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Definition

In R2, if −→u = (u1, u2) and
−→v = (v1, v2), the dot product of −→u and

−→v is the number ⟨−→u ,−→v ⟩ = u1v1 + u2v2. The dot product is also
denoted by: −→u .−→v .
Recall that the angle θ between the vectors −→u and −→v is defined as
follows,

−→u .−→v = ⟨−→u ,−→v ⟩ = ∥−→u ∥ ∥−→v ∥ cos θ.
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The Cosine Law

A B

C

c

b
a

Recall from trigonometry:

c2 = a2 + b2 − 2ab cos θ

where θ = m∠ACB.

In R3, if −→u = (u1, u2, u3) and
−→v = (v1, v2, v3), the dot product of

−→u and −→v is the number ⟨−→u ,−→v ⟩ = u1v1 + u2v2 + u3v3.
The norm of a vector −→u is ∥−→u ∥ =

√
⟨−→u ,−→u ⟩.
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α

βγ

The direction angles associated
to a vector −→u are given by:

cosα = ⟨−→u ,
−→
i ⟩

∥−→u ∥ ,

cosβ = ⟨−→u ,
−→
j ⟩

∥−→u ∥ , cos γ =

⟨−→u ,
−→
k ⟩

∥−→u ∥ .
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Definition

Let −→u and −→v be two vectors in R2 or R3, the component of −→u
along −→v is

comp−→v
−→u =

⟨−→u ,−→v ⟩
∥−→v ∥

= ∥−→u ∥ cos θ,

where θ is the angle between −→u and −→v .
The projection of the vector −→u on the vector −→v is

comp−→v
−→u .

1

∥−→v ∥
−→v .

Mongi BLEL Vector Calculus



The Dot (or the Inner) Product
The Cross Product
Lines and Planes

Quadratic Curves in R2

Surfaces in Space
Vector-Valued Functions

Arc Length
Vector Functions and Space Curves

Vector Fields

−→u

−→vproj−→u
−→v

θ

−→u

−→vproj−→u
−→v

θ
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The Cross Product

Definition

If −→u 1 = (x1, y1, z1) and
−→u 2 = (x2, y2, z2), then the cross product

of −→u 1 and −→u 2 is the vector

−→u 1 ∧ −→u 2 =

∣∣∣∣y1 z1
y2 z2

∣∣∣∣−→i +

∣∣∣∣x1 z1
x2 z2

∣∣∣∣−→j +

∣∣∣∣x1 y1
x2 y2

∣∣∣∣−→k .
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Remark

1 The vector −→u 1 ∧ −→u 2 is orthogonal to the vectors −→u 1 and −→u 2

and its direction is given by the right-hand rule i.e. the
determinant |−→u 1,

−→u 2,
−→u 1 ∧ −→u 2| is non negative.

2 ∥−→u 1 ∧ −→u 2∥ is the area of the parallelogram spanned by −→u 1

and −→u 2, i.e.,

∥−→u 1 ∧ −→u 2∥ = ∥−→u 1∥ ∥−→u 2∥ sin θ.

3 Two vectors −→u 1 and −→u 2 are parallel if and only if
−→u 1 ∧ −→u 2 = 0.

4 ∥−→u 1 ∧ −→u 2∥2 = ∥−→u 1∥2∥−→u 1∥2 − ⟨u1, v2⟩2. Indeed
∥−→u 1 ∧ −→u 2∥2 = ∥−→u 1∥2∥−→u 2∥2 sin2 θ =
∥−→u 1∥2∥−→u 2∥2(1− cos2 θ).
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Example

Compute the area of the triangle with vertices (2, 3,−1), (1, 3, 2),
(3, 0,−2).
Two sides are: −→u = (−1, 0, 3), −→v = (1,−3,−1),
−→u ∧ −→v = (9, 2, 3), ∥−→u ∧ −→v ∥2 = 81 + 4 + 9 = 104 = 8.13. The
area of the triangle is

√
26.
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Theorem (Cross Product Properties)

Let −→u 1,
−→u 2, and

−→u 3 be vectors and let c be a constant:

1
−→u 1 ∧ −→u 2 = −−→u 2 ∧ −→u 1;

2 (c−→u 1) ∧ −→u 2 = c(−→u 1 ∧ −→u 2) =
−→u 1 ∧ (c−→u 2);

3
−→u 1 ∧ (−→u 2 +

−→u 3) =
−→u 1 ∧ −→u 2 +

−→u 1 ∧ −→u 3;

4 (−→u 1 +
−→u 2) ∧ −→u 3 =

−→u 1 ∧ −→u 3 +
−→u 2 ∧ −→u 3;

5 ⟨−→u 1, (
−→u 2 ∧ −→u 3)⟩ = ⟨(−→u 1 ∧ −→u 2),

−→u 3⟩;
6

−→u 1 ∧ (−→u 2 ∧ −→u 3) = (⟨−→u 1,
−→u 3⟩)−→u 2 − (⟨−→u 1,

−→u 2⟩)−→u 3.
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Scalar Triple Product

The scalar triple product of three vectors −→u 1,
−→u 2, and

−→u 3 is the
determinant

⟨−→u 1, (
−→u 2 ∧ −→u 3)⟩ =

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ .
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The volume of the parallelepiped formed by the vectors −→u 1,
−→u 2,

and −→u 3 is
|⟨−→u 1, (

−→u 2 ∧ −→u 3)⟩|.

The vectors −→u 1,
−→u 2 and −→u 1 are in the same plane if the scalar

triple product ⟨−→u 1, (
−→u 2 ∧ −→u 3)⟩ is 0.
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Example

Compute the volume of the parallelepiped spanned by the 3 vectors
−→u 1 = (2, 3,−1), −→u 2 = (1, 3, 2) and −→u 3 = (3, 0,−2).
−→u 2 ∧ −→u 3 = (−6, 8,−9), ⟨−→u 1, (

−→u 2 ∧ −→u 3)⟩ = 21.
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Remark

⟨−→u 1, (
−→u 2 ∧ −→u 3)⟩ = ⟨(−→u 1 ∧ −→u 2),

−→u 3⟩.
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Lines

A line L in three-dimensional space is determined by
• A point M0 = (x0, y0, z0) on the line
• A vector −→v = (a, b, c) that gives the direction of the line.
Any point M on the line can be expressed as M0 + t−→v for some
real number t called the parameter.
Line - Vector Equation
The parametrization t 7−→ M0 + t−→v is called the vector equation
of a line L, where M0 is a point on the line and −→v is the direction
of the line.
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Line - Parametric Equation

If M0 = (x0, y0, z0) and
−→v = (a, b, c), the equations

x = x0 + at,
y = y0 + bt,
z = z0 + ct

give the parametric equations for the line passing through M0 and
in direction of the vector −→v .
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Line Symmetric Equation

If we begin with the parametric equations of a line:
x = x0 + at,
y = y0 + bt,
z = z0 + ct

we can eliminate the parameter to get the symmetric equation of a
line;

x − x0
a

=
y − y0

b
=

z − z0
c

.
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Let M1 = (x1, y1, z1),M2 = (x2, y2, z2) be two points on the space.
The parametric equation of the line passing through M1 to M2 is
the parametric equation of the line with M1 on the line and the

direction
−−−→
M1M2 = (x2 − x1, y2 − y1, z2 − z1).

The vector equation of the line is: M(t) = M1 + t
−−−→
M1M2. If

t ∈ [0, 1], this equation in the is segment which goes from M1 to
M2.
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Theorem (Distance between a point to a line)

The distance between a point and a line is

∥
−−−→
M0M ∧ −→u ⟩∥

∥−→u ∥
,

where M0 on the line.
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Example

Find the distance from M = (2,−3, 1) to the line containing
M1 = (1, 3,−1) and M2 = (2,−1, 1).
−−−→
M1M2 = (1,−4, 2),

−−−→
MM1 = (1,−6, 2),

−−−→
M1M2 ∧

−−−→
MM1 = (4, 0,−2).

The distance is

√
20√
21

.
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Planes

In order to find the equation of a plane, we need:
• a point on the plane M0 = (x0, y0, z0)
• a vector that is orthogonal to the plane −→n = (a, b, c). This
vector is called the normal vector the to plane.
Plane - Vector Equation

Any point M of the plane verifies ⟨
−−−→
M0M,−→u ⟩ = 0. This is the

vector equation of the plane.
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x

y

z

M
M0

n
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Plane - Scalar Equation
The scalar (or component) equation of the plane is
a(x − x0) + b(y − y0) + c(z − z0) = 0.
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Example

Determine the equation of the plane that passes through the
points M1 = (1, 2, 3), M2 = (3, 2, 1) and M3 = (−1,−2, 2).
−−−→
M1M2 = (2, 0,−2),

−−−→
M1M3 = (−2,−4,−1),

−−−→
M1M2 ∧

−−−→
M1M3 = (−8, 6,−8). The scalar equation of the plane is

−8(x − 1) + 6(y − 2)− 8(z − 3) = 0 ⇐⇒ 4x − 3y + 4z = 10.
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Remark

Two planes are parallel if and only if the normal vectors are parallel
i.e. −→n1 ∧ −→n2 = 0.
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Theorem [Distance between a point and a plane]

The distance between a point and a plane is∣∣∣⟨−−−→M0M,−→n ⟩
∣∣∣

∥−→n ∥
,

where M0 on the plane.
If M0 = (x0, y0, z0), M = (x , y , z) and −→n = (a, b, c), then

d(M,P) =
|a(x − x0) + b(y − y0) + c(z − z0)|√

a2 + b2 + c2
.
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Example

Find the distance from M = (1, 2, 0) to the plane 2x −3y +2z = 1.

M1 = (−1,−1, 0), −→n = (2,−3, 2),
−−−→
M1M = (2, 3, 0).

d(M,P) =
5√
17

.
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A quadratic curve is the graph of a second-degree equation in two
variables taking one of the forms

x

y

The ellipse
x2

a2
+

y2

b2
=

1 with foci (±c , 0), where
a2 = b2 + c2.
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x

y

The parabola x2 = 4py
with focus at (0, p) and di-
rectrix at y = −p
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x

y

The hyperbola
x2

a2
−y2

b2
= 1

with foci at (±c , 0) where
c2 = a2 + b2.
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x

y

z

Cylinders which consist of
all lines (called rulings)
that are parallel to a given
line and pass through a
given plane curve
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Example

x

y

z

y2 + z2 = 1
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x

y

z

The set of points (x , y , z) that
satisfy the equation x2 + y 2 = 1
is the cylinder of radius 1 cen-
tered at (0, 0, 0) whose axis of
symmetry is the z-axis.
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x

y

z

Elliptic Paraboloids which
will model functions with
local maxima or minima
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x

y

z

Hyperbolic Paraboloids
(“saddles”) which model a
new kind of critical point,
called a saddle point, for
functions of two variables

Mongi BLEL Vector Calculus



The Dot (or the Inner) Product
The Cross Product
Lines and Planes

Quadratic Curves in R2

Surfaces in Space
Vector-Valued Functions

Arc Length
Vector Functions and Space Curves

Vector Fields

Quadric Surfaces in R3

A quadric surface is the graph of a second-degree equation in x , y ,
and z taking one of the standard forms

Ax2 + By2 + Cz2 + D = 0, Ax2 + By2 + Cz = 0.

We can graph a quadric surface by studying its traces in planes
parallel to the x , y , and z axes. The traces are always quadratic
curves.
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The ellipsoid:
x2

a2
+

y2

b2
+

z2

c2
= 1.

x

y

z

x2 + y2

4
+ z2

3
= 1
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x

y

z

x2 + y2 + z2 = 1

The set of points (x , y , z) that
satisfy the equation x2 + y 2 +
z2 = 1 is the sphere of radius 1
centered at (0, 0, 0).
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Elliptic Paraboloid z =
x2

a2
+

y2

b2

x

y

z

z = x2 + y2
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Hyperbolic Paraboloid (Saddle) z =
x2

a2
− y2

b2

x

y

z

z = y2 − x2
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Hyperboloid of one sheet
x2

a2
− y2

b2
+

z2

c2
= 1

x

y

z

x2 + y2 − z2 = 1
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Cone:
x2

a2
+

y2

b2
= z2

You can have similar equations with x , y , z permuted or with the
origin shifted.
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Definition

A vector-valued function is a function r(t) whose domain is a set
of real numbers and whose range is a set of vectors in two- or
three-dimensional space. We can specify r(t) through its
component functions:

r(t) = (f (t), g(t), h(t)) = f (t)i+ g(t)j+ h(t)k.
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Example

r(t) = (cos t, t, sin t).

x

y

z
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Definition

The limit of a vector-valued function is the limit of the component
functions:

lim
t→a

(x(t), y(t), z(t)) =
(
lim
t→a

x(t), lim
t→a

y(t), lim
t→a

z(t)
)
.

A vector-valued function r(t) = (x(t), y(t), z(t)) is continuous if
each of the component functions x(t), y(t), z(t) is continuous.
A vector-valued function r(t) = (x(t), y(t), z(t)) is differentiable if
each of the component functions x(t), y(t), z(t) is differentiable
and we have r′(t) = (x ′(t), y ′(t), z ′(t)).

r′(t) =
dr

dt
= lim

h→0

r(t + h)− r(t)

h
.
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Definition

The integral of a vector-valued function r(t) = (x(t), y(t), z(t)) on
an interval [a, b] is defined by:∫ b

a
r(t)dt =

(∫ b

a
x(t)dt,

∫ b

a
y(t)dt,

∫ b

a
z(t)dt

)
.
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Remark

The vector
r(t + h)− r(t)

h
measures the displacement
from t to t + h.

x

y

z
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The vector r′(t) gives the
instantaneous change in
displacement The magni-
tude |r′(t)| gives instanta-
neous speed.

x

y

z
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Tangent Lines

Consider the curve r(t) = (2t, e−t , cos t − t2).
r′(t) = (2,−e−t ,− sin t − 2t) and r′(0) = (2,−1, 0). The
parametric equations for the tangent line to the curve at (0, 1, 1) is

x = 2t,
y = 1− t,
z = 1

Definition

The unit tangent to r(t) is the vector

T(t) =
r′(t)

∥r′(t)∥
.
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Definition

The arc length of a plane curve r(t) = (x(t), y(t)), t ∈ [a, b] is

L =

∫ b

a

√
[x ′(t)]2 + [y ′(t)]2dt =

∫ b

a
∥r′(t)∥dt.

The arc length of a plane curve r(t) = (x(t), y(t), z(t)) t ∈ [a, b] is

L =

∫ b

a

√
[x ′(t)]2 + [y ′(t)]2 + [z ′(t)]2dt =

∫ b

a
∥r′(t)∥dt.
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If r(t) is the space curve of a moving body and if t is time:

1 r′(t) is the velocity of the moving body

2 ∥r′(t)′∥ is the speed of the moving body

3 r
′′
(t) is the acceleration of the moving body
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Definition-(The Arc Length Function)

Let C be a space curve given by a vector function

r(t) = x(t)i+ y(t)j+ z(t)k

for t ∈ [a, b].
the arc length function for C is defined by:

s(t) =

∫ t

a
∥r′(u)∥du.

By the Fundamental Theorem of Calculus,

ds

dt
= ∥r′(t)∥.
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The Partial Derivatives

Let f be a function defined on a domain D ⊂ R2. For
(x0, y0) ∈ D, the partial derivatives of f with respect to x and y if
they exist are defined by:

∂f

∂x
(x0, y0) = fx(x0, y0) = lim

h→0

f (x0 + h, y0)− f (x0, y0)

h
,

∂f

∂y
(x0, y0) = fy (x0, , y0) = lim

h→0

f (x0, y0 + h)− f (x0, y0)

h
.
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Consider a smooth function f : D ⊂ R3 −→ R, the partial
derivatives of f with respect to x , y and z if they exist are defined
by:

∂f

∂x
(x , y , z) = fx(x , y , z) = lim

h→0

f (x + h, y , z)− f (x , y , z)

h
;

∂f

∂y
(x , y , z) = fy (x , y , z) = lim

h→0

f (x , y + h, z)− f (x , y , z)

h
;

∂f

∂z
(x , y , z) = fz(x , y , z) = lim

h→0

f (x , y , z + h)− f (x , y , z)

h
.
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Theorem (Schwarz’s Theorem)

Let f be a function defined on a domain D that contains the point

(a, b). If the functions
∂2f

∂x∂y
and

∂2f

∂y∂x
are both continuous on

D, then
∂2f

∂x∂y
(a, b) =

∂2f

∂y∂x
(a, b).

Mongi BLEL Vector Calculus



The Dot (or the Inner) Product
The Cross Product
Lines and Planes

Quadratic Curves in R2

Surfaces in Space
Vector-Valued Functions

Arc Length
Vector Functions and Space Curves

Vector Fields

The Directional Derivative

Let f be a function defined on a domain D ⊂ R2. For (x0, y0) ∈ D
and −→u = (a, b) a unit vector in R2. The directional derivative of f
in the direction of −→u at (x0, y0) if it exists is

Duf (x0, y0) = lim
h→0

f ((x0, y0) + hu)− f (x0, y0)

h

= lim
h→0

f (x0 + ah, y0 + bh)− f (x0, y0)

h
.

If f is a function defined on a domain D ⊂ R3. For (x0, y0, z0) ∈ D
and −→u = (a, b, c) a unit vector in R3. The directional derivative of
f in the direction of −→u at (x0, y0, z0) if it exists is

Duf (x0, y0, z0) = lim
h→0

f ((x0, y0, z0) + hu)− f (x0, y0, z0)

h

= lim
h→0

f (x0 + ah, y0 + bh, z0 + ch)− f (x0, y0, z0)

h
.
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Example

1 If −→u = (a, b), Duf (x0, y0) is the same as the derivative of
f (x0 + at, y0 + bt) at t = 0. We can compute this by the
chain rule and get

Duf (x0, y0) = afx(x0, y0) + bfy (x0, y0).

2 Find the directional derivative of f (x , y) = xy3 − x2 at (1, 2)

in the direction −→u = (12 ,
√
3
2 )

3 Find the directional derivative of f (x , y) = x2 ln y at (3, 1) in

the direction of −→u = (−1
2 ,

√
3
2 ).
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Tangent Plane

The derivatives ∂f
∂x (a, b) and

∂f
∂y (a, b) define a tangent plane to the

graph of f at (a, b, f (a, b)).
The differential of z = f (x , y) is

dz =
∂f

∂x
dx +

∂f

∂y
dy .
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Definition

If f has continuous partial derivatives, the tangent plane to
z = f (x , y) at (a, b, f (a, b)) is

z = f (a, b) +
∂f

∂x
(a, b)(x − a) +

∂f

∂y
(a, b)(y − b)
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Chain Rule for Functions of One Variable

If y = f (u) and u = u(x), then

dy

dx
=

dy

du
.
du

dx
= f ′(u).

du

dx
.
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The Chain Rule, 2 Variables

If z = f (x , y), x = g(t), and y = h(t), then

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

If
z = f (x , y), x = g(s, t), y = h(s, t),

then

∂z

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
,

∂z

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
,
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Definition

A two-dimensional transformation is a function f that maps each
point (x,y) in a domain Ω ⊂ R2 to a point
f (x , y) = (u(x , y), v(x , y)) in R2.
A two-dimensional vector field is a function f that maps each point
(x,y) in a domain Ω ⊂ R2 to a two-dimensional vector

f (x , y) = u(x , y)
−→
i + v(x , y)

−→
j , where

−→
i = (1, 0) and

−→
j = (0, 1).
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Definition

A three-dimensional transformation is a function f that maps each
point (x,y,z) in a domain Ω ⊂ R3 to a point
f (x , y , z) = (u(x , y , z), v(x , y , z),w(x , y , z)) in R3.
A three-dimensional vector field maps (x , y , z) in a domain Ω ⊂ R3

to a three-dimensional vector
f (x , y , z) = u(x , y , z)

−→
i + v(x , y , z)

−→
j + w(x , y , z)

−→
k , where

−→
i = (1, 0, 0),

−→
j = (0, 1, 0) and

−→
k = (0, 0, 1).
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Vector fields have many important applications, as they can be
used to represent many physical quantities:

Mechanics: the classical example is a gravitational field.

Electricity and Magnetism: electric and magnetic fields.

Fluid Mechanics: wind speed or the velocity of some other
fluid.
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If r(t) = x(t)
−→
i + y(t)

−→
j + z(t)

−→
k is the position vector field of an

object. We can define various physical quantities associated with
the object as follows:

velocity: v(t) = r′(t) = dr
dt = x ′(t)

−→
i + y ′(t)

−→
j + z ′(t)

−→
k ,

acceleration:
a(t) = v ′(t) = dv

dt = r
′′
(t) = d2r

dt2
= x

′′
(t)

−→
i + y

′′
(t)

−→
j + z

′′
(t)

−→
k ,

The norm ∥v(t)∥ of the velocity vector is called the speed of the
object.
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Example

1 The gravitational force field between the Earth with mass M
and a point particle with mass m is given by:

F (x , y , z) = − GmM

(x2 + y2 + z2)
3
2

(x
−→
i + y

−→
j + z

−→
k ),

where G is the gravitational constant, and the (x , y , z)
coordinates are chosen so that (0, 0, 0) is the center of the
Earth.

2 The Electrostatic fields:
In 3D, E = − q

4πε0∥r∥3
r.

In 2D, E =
ρ

2πε0∥r∥2
r.
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Gradient Fields

Let f be a scalar function of two variables, the gradient of f is
defined by

∇f (x , y) = (
∂f

∂x
(x , y),

∂f

∂y
(x , y)).

If f is a scalar function of three variables, its gradient is a vector
field on R3 given by

∇f (x , y , z) = (
∂f

∂x
(x , y , z),

∂f

∂y
(x , y , z),

∂f

∂z
(x , y , z)).

The operator ∇ will be denoted by:

∇ = ∂
∂x

−→
i + ∂

∂y

−→
j + ∂

∂z

−→
k or ∇ =

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
as a vector.
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Remark

Let f be a function. The vector ∇f (x0, y0, z0) is orthogonal to the
level surface of f S = {(x , y , z) ∈ R3 : f (x , y , z) = C} that
contains (x0, y0, z0).
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Theorem

Consider f and g two smooth scalar functions F = (f1, f2, f3) and
G = (g1, g2, g3) two smooth vector fields defined on a domain
Ω ⊂ R3. We have:

∇(fg) = (
∂(fg)

∂x
,
∂(fg)

∂y
,
∂(fg)

∂z
)

= f∇(g) + g∇(f ).

∇(F.G) = ∇(f1g1 + f2g2 + f3g3)

= ∇(f1g1) +∇(f2g2) +∇(f3g3)

= f1∇(g1) + g1∇(f1) + f2∇(g2) + g2∇(f2)

+f3∇(g3) + g3∇(f3).
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Example

F =

(
−x

(x2 + y2 + z2)
3
2

,
−y

(x2 + y2 + z2)
3
2

,
−z

(x2 + y2 + z2)
3
2

)
= ∇ 1√

x2 + y2 + z2
.
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Definition (Inverse square field)

Let r(x , y , z) = x
−→
i + y

−→
j + z

−→
k be the position vector of the

point M(x , y , z). The vector field F(x , y , z) =
c

∥r∥3
r(x , y , z) is

called an inverse square field, where c ∈ R.
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