Vector Calculus

Mongi BLEL

King Saud University

March 25, 2024

Definition

In \mathbb{R}^2 , if $\overrightarrow{u}=(u_1,u_2)$ and $\overrightarrow{v}=(v_1,v_2)$, the dot product of \overrightarrow{u} and \overrightarrow{v} is the number $\langle \overrightarrow{u},\overrightarrow{v}\rangle=u_1v_1+u_2v_2$. The dot product is also denoted by: $\overrightarrow{u}.\overrightarrow{v}$.

Recall that the angle θ between the vectors \overrightarrow{u} and \overrightarrow{v} is defined as follows,

$$\overrightarrow{u}.\overrightarrow{v} = \langle \overrightarrow{u}, \overrightarrow{v} \rangle = ||\overrightarrow{u}|| \ ||\overrightarrow{v}|| \cos \theta.$$

The Cosine Law

Recall from trigonometry:

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

where $\theta = m \angle ACB$.

In \mathbb{R}^3 , if $\overrightarrow{u}=(u_1,u_2,u_3)$ and $\overrightarrow{v}=(v_1,v_2,v_3)$, the dot product of \overrightarrow{u} and \overrightarrow{v} is the number $\langle \overrightarrow{u},\overrightarrow{v}\rangle=u_1v_1+u_2v_2+u_3v_3$. The norm of a vector \overrightarrow{u} is $\|\overrightarrow{u}\|=\sqrt{\langle \overrightarrow{u},\overrightarrow{u}\rangle}$.

The Dot (or the Inner) Product The Cross Product Lines and Planes Quadratic Curves in \mathbb{R}^2 Surfaces in Space **Vector-Valued Functions** Arc Length Vector Functions and Space Curves Vector Fields

The direction angles associated to a vector \overrightarrow{u} are given by: $\cos \alpha = \frac{\langle \overrightarrow{u}, \overrightarrow{i} \rangle}{\|\overrightarrow{u}\|},$ $\cos \beta = \frac{\langle \overrightarrow{u}, \overrightarrow{i} \rangle}{\|\overrightarrow{u}\|},$ $\cos \gamma = \frac{\langle \overrightarrow{u}, \overrightarrow{k} \rangle}{\|\overrightarrow{u}\|}.$

$$\cos \beta = \frac{\langle \overrightarrow{u}, \overrightarrow{\mathbf{j}} \rangle}{\|\overrightarrow{u}\|}, \quad \cos \gamma = \frac{\langle \overrightarrow{u}, \overrightarrow{\mathbf{k}} \rangle}{\|\overrightarrow{u}\|}.$$

Definition

Let \overrightarrow{u} and \overrightarrow{v} be two vectors in \mathbb{R}^2 or \mathbb{R}^3 , the component of \overrightarrow{u} along \overrightarrow{v} is

$$\operatorname{comp}_{\overrightarrow{V}}\overrightarrow{U} = \frac{\langle \overrightarrow{U}, \overrightarrow{V} \rangle}{\|\overrightarrow{V}\|} = \|\overrightarrow{U}\| \cos \theta,$$

where θ is the angle between \overrightarrow{u} and \overrightarrow{v} .

The projection of the vector \overrightarrow{u} on the vector \overrightarrow{v} is

$$\operatorname{comp}_{\overrightarrow{V}} \overrightarrow{u} . \frac{1}{\|\overrightarrow{V}\|} \overrightarrow{V} .$$

The Cross Product

Definition

If $\overrightarrow{u}_1=(x_1,y_1,z_1)$ and $\overrightarrow{u}_2=(x_2,y_2,z_2)$, then the cross product of \overrightarrow{u}_1 and \overrightarrow{u}_2 is the vector

$$\overrightarrow{u}_1 \wedge \overrightarrow{u}_2 = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \overrightarrow{\mathbf{i}} + \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \overrightarrow{\mathbf{j}} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \overrightarrow{\mathbf{k}}.$$

Remark

- The vector $\overrightarrow{u}_1 \wedge \overrightarrow{u}_2$ is orthogonal to the vectors \overrightarrow{u}_1 and \overrightarrow{u}_2 and its direction is given by the right-hand rule i.e. the determinant $|\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_1 \wedge \overrightarrow{u}_2|$ is non negative.
- 2 $\|\overrightarrow{u}_1 \wedge \overrightarrow{u}_2\|$ is the area of the parallelogram spanned by \overrightarrow{u}_1 and \overrightarrow{u}_2 , i.e.,

$$\|\overrightarrow{u}_1 \wedge \overrightarrow{u}_2\| = \|\overrightarrow{u}_1\| \|\overrightarrow{u}_2\| \sin \theta.$$

- Two vectors \overrightarrow{u}_1 and \overrightarrow{u}_2 are parallel if and only if $\overrightarrow{u}_1 \wedge \overrightarrow{u}_2 = 0$.

Example

Compute the area of the triangle with vertices (2, 3, -1), (1, 3, 2), (3, 0, -2).

Two sides are:
$$\overrightarrow{u} = (-1,0,3), \ \overrightarrow{v} = (1,-3,-1), \ \overrightarrow{u} \wedge \overrightarrow{v} = (9,2,3), \ \|\overrightarrow{u} \wedge \overrightarrow{v}\|^2 = 81 + 4 + 9 = 104 = 8.13.$$
 The area of the triangle is $\sqrt{26}$.

Theorem (Cross Product Properties)

Let \overrightarrow{u}_1 , \overrightarrow{u}_2 , and \overrightarrow{u}_3 be vectors and let c be a constant:

$$\overrightarrow{u}_1 \wedge (\overrightarrow{u}_2 + \overrightarrow{u}_3) = \overrightarrow{u}_1 \wedge \overrightarrow{u}_2 + \overrightarrow{u}_1 \wedge \overrightarrow{u}_3;$$

$$(\overrightarrow{u}_1 + \overrightarrow{u}_2) \wedge \overrightarrow{u}_3 = \overrightarrow{u}_1 \wedge \overrightarrow{u}_3 + \overrightarrow{u}_2 \wedge \overrightarrow{u}_3;$$

$$\bullet \overrightarrow{u}_1 \wedge (\overrightarrow{u}_2 \wedge \overrightarrow{u}_3) = (\langle \overrightarrow{u}_1, \overrightarrow{u}_3 \rangle) \overrightarrow{u}_2 - (\langle \overrightarrow{u}_1, \overrightarrow{u}_2 \rangle) \overrightarrow{u}_3.$$

Scalar Triple Product

The scalar triple product of three vectors \overrightarrow{u}_1 , \overrightarrow{u}_2 , and \overrightarrow{u}_3 is the determinant

$$\langle \overrightarrow{u}_1, (\overrightarrow{u}_2 \wedge \overrightarrow{u}_3) \rangle = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

The volume of the parallelepiped formed by the vectors \overrightarrow{u}_1 , \overrightarrow{u}_2 , and \overrightarrow{u}_3 is

$$|\langle \overrightarrow{u}_1, (\overrightarrow{u}_2 \wedge \overrightarrow{u}_3) \rangle|.$$

The vectors \overrightarrow{u}_1 , \overrightarrow{u}_2 and \overrightarrow{u}_1 are in the same plane if the scalar triple product $\langle \overrightarrow{u}_1, (\overrightarrow{u}_2 \wedge \overrightarrow{u}_3) \rangle$ is 0.

Example

Compute the volume of the parallelepiped spanned by the 3 vectors $\overrightarrow{u}_1 = (2,3,-1), \ \overrightarrow{u}_2 = (1,3,2) \ \text{and} \ \overrightarrow{u}_3 = (3,0,-2).$ $\overrightarrow{u}_2 \wedge \overrightarrow{u}_3 = (-6,8,-9), \ \langle \overrightarrow{u}_1, (\overrightarrow{u}_2 \wedge \overrightarrow{u}_3) \rangle = 21.$

Remark

$$\langle \overrightarrow{u}_1, (\overrightarrow{u}_2 \wedge \overrightarrow{u}_3) \rangle = \langle (\overrightarrow{u}_1 \wedge \overrightarrow{u}_2), \overrightarrow{u}_3 \rangle.$$

Lines

A line L in three-dimensional space is determined by

- A point $M_0 = (x_0, y_0, z_0)$ on the line
- A vector $\overrightarrow{V} = (a, b, c)$ that gives the direction of the line.

Any point M on the line can be expressed as $M_0+t\overrightarrow{v}$ for some real number t called the parameter.

Line - Vector Equation

The parametrization $t \longmapsto M_0 + t \overrightarrow{v}$ is called the vector equation of a line L, where M_0 is a point on the line and \overrightarrow{v} is the direction of the line.

Line - Parametric Equation

If
$$M_0=(x_0,y_0,z_0)$$
 and $\overrightarrow{V}=(a,b,c)$, the equations
$$\begin{cases} x=x_0+at,\\ y=y_0+bt,\\ z=z_0+ct \end{cases}$$

give the parametric equations for the line passing through M_0 and in direction of the vector \overrightarrow{V} .

Line Symmetric Equation

If we begin with the parametric equations of a line:

$$\begin{cases} x = x_0 + at, \\ y = y_0 + bt, \\ z = z_0 + ct \end{cases}$$

we can eliminate the parameter to get the symmetric equation of a line:

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$
.

Let $M_1=(x_1,y_1,z_1), M_2=(x_2,y_2,z_2)$ be two points on the space. The parametric equation of the line passing through M_1 to M_2 is the parametric equation of the line with M_1 on the line and the direction $\overline{M_1M_2}=(x_2-x_1,y_2-y_1,z_2-z_1)$. The vector equation of the line is: $M(t)=M_1+t\overline{M_1M_2}$. If $t\in[0,1]$, this equation in the is segment which goes from M_1 to M_2 .

Theorem (Distance between a point to a line)

The distance between a point and a line is

$$\frac{\|\overrightarrow{M_0M}\wedge\overrightarrow{u}\rangle\|}{\|\overrightarrow{u}\|},$$

where M_0 on the line.

Example

Find the distance from M=(2,-3,1) to the line containing $\underbrace{M_1=(1,3,-1)}_{M_1M_2}$ and $\underbrace{M_2=(2,-1,1)}_{M_1M_2}$. $\underbrace{M_1M_2}_{M_1M_1}=(1,-6,2)$, $\underbrace{M_1M_2}_{M_1M_2}\wedge \underbrace{MM_1}_{M_1M_2}=(4,0,-2)$. The distance is $\frac{\sqrt{20}}{\sqrt{21}}$.

Planes

In order to find the equation of a plane, we need:

- a point on the plane $M_0 = (x_0, y_0, z_0)$
- a vector that is orthogonal to the plane $\overrightarrow{n} = (a, b, c)$. This vector is called the normal vector the to plane.

Plane - Vector Equation

Any point M of the plane verifies $\langle \overrightarrow{M_0M}, \overrightarrow{u} \rangle = 0$. This is the vector equation of the plane.

Plane - Scalar Equation

The scalar (or component) equation of the plane is $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$.

Example

Determine the equation of the plane that passes through the points $M_1 = (1, 2, 3)$, $M_2 = (3, 2, 1)$ and $M_3 = (-1, -2, 2)$. $M_1 M_2 = (2, 0, -2)$, $M_1 M_3 = (-2, -4, -1)$, $M_1 M_2 \wedge M_1 M_3 = (-8, 6, -8)$. The scalar equation of the plane is $-8(x-1)+6(y-2)-8(z-3)=0 \iff 4x-3y+4z=10$.

Remark

Two planes are parallel if and only if the normal vectors are parallel i.e. $\overrightarrow{n_1} \wedge \overrightarrow{n_2} = 0$.

Theorem [Distance between a point and a plane]

The distance between a point and a plane is

$$\frac{\left|\langle \overrightarrow{M_0M}, \overrightarrow{n}\rangle\right|}{\|\overrightarrow{n}\|},$$

where M_0 on the plane.

If
$$M_0=(x_0,y_0,z_0)$$
, $M=(x,y,z)$ and $\overrightarrow{n}=(a,b,c)$, then

$$d(M,P) = \frac{|a(x-x_0)+b(y-y_0)+c(z-z_0)|}{\sqrt{a^2+b^2+c^2}}.$$

Example

Find the distance from M = (1, 2, 0) to the plane 2x - 3y + 2z = 1. $M_1 = (-1, -1, 0), \vec{n} = (2, -3, 2), \vec{M_1 M} = (2, 3, 0).$

$$d(M,P)=\frac{5}{\sqrt{17}}.$$

A quadratic curve is the graph of a second-degree equation in two variables taking one of the forms

The ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 with foci $(\pm c, 0)$, where $a^2 = b^2 + c^2$.

The parabola $x^2 = 4py$ with focus at (0, p) and directrix at y = -p

The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with foci at $(\pm c, 0)$ where $c^2 = a^2 + b^2$.

Cylinders which consist of all lines (called rulings) that are parallel to a given line and pass through a given plane curve

Example

Example

The set of points (x, y, z) that satisfy the equation $x^2 + y^2 = 1$ is the cylinder of radius 1 centered at (0,0,0) whose axis of symmetry is the z-axis.

Hyperbolic Paraboloids ("saddles") which model a new kind of critical point, called a *saddle point*, for functions of two variables

Quadric Surfaces in \mathbb{R}^3

A quadric surface is the graph of a second-degree equation in x, y, and z taking one of the standard forms

$$Ax^2 + By^2 + Cz^2 + D = 0$$
, $Ax^2 + By^2 + Cz = 0$.

We can graph a quadric surface by studying its traces in planes parallel to the x, y, and z axes. The traces are always quadratic curves.

The ellipsoid:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

$$x^{2} + \frac{y^{2}}{4} + \frac{z^{2}}{3} = 1$$

The set of points (x, y, z) that satisfy the equation $x^2 + y^2 + z^2 = 1$ is the sphere of radius 1 centered at (0,0,0).

Elliptic Paraboloid
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Hyperbolic Paraboloid (Saddle)
$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Hyperboloid of one sheet $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Cone:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$$

You can have similar equations with x, y, z permuted or with the origin shifted.

Definition

A vector-valued function is a function $\mathbf{r}(t)$ whose domain is a set of real numbers and whose range is a set of vectors in two- or three-dimensional space. We can specify $\mathbf{r}(t)$ through its component functions:

$$\mathbf{r}(t) = (f(t), g(t), h(t)) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}.$$

Example

$$\mathbf{r}(t) = (\cos t, t, \sin t).$$

Definition

The limit of a vector-valued function is the limit of the component functions:

$$\lim_{t\to a}(x(t),y(t),z(t))=\left(\lim_{t\to a}x(t),\lim_{t\to a}y(t),\lim_{t\to a}z(t)\right).$$

A vector-valued function $\mathbf{r}(t) = (x(t), y(t), z(t))$ is continuous if each of the component functions x(t), y(t), z(t) is continuous. A vector-valued function $\mathbf{r}(t) = (x(t), y(t), z(t))$ is differentiable if each of the component functions x(t), y(t), z(t) is differentiable and we have ${\bf r}'(t) = (x'(t), y'(t), z'(t)).$

$$\mathbf{r}'(t) = \frac{d\mathbf{r}}{dt} = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}.$$

Mongi BLEL Vector Calculus

Definition

The integral of a vector-valued function $\mathbf{r}(t) = (x(t), y(t), z(t))$ on an interval [a, b] is defined by:

$$\int_a^b \mathbf{r}(t)dt = \left(\int_a^b x(t)dt, \int_a^b y(t)dt, \int_a^b z(t)dt\right).$$

Remark

The vector $\frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$ measures the displacement from t to t+h.

The vector $\mathbf{r}'(t)$ gives the instantaneous change in displacement The magnitude $|\mathbf{r}'(t)|$ gives instantaneous speed.

Tangent Lines

Consider the curve $\mathbf{r}(t) = (2t, e^{-t}, \cos t - t^2)$. $\mathbf{r}'(t) = (2, -e^{-t}, -\sin t - 2t)$ and $\mathbf{r}'(0) = (2, -1, 0)$. The parametric equations for the tangent line to the curve at (0, 1, 1) is

$$\begin{cases} x = 2t, \\ y = 1 - t, \\ z = 1 \end{cases}$$

Definition

The unit tangent to $\mathbf{r}(t)$ is the vector

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}.$$

Mongi BLEL

Vector Calculus

Definition

The arc length of a plane curve $\mathbf{r}(t) = (x(t), y(t)), t \in [a, b]$ is

$$L = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt = \int_a^b ||\mathbf{r}'(t)|| dt.$$

The arc length of a plane curve $\mathbf{r}(t) = (x(t), y(t), z(t)) \ t \in [a, b]$ is

$$L = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt = \int_a^b ||\mathbf{r}'(t)|| dt.$$

If $\mathbf{r}(t)$ is the space curve of a moving body and if t is time:

- $\mathbf{0} \mathbf{r}'(t)$ is the velocity of the moving body
- $||\mathbf{r}'(t)'||$ is the speed of the moving body
- $\mathbf{o} \mathbf{r}''(t)$ is the acceleration of the moving body

Definition-(The Arc Length Function)

Let \mathscr{C} be a space curve given by a vector function

$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

for $t \in [a, b]$.

the arc length function for \mathscr{C} is defined by:

$$s(t) = \int_a^t \|\mathbf{r}'(u)\| du.$$

By the Fundamental Theorem of Calculus,

$$\frac{ds}{dt} = \|\mathbf{r}'(t)\|.$$

Mongi BLEL Vector Calculus

The Partial Derivatives

Let f be a function defined on a domain $D \subset \mathbb{R}^2$. For $(x_0, y_0) \in D$, the partial derivatives of f with respect to x and y if they exist are defined by:

$$\frac{\partial f}{\partial x}(x_0, y_0) = f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = f_y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

Consider a smooth function $f: D \subset \mathbb{R}^3 \longrightarrow \mathbb{R}$, the partial derivatives of f with respect to x, y and z if they exist are defined by:

$$\frac{\partial f}{\partial x}(x,y,z) = f_x(x,y,z) = \lim_{h \to 0} \frac{f(x+h,y,z) - f(x,y,z)}{h};$$

$$\frac{\partial f}{\partial y}(x,y,z) = f_y(x,y,z) = \lim_{h \to 0} \frac{f(x,y+h,z) - f(x,y,z)}{h};$$

$$\frac{\partial f}{\partial z}(x,y,z) = f_z(x,y,z) = \lim_{h \to 0} \frac{f(x,y,z+h) - f(x,y,z)}{h}.$$

Theorem (Schwarz's Theorem)

Let f be a function defined on a domain D that contains the point (a,b). If the functions $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ are both continuous on

D, then

$$\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b).$$

The Directional Derivative

Let f be a function defined on a domain $D \subset \mathbb{R}^2$. For $(x_0, y_0) \in D$ and $\overrightarrow{u} = (a, b)$ a unit vector in \mathbb{R}^2 . The directional derivative of f in the direction of \overrightarrow{u} at (x_0, y_0) if it exists is

$$D_{u}f(x_{0},y_{0}) = \lim_{h\to 0} \frac{f((x_{0},y_{0}) + hu) - f(x_{0},y_{0})}{h}$$
$$= \lim_{h\to 0} \frac{f(x_{0} + ah, y_{0} + bh) - f(x_{0}, y_{0})}{h}.$$

If f is a function defined on a domain $D \subset \mathbb{R}^3$. For $(x_0, y_0, z_0) \in D$ and $\overrightarrow{u} = (a, b, c)$ a unit vector in \mathbb{R}^3 . The directional derivative of f in the direction of \overrightarrow{u} at (x_0, y_0, z_0) if it exists is

Example

• If $\overrightarrow{u} = (a, b)$, $D_u f(x_0, y_0)$ is the same as the derivative of $f(x_0 + at, y_0 + bt)$ at t = 0. We can compute this by the chain rule and get

$$D_u f(x_0, y_0) = a f_x(x_0, y_0) + b f_y(x_0, y_0).$$

- ② Find the directional derivative of $f(x,y) = xy^3 x^2$ at (1,2) in the direction $\overrightarrow{u} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$
- **3** Find the directional derivative of $f(x,y) = x^2 \ln y$ at (3,1) in the direction of $\overrightarrow{u} = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$.

Tangent Plane

The derivatives $\frac{\partial f}{\partial x}(a,b)$ and $\frac{\partial f}{\partial y}(a,b)$ define a tangent plane to the graph of f at (a,b,f(a,b)).

The differential of z = f(x, y) is

$$dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy.$$

Definition

If f has continuous partial derivatives, the tangent plane to z = f(x, y) at (a, b, f(a, b)) is

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

Chain Rule for Functions of One Variable

If
$$y = f(u)$$
 and $u = u(x)$, then
$$\frac{dy}{dx} = \frac{dy}{du}.\frac{du}{dx} = f'(u).\frac{du}{dx}.$$

The Chain Rule, 2 Variables

If
$$z = f(x, y)$$
, $x = g(t)$, and $y = h(t)$, then

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

lf

$$z = f(x, y), x = g(s, t), y = h(s, t),$$

then

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}, \qquad \qquad \frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t},$$

Definition

A two-dimensional transformation is a function f that maps each point (x,y) in a domain $\Omega \subset \mathbb{R}^2$ to a point f(x, y) = (u(x, y), v(x, y)) in \mathbb{R}^2 .

A two-dimensional vector field is a function f that maps each point (x,y) in a domain $\Omega \subset \mathbb{R}^2$ to a two-dimensional vector $f(x,y) = u(x,y)\overrightarrow{\mathbf{i}} + v(x,y)\overrightarrow{\mathbf{j}}$, where $\overrightarrow{\mathbf{i}} = (1,0)$ and $\overrightarrow{\mathbf{j}} = (0,1)$.

$$f(x,y) = u(x,y)\vec{j}' + v(x,y)\vec{j}'$$
, where $\vec{i}' = (1,0)$ and $\vec{j}' = (0,1)$.

Definition

A three-dimensional transformation is a function f that maps each point (x,y,z) in a domain $\Omega \subset \mathbb{R}^3$ to a point f(x,y,z) = (u(x,y,z),v(x,y,z),w(x,y,z)) in \mathbb{R}^3 .

A three-dimensional vector field maps (x, y, z) in a domain $\Omega \subset \mathbb{R}^3$

to a three-dimensional vector

$$\overrightarrow{\mathbf{i}} = (1,0,0), \quad \overrightarrow{\mathbf{j}} = (0,1,0) \text{ and } \overrightarrow{\mathbf{k}} = (0,0,1).$$

Vector fields have many important applications, as they can be used to represent many physical quantities:

- Mechanics: the classical example is a gravitational field.
- Electricity and Magnetism: electric and magnetic fields.
- Fluid Mechanics: wind speed or the velocity of some other fluid.

If $\mathbf{r}(t) = x(t)\overrightarrow{\mathbf{i}} + y(t)\overrightarrow{\mathbf{j}} + z(t)\overrightarrow{\mathbf{k}}$ is the position vector field of an object. We can define various physical quantities associated with the object as follows:

velocity:
$$v(t) = \mathbf{r}'(t) = \frac{d\mathbf{r}}{dt} = x'(t)\overrightarrow{\mathbf{i}} + y'(t)\overrightarrow{\mathbf{j}} + z'(t)\overrightarrow{\mathbf{k}}$$
, acceleration:

acceleration:
$$a(t) = v'(t) = \frac{dv}{dt} = \mathbf{r}''(t) = \frac{d^2\mathbf{r}}{dt^2} = x''(t)\overrightarrow{\mathbf{i}} + y''(t)\overrightarrow{\mathbf{j}} + z''(t)\overrightarrow{\mathbf{k}}$$
, The norm $||v(t)||$ of the velocity vector is called the speed of the object.

Example

• The gravitational force field between the Earth with mass M and a point particle with mass m is given by:

$$F(x,y,z) = -\frac{GmM}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} (x\overrightarrow{\mathbf{i}} + y\overrightarrow{\mathbf{j}} + z\overrightarrow{\mathbf{k}}),$$

where G is the gravitational constant, and the (x, y, z) coordinates are chosen so that (0, 0, 0) is the center of the Earth.

2 The Electrostatic fields:

In 3D,
$$E = -\frac{q}{4\pi\varepsilon_0 \|\mathbf{r}\|^3}\mathbf{r}$$
.
In 2D, $E = \frac{\rho}{2\pi\varepsilon_0 \|\mathbf{r}\|^2}\mathbf{r}$.

Gradient Fields

Let f be a scalar function of two variables, the gradient of f is defined by

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right).$$

If f is a scalar function of three variables, its gradient is a vector field on \mathbb{R}^3 given by

$$\nabla f(x,y,z) = \left(\frac{\partial f}{\partial x}(x,y,z), \frac{\partial f}{\partial y}(x,y,z), \frac{\partial f}{\partial z}(x,y,z)\right).$$

The operator ∇ will be denoted by:

$$\nabla = \frac{\partial}{\partial x} \overrightarrow{\mathbf{i}} + \frac{\partial}{\partial y} \overrightarrow{\mathbf{j}} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{k}} \text{ or } \nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \text{ as a vector.}$$

Mongi BLEL

Remark

Let f be a function. The vector $\nabla f(x_0, y_0, z_0)$ is orthogonal to the level surface of f $S = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = C\}$ that contains (x_0, y_0, z_0) .

Theorem

Consider f and g two smooth scalar functions $\mathbf{F} = (f_1, f_2, f_3)$ and $\mathbf{G} = (g_1, g_2, g_3)$ two smooth vector fields defined on a domain $\Omega \subset \mathbb{R}^3$. We have:

$$\nabla(fg) = \left(\frac{\partial(fg)}{\partial x}, \frac{\partial(fg)}{\partial y}, \frac{\partial(fg)}{\partial z}\right)$$
$$= f\nabla(g) + g\nabla(f).$$

$$\nabla(\mathbf{F}.\mathbf{G}) = \nabla(f_{1}g_{1} + f_{2}g_{2} + f_{3}g_{3})$$

$$= \nabla(f_{1}g_{1}) + \nabla(f_{2}g_{2}) + \nabla(f_{3}g_{3})$$

$$= f_{1}\nabla(g_{1}) + g_{1}\nabla(f_{1}) + f_{2}\nabla(g_{2}) + g_{2}\nabla(f_{2})$$

$$+ f_{3}\nabla(g_{3}) + g_{3}\nabla(f_{3}).$$

Mongi BLEL

Example

$$\mathbf{F} = \left(\frac{-x}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{-y}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \frac{-z}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}\right)$$
$$= \nabla \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Definition (Inverse square field)

Let $\mathbf{r}(x,y,z) = x \overrightarrow{\mathbf{i}} + y \overrightarrow{\mathbf{j}} + z \overrightarrow{\mathbf{k}}$ be the position vector of the point M(x,y,z). The vector field $\mathbf{F}(x,y,z) = \frac{c}{\|\mathbf{r}\|^3} \mathbf{r}(x,y,z)$ is called an inverse square field, where $c \in \mathbb{R}$.