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The Dot (or the Inner) Product

Definition
In R2, if o = (u1, up) and Vv = (v1, v2), the dot product of o and
V is the number <7,7) = u1v1 + wvs. The dot product is also

denoted by: vV,
Recall that the angle 6 between the vectors U and V is defined as

follows,

UV =, V)=|7| | V]| cosb.
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The Dot (or the Inner) Product

The Cosine Law
C
Recall from trigonometry:

b c® = 2% + b®> — 2abcosf

A B where 0 = m/ZACB.

C
In RS, if o = (u1, up, u3) and V= (v1, v2, v3), the dot product of
U and V is the number <7,7> = u1vi + Vo + U3 V3.
The norm of a vector U is || 7| = /(U, ).
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The Dot (or the Inner) Product

The direction angles associated
to a vector U are given by:

cosa = <F V
N
cosff = <T’JH> cosy =
el <7‘k’>

« Bcil
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The Dot (or the Inner) Product

Definition
Let ¥ and V be two vectors in R2 or R3, the component of o

along Vis S
_ V) _
comp— U = i ||| cos b,

where 0 is the angle between U and V.
The projection of the vector U on the vector V is

compo TV
Pv m
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The Dot (or the Inner) Product

proj4 ?7 proj‘ﬁ v 7
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The Cross Product

The Cross Product

Definition
If Uy = (x1,y1,21) and Uo = (x2, y2, 22), then the cross product
of 71 and 72 is the vector

i oz = =

- X1 1
Y2 2

X1 N
X2 Y2

71/\?2:

X2 22
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The Cross Product

Remark

@ The vector 71 A 72 is orthogonal to the vectors 71 and 72
and its direction is given by the right-hand rule i.e. the
determinant \71, 72,71 A 72] is non negative.

@ |71 A U2l is the area of the parallelogram spanned by 1/
and 72, ie.,

Iy A Wl = |71 | 2| siné.
© Two vectors 71 and 72 are parallel if and only if
71 VAN 72 =0.
Q U1 A T2 = |1l T 1]? = (u1, v2)2 Indeed

11 A Tl = || TPl T2 sin* 6 =

|7 1|2 T 2]|2(1 — cos? ).



The Cross Product

Example

Compute the area of the triangle with vertices (2,3, 1), (1,3, 2),
(3,0,-2).

Two sides are: 7 = (—1,0,3), V = (1,-3,-1),
TAV=(923),|7AV|>=81+4+9=104=28.13. The
area of the triangle is v/26.

V Ol’lgl B Vector Calculus



Theorem (Cross Product Properties)
Let 71, 72, and 73 be vectors and let ¢ be a constant:
QO UiAUa= AT
Q (cU)ANT2=c(T1AT2)=TU1A(cT2);
(3 ) 71/\(72+73):71/\72+71/\73;
Q (714-72)/\73:71/\734-72/\73;
@ (U1, (U2AT3)) = (1A T2), U3);
QO Ui A(T2AT3)= (U1, T3))U2— (U1, T2)Us.




The Cross Product

Scalar Triple Product

The scalar triple product of three vectors 71, 72, and 73 is the
determinant

X1 N 4
(T1,(T2AT3)) =2 yo 2.
X3 Y3 Z3
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The Cross Product

The volume of the parallelepiped formed by the vectors U1, U,

and 73 is
(U1, (T2 A T3)).

The vectors 71, 72 and 71 are in the same plane if the scalar
triple product (71, (72 A 73)} is 0.
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The Cross Product

Example

Compute the volume of the parallelepiped spanned by the 3 vectors
U1 =(2,3,-1), T2=(1,3,2) and U3 = (3,0, —2).
72 A\ 73 = (—6,8, —9), <71, (72 N 73)> = 21.
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Remark

<71, (72 A 73» = <(71 A 72), 73)




Lines and Planes

A line L in three-dimensional space is determined by

e A point My = (xo, Yo, 20) on the line

e A vector V = (a, b, c) that gives the direction of the line.

Any point M on the line can be expressed as My + tV for some
real number t called the parameter.

Line - Vector Equation

The parametrization t — My + tV is called the vector equation
of a line L, where My is a point on the line and V is the direction
of the line.
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Lines and Planes

Line - Parametric Equation

If Mo = (x0,¥0,20) and V = (a, b, ¢), the equations

X = Xp + at,
y:)/O+bt7
zZ=2zy+ct

give the parametric equations for the line passing through My and
in direction of the vector V.
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Lines and Planes

Line Symmetric Equation

If we begin with the parametric equations of a line:

X = Xg + at,
y:}/O‘i‘bE
z=2zy+ ct

we can eliminate the parameter to get the symmetric equation of a
line;
X—X0 Y—Yo Z—2

a b c

V Ol’lgl B Vector Calculus



Lines and Planes

Let My = (x1,y1,21), M2 = (x2, ¥2, 22) be two points on the space.
The parametric equation of the line passing through M; to M, is
the parametric equation of the line with My on the line and the
direction My M, = (X2 — X1, Y2 — V1,20 — 21).

The vector equation of the line is: M(t) = My + tM; M. If

t € [0,1], this equation in the is segment which goes from M; to
M.
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Lines and Planes

Theorem (Distance between a point to a line)

The distance between a point and a line is

1Mo AT |
i

where My on the line.
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Lines and Planes

Example

Find the distance from M = (2, —3,1) to the line containing
My = (1,3,—1) and Mo = (2, -1,1).
MM, = (1,-4,2), MM; = (1,—6,2), MM, A MM; = (4,0, —2).

2
The distance is @

V21
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Lines and Planes

Planes

In order to find the equation of a plane, we need:

e a point on the plane My = (xo, yo, 20)

e a vector that is orthogonal to the plane "= (a, b, c). This
vector is called the normal vector the to plane.

Plane - Vector Equation

Any point M of the plane verifies (MoM, ) = 0. This is the
vector equation of the plane.

V Ol’lgl B Vector Calculus



Lines and Planes

Vector Calc




Lines and Planes

Plane - Scalar Equation
The scalar (or component) equation of the plane is
a(x — xo) + b(y — y0) + ¢(z — z0) = 0.
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Lines and Planes

Example

Determine the equation of the plane that passes through the
poi_nts> M; = (1,2,3)&}: (3,2,1) and M3 = (—1,-2,2).
M1_Mz> :@—2), Mi M3 = (—2, —4, —1),

My My A My M3 = (—8,6,—8). The scalar equation of the plane is
—8(x—1)+6(y —2)—8(z—3)=0 <= 4x—3y +4z=10.
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Lines and Planes

Remark

Two planes are parallel if and only if the normal vectors are parallel
i.e. n_l> A n_2> =0.
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Lines and Planes

Theorem [Distance between a point and a plane]

The distance between a point and a plane is

|(MoM. )
.

where My on the plane.
If Mo = (x0,¥0,20), M = (x,y,z) and "= (a, b, c), then

x = x0) + b(y — yo0) + c(z — 20))|

Va2 + b? + c? '

d(m, p) = 12
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Lines and Planes

Example

Find the distance from M = (1,2,0) to the plane 2x —3y +2z = 1.
My = (=1,-1,0), @ = (2,-3,2), MiM = (2,3,0).

d(M, P) =

;‘m
~
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Quadratic Curves in R?

A quadratic curve is the graph of a second-degree equation in two
variables taking one of the forms

2 2
. X y
The elllpse ? =+ ?

Yy
- > 1 with foci (%c,0), where
\/ a’ = b% + 2.
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Quadratic Curves in R?

The parabola x> = 4py
R with focus at (0, p) and di-
rectrix at y = —p
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Quadratic Curves in R?

Y X2y
X The hyperbola 2R 1
with foci at (4c,0) where
c? =a’+ b2
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Surfaces in Space

R Cylinders which consist of
] . .
‘ all lines (called rulings)

| | _
| that are parallel to a given
/ line and pass through a
y :
given plane curve
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Surfaces in Space

Example

y y?+22=1
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Example

Surfaces in Space

viongi b

The set of points (x, y, z) that
satisfy the equation x> +y? =1
is the cylinder of radius 1 cen-
tered at (0,0,0) whose axis of
symmetry is the z-axis.
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Surfaces in Space

Elliptic Paraboloids which
will model functions with
Iyocal maxima or minima

e m——— N

NS
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Surfaces in Space

Hyperbolic Paraboloids
(“saddles”) which model a
new kind of critical point,
called a saddle point, for
unctions ‘of two variables
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Surfaces in Space

Quadric Surfaces in R3

A quadric surface is the graph of a second-degree equation in x, y,
and z taking one of the standard forms

A2+ By’ + C22+ D=0, Ax®*+By’+ Cz=0.

We can graph a quadric surface by studying its traces in planes
parallel to the x, y, and z axes. The traces are always quadratic
curves.
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Surfaces in Space

2 2 2
The ellipsoid: — );2 + = Z -1

z
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Surfaces in Space

The set of points (x,y,z) that
satisfy the equation x* + y? +
z2 = 1 is the sphere of radius 1
centered at (0,0, 0).
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Surfaces in Space
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Surfaces in Space

. . x2 y?
Hyperbollk Parabo!0|d (Saddle) z = 2R
A /\
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Surfaces in Space

2 2 2
X z
Hyperboloid of one sheet gl % + 2= 1
z
X2 4y? 22 =
y
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Surfaces in Space

22
XY 0
Cone: s+ 5=2

You can have similar equations with x, y, z permuted or with the
origin shifted.
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Vector-Valued Functions

Definition

A vector-valued function is a function r(t) whose domain is a set
of real numbers and whose range is a set of vectors in two- or
three-dimensional space. We can specify r(t) through its
component functions:

r(t) = (£(¢),8(1), h(t)) = f(2)i + g(t)j + h(t)k.
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Vector-Valued Functions

Example

r(t) = (cost, t,sin t).

N
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Vector-Valued Functions

Definition
The limit of a vector-valued function is the limit of the component
functions:

lim (x(£), ¥ (1), 2(£)) = (lim x(2), lim y(¢), lim z(t))

A vector-valued function r(t) = (x(t), y(t), z(t)) is continuous if
each of the component functions x(t), y(t), z(t) is continuous.

A vector-valued function r(t) = (x(t), y(t), z(t)) is differentiable if
each of the component functions x(t), y(t), z(t) is differentiable
and we have r'(t) = (X'(t), y'(t), Z'(t)).

oy = g U B U
r(t)_dt_/lvﬂ]o h '
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Vector-Valued Functions

Definition

The integral of a vector-valued function r(t) = (x(t), y(t), z(t)) on
an interval [a, b] is defined by:

/ab r(t)dt = (/abX(t)dt, /aby(t)dt,/abz(t)dt> '
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Vector-Valued Functions

Remark

measures the displacement
from t to t + h.
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Vector-Valued Functions

The vector ¥'(t) gives the
instantaneous change in
displacement The magni-
tude |¥'(t)| gives instanta-
neous speed. ) y
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Vector-Valued Functions

Tangent Lines

Consider the curve r(t) = (2t,e~ %, cost — t2).
r'(t) = (2,—e !, —sint — 2t) and ¥'(0) = (2,—1,0). The
parametric equations for the tangent line to the curve at (0,1,1) is
x = 2t,
y=1-t,
z=1

Definition

The unit tangent to r(t) is the vector

¢(1)
T = o
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Definition
The arc length of a plane curve r(t) = (x(t), y(t)), t € [a, b] is

il "R + b (et = / " I (@)l

The arc length of a plane curve r(t) = (x(t),y(t),z(t)) t € [a, b] is

b
L= [ Vo@r + bR + et = [ I

v




Arc Length

If r(t) is the space curve of a moving body and if t is time:
@ r(t) is the velocity of the moving body
@ ||I¥'(t)']| is the speed of the moving body

O r'(t) is the acceleration of the moving body

V Ol’lgl B Vector Calculus



Arc Length

Definition-(The Arc Length Function)

Let € be a space curve given by a vector function

r(t) = x(t)i+ y(t)j + z(t)k

for t € [a, b].
the arc length function for % is defined by:

- [ IF@lae

By the Fundamental Theorem of Calculus,

ds
= =)l
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Vector Functions and Space Curves

The Partial Derivatives

Let f be a function defined on a domain D C R?. For
(x0, ¥0) € D, the partial derivatives of f with respect to x and y if
they exist are defined by:

of B . f(x0+ h,y0) — f(x0, %0)

a(xo,)/o) = &(XO')yO) = fl;ino h )
of B o f(x0, 0 + h) = f(x0, %)
87y(X07y0) - f;’(XOa 7}/0) - /|1T>10 h .
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Vector Functions and Space Curves

Consider a smooth function f: D C R3 — R, the partial
derivatives of f with respect to x, y and z if they exist are defined

by:
gi(x,y,z) — f(xy2) = i')i_n?o f(x+hy,z ,)7 f(x,y,z )
g;(X,y,z) = f(x,y,2) = lim floy &b le fxy.2),
gi(x,y,z) = f(x,y,z) = ili_r)no fix,y,z+ h/z fix.y, Z).
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Vector Functions and Space Curves

Theorem (Schwarz's Theorem)

Let f be a function defined on a domain D that contains the point

(a, b). If the functions ai and i are both continuous on
: uncti inuou
D’ 5 Ox0y Oy Ox
, then
0°f o0*f

=—-(a,b).

8X8y(a’ )= Bydx

.
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Vector Functions and Space Curves

The Directional Derivative

Let f be a function defined on a domain D C R2. For (xo, yo) € D
and U = (a, b) a unit vector in R2. The directional derivative of f
in the direction of I at (xg, yo) if it exists is

f((x0, ¥0) + hu) — f(x0, y0)

Du.f(x0,y0) = ,|1i_f>n0 P
~ lim f(xo + ah, yo + bh) — f(xo, yo)
 h—0 h '

If f is a function defined on a domain D C R3. For (xo, y0,20) € D
and U = (a, b, ¢) a unit vector in R3. The directional derivative of
f in the direction of U at (x0, Y0, 20) if it exists is
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Vector Functions and Space Curves

Example

Q If 7 = (a, b), Duf(x0, yo) is the same as the derivative of
f(xo + at, yo + bt) at t = 0. We can compute this by the
chain rule and get

Dyf(xo0, yo) = afi(x0, Yo0) + bf,(x0, y0).

@ Find the directional derivative of f(x,y) = xy® — x? at (1,2)

in the direction o = (%, ?)

© Find the directional derivative of f(x,y) = x?Iny at (3,1) in

the direction of o = (—3, ?)
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Vector Functions and Space Curves

Tangent Plane

The derivatives %(a, b) and g—;(a, b) define a tangent plane to the
graph of f at (a, b, f(a, b)).
The differential of z = f(x,y) is

BXX Byy
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Vector Functions and Space Curves

Definition

If f has continuous partial derivatives, the tangent plane to
z=f(x,y) at (a,b,f(a, b)) is

z="f(a,b)+ gi(a, b)(x — a) + g;(a, b)(y — b)

V Ol’lgl B Vector Calculus



Vector Functions and Space Curves

Chain Rule for Functions of One Variable

If y = f(u) and u = u(x), then
dy dy @ _ du

A, — / -
dx  dudx (u)'dx'
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Vector Functions and Space Curves

The Chain Rule, 2 Variables

If z=f(x,y), x = g(t), and y = h(t), then

dz_ofdc  of dy
dt  Oxdt Oydt

If
Z = f(X,y),X:g(S, t)ay: h(57 t)a
then
oz _ofox  0f by oz _of ox | 0f by
ds Ox0s Oy 0s’ ot Oxot Oy ot’
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Vector Fields

Definition

A two-dimensional transformation is a function f that maps each
point (x,y) in a domain Q C R? to a point

F(x. ) = (u(x,y), vlx,y)) in BZ.

A two-dimensional vector field is a function f that maps each point
(x,y) in a domain Q C R? to a two-dimensional vector

f(x,y)=u(x,y) i + v(x,y)?, where T = (1,0) and T =(0,1).
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Vector Fields

Definition

A three-dimensional transformation is a function f that maps each
point (x,y,z) in a domain Q C R3 to a point
f(x,y,z) = (u(x,y,z),v(x,y,z),w(x,y,z)) in R3.
A three-dimensional vector field maps (x, y,z) in a domain Q C R3
to a three dimensional vector
- iy -

‘()x y,z —uxy, z)i +v(x,y,z)j +w(x,y,z) k, where

(1,0,0), j =(0,1,0) and k =(0,0,1).
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Vector Fields

Vector fields have many important applications, as they can be
used to represent many physical quantities:
@ Mechanics: the classical example is a gravitational field.
@ Electricity and Magnetism: electric and magnetic fields.
@ Fluid Mechanics: wind speed or the velocity of some other
fluid.
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Vector Fields

If r(t) = x(t)—i> + y(t)T + z(t)I> is the position vector field of an
object. We can define various physical quantities associated with
the object as follows:

velocity: v(t) =r(t) =9 = x’(t)_i> + y’(l“)T> + z’(t)?,
acceleration: _ - -
a(t) = V(e) = % =¥ () = L1 =X"(F +y/ ()T +2' (K,
The norm ||v(t)]|| of the veIOC|ty vector is called the speed of the
object.
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Vector Fields

Example

@ The gravitational force field between the Earth with mass M
and a point particle with mass m is given by:

GmM
(2 +y2 +22)3
where G is the gravitational constant, and the (x,y, z)
coordinates are chosen so that (0,0, 0) is the center of the

T T
(xi+yj+zk),

F(x,y,z) = —

Earth.
@ The Electrostatic fields:
In3D, E=————r.
" ameo||r3"
In2D, E = ——.
2me]|r||?
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Vector Fields

Gradient Fields

Let f be a scalar function of two variables, the gradient of f is

defined by
of of
Vf(X,y) = (a(xv)/)y @(Xay))

If f is a scalar function of three variables, its gradient is a vector
field on R3 given by

of of of
Vf(xvyvz) = (&(X7y7z)7 @(X,)/,Z), @(X,}@Z)).

The operator V will be denoted by:
R
V:a% i —|—3%J —|—%k or V= <%,a%,a%> as a vector.
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Vector Fields

Remark

Let f be a function. The vector Vf(xo, yo, Z) is orthogonal to the
level surface of f S = {(x,y,z) € R3: f(x,y,z) = C} that
contains (xo, Y0, 20)-
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Vector Fields

Consider f and g two smooth scalar functions F = (f, f>, f3) and
G = (g1, &2, 83) two smooth vector fields defined on a domain
Q C R3. We have:

= fV(g)+gV(f).

V(F.G) = V(hg + hg + hes)
= V(hg)+ V(he) + V(fies)
= AV(g)+&V(h)+ LV(g)+ &V(h)
+£V(gs) + gV (B).

V 0ng| » Vector Calculus




Vector Fields

Example
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Vector Fields

Definition (Inverse square field)

- - =
Let r(x,y,z) =xi +yj +zk be the position vector of the
point M(x,y, z). The vector field F(x,y,z) = ﬁr(x,y,z) is

called an inverse square field, where ¢ € R.
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