, y_2, z_2)$, then the cross product of u_1 and u_2 is the vector

$$u_1 \wedge u_2 = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \overrightarrow{\mathbf{i}} + \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \overrightarrow{\mathbf{j}} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \overrightarrow{\mathbf{k}}.$$

Remark

- **1** The vector $u_1 \wedge u_2$ is orthogonal to the vectors u_1 and u_2 and its direction is given by the right-hand rule i.e. the determinant $|u_1, u_2, u_1 \wedge u_2|$ is non negative.
- ② $|u_1 \wedge u_2|$ is the area of the parallelogram spanned by u_1 and u_2 , i.e.,

$$|u_1 \wedge u_2| = |u_1| |u_2| \sin \theta$$

3 Two vectors u_1 and u_2 are parallel if and only if $u_1 \wedge u_2 = 0$.

Theorem (Cross Product Properties)

Let u_1 , u_2 , and u_3 be vectors and let c be a constant:

1
$$u_1 \wedge u_2 = -u_2 \wedge u_1$$
;

$$(cu_1) \wedge u_2 = c(u_1 \wedge u_2) = u_1 \wedge (cu_2);$$

$$u_1 \wedge (u_2 + u_3) = u_1 \wedge u_2 + u_1 \wedge u_3;$$

Scalar Triple Product

The scalar triple product of three vectors u_1 , u_2 , and u_3 is the determinant

$$\langle u_1, (u_2 \wedge u_3) \rangle = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

The volume of the parallelepiped formed by the vectors u_1 , u_2 , and u_3 is given by

$$|\langle u_1, (u_2 \wedge u_3) \rangle|.$$

The Directional Derivative

Let f be a function defined on a domain $D \subset \mathbb{R}^2$. For $(x_0, y_0) \in D$, the partial derivatives of f with respect to x and y it they exist are defined by:

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},$$

$$f_y(x_0, y_0) = \lim_{h\to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

Consider a smooth scalar field $f: D \longrightarrow \mathbb{R}$. The partial derivatives of f in the point $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \in D$ when these limits exist: $\frac{\partial f}{\partial x}(\mathbf{r}) = \lim_{h \to 0} \frac{f(x+h,y,z) - f(x,y,z)}{h};$ $\frac{\partial f}{\partial y}(\mathbf{r}) = \lim_{h \to 0} \frac{f(x,y+h,z) - f(x,y,z)}{h};$ $\frac{\partial f}{\partial z}(\mathbf{r}) = \lim_{h \to 0} \frac{f(x,y,z+h) - f(x,y,z)}{h}.$

The Directional Derivative

Let f be a function defined on a domain $D \subset \mathbb{R}^2$. For $(x_0, y_0) \in D$ and u = (a, b) a unit vector in \mathbb{R}^2 . The directional derivative of f in the direction of u at (x_0, y_0) if it exists is

$$D_{u}f(x_{0},y_{0}) = \lim_{h\to 0} \frac{f((x_{0},y_{0}) + hu) - f(x_{0},y_{0})}{h}$$
$$= \lim_{h\to 0} \frac{f(x_{0} + ah, y_{0} + bh) - f(x_{0}, y_{0})}{h}.$$

Example

• If u = (a, b), $D_u f(x_0, y_0)$ is the same as the derivative of $f(x_0 + at, y_0 + bt)$ at t = 0. We can compute this by the chain rule and get

$$D_u f(x_0, y_0) = a f_x(x_0, y_0) + b f_y(x_0, y_0).$$

- ② Find the directional derivative of $f(x,y) = xy^3 x^2$ at (1,2) in the direction $u = (\frac{1}{2}, \frac{\sqrt{3}}{2})$
- **3** Find the directional derivative of $f(x,y) = x^2 \ln y$ at (3,1) in the direction of $u = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

Definition

A two-dimensional vector field is a function f that maps each point (x,y) in \mathbb{R}^2 to a two-dimensional vector f(x,y) = (u(x,y),v(x,y)). We denote f(x,y) = u(x,y) $\overrightarrow{\mathbf{i}} + v(x,y)$ $\overrightarrow{\mathbf{j}}$, where $\overrightarrow{\mathbf{i}} = (1,0)$ and $\overrightarrow{\mathbf{j}} = (0,1)$. Similarly a three-dimensional vector field maps (x,y,z) to f(x,y,z) = (u(x,y,z),v(x,y,z),w(x,y,z)). We denote f(x,y,z) = u(x,y,z) $\overrightarrow{\mathbf{i}} + v(x,y,z)$ $\overrightarrow{\mathbf{j}} + w(x,y,z)$ $\overrightarrow{\mathbf{k}}$, where $\overrightarrow{\mathbf{i}} = (1,0,0)$, $\overrightarrow{\mathbf{j}} = (0,1,0)$ and $\overrightarrow{\mathbf{k}} = (0,0,1)$.

Example

The vector fields have many important significations, as they can be used to represent many physical quantities: gravity, electricity, magnetism or a velocity of fluid.

Let $r(t) = x(t) \overrightarrow{i} + y(t) \overrightarrow{j} + z(t) \overrightarrow{k}$ be the position vector of an object. We can define various physical quantities associated with the object as follows:

velocity:
$$v(t) = r'(t) = \frac{dr}{dt} = x'(t)\overrightarrow{\mathbf{i}} + y'(t)\overrightarrow{\mathbf{j}} + z'(t)\overrightarrow{\mathbf{k}}$$
, acceleration:

$$a(t) = v'(t) = \frac{dv}{dt} = r''(t) = \frac{d^2r}{dt^2} = x''(t)\overrightarrow{\mathbf{i}} + y''(t)\overrightarrow{\mathbf{j}} + z''(t)\overrightarrow{\mathbf{k}},$$
 The norm $||v(t)||$ of the velocity vector is called the speed of the object.

Example

The gravitational force field between the Earth with mass M and a point particle with mass m is given by:

$$F(x,y,z) = -GmM \frac{x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$$

where G is the gravitational constant, and the (x, y, z) coordinates are chosen so that (0, 0, 0) is the center of the Earth.

Gradient Fields

Let f be a scalar function of two variables, the gradient of f is defined by

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right).$$

If f is a scalar function of three variables, its gradient is a vector field on \mathbb{R}^3 given by

$$\nabla f(x,y,z) = \left(\frac{\partial f}{\partial x}(x,y,z), \frac{\partial f}{\partial y}(x,y,z), \frac{\partial f}{\partial z}(x,y,z)\right).$$

The operator ∇ will be denoted by:

$$\nabla = \frac{\partial}{\partial x} \overrightarrow{\mathbf{i}} + \frac{\partial}{\partial y} \overrightarrow{\mathbf{j}} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{k}} \text{ or } \nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \text{ as a vector.}$$

Remark

Let f be a function. The vector $\nabla f(x_0, y_0, z_0)$ is orthogonal to the level surface of f $S = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = C\}$ that contains (x_0, y_0, z_0) .

Consider f and g two smooth scalar functions defined on a domain $D \subset \mathbb{R}^3$ and consider $F = (f_1, f_2, f_3)$ and $G = (g_1, g_2, g_3)$ two smooth vector fields.

$$\nabla(fg) = \left(\frac{\partial(fg)}{\partial x}, \frac{\partial(fg)}{\partial y}, \frac{\partial(fg)}{\partial z}\right)$$
$$= f\nabla(g) + g\nabla(f).$$

$$\nabla(\langle F, G \rangle) = \nabla(f_1g_1 + f_2g_2 + f_3g_3)
= \nabla(f_1g_1) + \nabla(f_2g_2) + \nabla(f_3g_3)
= f_1\nabla(g_1) + f_2\nabla(g_2) + f_3\nabla(g_3)
g_1\nabla(f_1) + g_2\nabla(f_2) + g_3\nabla(f_3).$$

Definition

A vector field F is called conservative, if F is the gradient of a function, $F = \nabla f$. In this case, the function f is called a potential of the vector field F.

For example the vector field

$$F = \left(\frac{-x}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{-y}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{-z}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}\right)$$
$$= \nabla \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Example (The inverse square field)

Let $\mathbf{r}(x,y,z) = x \overrightarrow{\mathbf{i}} + y \overrightarrow{\mathbf{j}} + z \overrightarrow{\mathbf{k}}$ be the position vector of the point M(x,y,z). The vector field $F(x,y,z) = \frac{c}{\|\mathbf{r}\|^3} \mathbf{r}(x,y,z)$ is called the inverse square field, where $c \in \mathbb{R}$. The inverse field is conservative.

Test of Conservative

If
$$F = (P, Q) = \nabla f$$
. Then $P = \frac{\partial f}{\partial x}$ and $Q = \frac{\partial f}{\partial y}$, and provided that f is smooth, from Schwarz's Theorem, $\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2}{\partial y \partial x} f = \frac{\partial Q}{\partial x}$. Hence, if $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$, F is not conservative.

For a vector field
$$F = (P, Q, R)$$
, suppose that $(P, Q, R) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$. If z is constant, then $f(x, y, z)$ is a function of x and y , and by Schwarz's Theorem, $\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial Q}{\partial y}$. Likewise, if y is constant, then $\frac{\partial P}{\partial z} = \frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial z \partial x} = \frac{\partial R}{\partial x}$, and if x is constant, we get $\frac{\partial Q}{\partial z} = \frac{\partial^2 f}{\partial y \partial z} = \frac{\partial^2 f}{\partial z \partial y} = \frac{\partial R}{\partial y}$. Conversely, if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$, and $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$ then F is conservative.

Example

- The vector field $(1 + 3xy, 2x^2 3y^2)$ is not conservative because, $\frac{\partial (1 + 3xy)}{\partial y} = 3x$ and $\frac{\partial (2x^2 3y^2)}{\partial x} = 4x$.
- ② The vector field $F = (y^2z + y\cos x, 2xyz + \sin x \sin y, xy^2)$ is conservative because, $F = \nabla(xy^2z + y\sin x + \cos y)$.

The Divergence

Definition

The divergence of a vector field F = (P, Q, R) is

$$\langle \nabla, F \rangle = \left\langle \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right), (P, Q, R) \right\rangle = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

The curl of a vector field

The curl of F = (P, Q, R) is

$$\nabla \times F = \begin{vmatrix} \overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

If $F = P \overrightarrow{\mathbf{i}} + Q \overrightarrow{\mathbf{j}}$ is a two dimensional vector field, the curl $\nabla \times F$ can also be defined by regarding the k-component to be zero, i.e. $F = P \overrightarrow{\mathbf{i}} + Q \overrightarrow{\mathbf{j}} + 0 \overrightarrow{\mathbf{k}}$, then $\operatorname{curl} F = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \overrightarrow{\mathbf{k}}$.

Theorem (The Curl Test)

Given a vector field F=(P,Q,R) is defined and continuously differentiable everywhere in \mathbb{R}^3 (or everywhere in \mathbb{R}^2 for vector fields in \mathbb{R}^2), then F is conservative if and $\operatorname{curl} F=0$.

Here are two simple but useful facts about divergence and curl.

Theorem

 $\langle \nabla, (\nabla \times \textit{F}) \rangle = 0.$ In other words, the divergence of the curl is zero.

Theorem

abla imes (
abla f) = 0. That is, the curl of a gradient is the zero vector.

Exercises

Exercise 1:

A vector field F is said to be incompressible if $\langle \nabla, F \rangle = 0$.

Prove that any vector field of the form

$$F(x, y, z) = (f(y, z), g(x, z), h(x, y))$$
 is incompressible.

Exercise 2:

Find an f so that $\nabla f = (2x + y^2, 2y + x^2)$, or explain why there is no such f.

Exercise 3:

Find an f so that $\nabla f = (x^3, -y^4)$, or explain why there is no such f.

Exercise 4:

Find an f so that $\nabla f = (xe^y, ye^x)$, or explain why there is no such f.

Exercise 5:

Find an f so that $\nabla f = (y \cos x, y \sin x)$, or explain why there is no such f.

Exercise 6:

Find an f so that $\nabla f = (y \cos x, \sin x)$, or explain why there is no such f.

Exercise 7:

Find an f so that $\nabla f = (x^2y^3, xy^4)$, or explain why there is no such f.

Vector Calculus Vector Fields The Divergence

Exercise 8:

Find an f so that $\nabla f = (yz, xz, xy)$, or explain why there is no such f.