The Dot (or the Inner) Product

Vector Calculus

Mongi BLEL

King Saud University

March 25, 2024

Definition

In \mathbb{R}^{2}, if $\vec{u}=\left(u_{1}, u_{2}\right)$ and $\vec{v}=\left(v_{1}, v_{2}\right)$, the dot product of \vec{u} and \vec{v} is the number $\langle\vec{u}, \vec{v}\rangle=u_{1} v_{1}+u_{2} v_{2}$. The dot product is also denoted by: $\vec{u} \cdot \vec{v}$.
Recall that the angle θ between the vectors \vec{u} and \vec{v} is defined as follows,

$$
\vec{u} \cdot \vec{v}=\langle\vec{u}, \vec{v}\rangle=\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

The Cosine Law

Recall from trigonometry:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

where $\theta=m \angle A C B$.
$\ln \mathbb{R}^{3}$, if $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$, the dot product of \vec{u} and \vec{v} is the number $\langle\vec{u}, \vec{v}\rangle=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$.
The norm of a vector \vec{u} is $\|\vec{u}\|=\sqrt{\langle\vec{u}, \vec{u}\rangle}$.

The Dot (or the Inner) Product
The Cross Product

The direction angles associated to a vector \vec{u} are given by: $\cos \alpha=\frac{\langle\overrightarrow{\mathrm{U}}, \overrightarrow{\mathrm{i}}\rangle}{\|\overrightarrow{\mathrm{U}}\|}$, $\cos \beta=\frac{\langle\vec{u}, \vec{j}\rangle}{\|\vec{u}\|}, \quad \cos \gamma=$ $\frac{\langle\vec{u}, \overrightarrow{\mathbf{k}}\rangle}{\|\vec{u}\|}$.

Definition

Let \vec{u} and \vec{v} be two vectors in \mathbb{R}^{2} or \mathbb{R}^{3}, the component of \vec{u} along \vec{v} is

$$
\operatorname{comp}_{\vec{v}} \vec{u}=\frac{\langle\vec{u}, \vec{v}\rangle}{\|\vec{v}\|}=\|\vec{u}\| \cos \theta
$$

where θ is the angle between \vec{u} and \vec{v}.
The projection of the vector \vec{u} on the vector \vec{v} is

$$
\operatorname{comp}_{\vec{v}} \vec{u} \cdot \frac{1}{\|\vec{v}\|} \vec{v}
$$

The Dot (or the Inner) Product
The Cross Product

The Cross Product

Definition

If $\vec{u}_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $\vec{u}_{2}=\left(x_{2}, y_{2}, z_{2}\right)$, then the cross product of \vec{u}_{1} and \vec{u}_{2} is the vector

$$
\vec{u}_{1} \wedge \vec{u}_{2}=\left|\begin{array}{ll}
y_{1} & z_{1} \\
y_{2} & z_{2}
\end{array}\right| \overrightarrow{\mathbf{i}}+\left|\begin{array}{ll}
x_{1} & z_{1} \\
x_{2} & z_{2}
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right| \overrightarrow{\mathbf{k}} .
$$

Remark

(1) The vector $\vec{u}_{1} \wedge \vec{u}_{2}$ is orthogonal to the vectors \vec{u}_{1} and \vec{u}_{2} and its direction is given by the right-hand rule i.e. the determinant $\left|\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{1} \wedge \vec{u}_{2}\right|$ is non negative.
(2) $\left\|\vec{u}_{1} \wedge \vec{u}_{2}\right\|$ is the area of the parallelogram spanned by \vec{u}_{1} and \vec{u}_{2}, i.e.,

$$
\left\|\vec{u}_{1} \wedge \vec{u}_{2}\right\|=\left\|\vec{u}_{1}\right\|\left\|\vec{u}_{2}\right\| \sin \theta .
$$

(0) Two vectors \vec{u}_{1} and \vec{u}_{2} are parallel if and only if $\vec{u}_{1} \wedge \vec{u}_{2}=0$.
(0 $\left\|\vec{u}_{1} \wedge \vec{u}_{2}\right\|^{2}=\left\|\vec{u}_{1}\right\|^{2}\left\|\vec{u}_{1}\right\|^{2}-\left\langle u_{1}, v_{2}\right\rangle^{2}$. Indeed $\left\|\vec{u}_{1} \wedge \vec{u}_{2}\right\|^{2}=\left\|\vec{u}_{1}\right\|^{2}\left\|\vec{u}_{2}\right\|^{2} \sin ^{2} \theta=$ $\left\|\vec{u}_{1}\right\|^{2}\left\|\vec{u}_{2}\right\|^{2}\left(1-\cos ^{2} \theta\right)$.

Example

Compute the area of the triangle with vertices $(2,3,-1),(1,3,2)$, (3, 0, -2).
Two sides are: $\vec{u}=(-1,0,3), \vec{v}=(1,-3,-1)$, $\vec{u} \wedge \vec{v}=(9,2,3),\|\vec{u} \wedge \vec{v}\|^{2}=81+4+9=104=8.13$. The area of the triangle is $\sqrt{26}$.

Theorem (Cross Product Properties)

Let \vec{u}_{1}, \vec{u}_{2}, and \vec{u}_{3} be vectors and let c be a constant:
(1) $\vec{u}_{1} \wedge \vec{u}_{2}=-\vec{u}_{2} \wedge \vec{u}_{1}$;
(2) $\left(c \vec{u}_{1}\right) \wedge \vec{u}_{2}=c\left(\vec{u}_{1} \wedge \vec{u}_{2}\right)=\vec{u}_{1} \wedge\left(c \vec{u}_{2}\right)$;
(3) $\vec{u}_{1} \wedge\left(\vec{u}_{2}+\vec{u}_{3}\right)=\vec{u}_{1} \wedge \vec{u}_{2}+\vec{u}_{1} \wedge \vec{u}_{3}$;
(9) $\left(\vec{u}_{1}+\vec{u}_{2}\right) \wedge \vec{u}_{3}=\vec{u}_{1} \wedge \vec{u}_{3}+\vec{u}_{2} \wedge \vec{u}_{3}$;
(0) $\left\langle\vec{u}_{1},\left(\vec{u}_{2} \wedge \vec{u}_{3}\right)\right\rangle=\left\langle\left(\vec{u}_{1} \wedge \vec{u}_{2}\right), \vec{u}_{3}\right\rangle$;
(0) $\vec{u}_{1} \wedge\left(\vec{u}_{2} \wedge \vec{u}_{3}\right)=\left(\left\langle\vec{u}_{1}, \vec{u}_{3}\right\rangle\right) \vec{u}_{2}-\left(\left\langle\vec{u}_{1}, \vec{u}_{2}\right\rangle\right) \vec{u}_{3}$.

Scalar Triple Product

The scalar triple product of three vectors \vec{u}_{1}, \vec{u}_{2}, and \vec{u}_{3} is the determinant

$$
\left\langle\vec{u}_{1},\left(\vec{u}_{2} \wedge \vec{u}_{3}\right)\right\rangle=\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right| .
$$

The volume of the parallelepiped formed by the vectors \vec{u}_{1}, \vec{u}_{2}, and \vec{u}_{3} is

$$
\left|\left\langle\vec{u}_{1},\left(\vec{u}_{2} \wedge \vec{u}_{3}\right)\right\rangle\right| .
$$

The vectors \vec{u}_{1}, \vec{u}_{2} and \vec{u}_{1} are in the same plane if the scalar triple product $\left\langle\vec{u}_{1},\left(\vec{u}_{2} \wedge \vec{u}_{3}\right)\right\rangle$ is 0 .

Example

Compute the volume of the parallelepiped spanned by the 3 vectors
$\vec{u}_{1}=(2,3,-1), \vec{u}_{2}=(1,3,2)$ and $\vec{u}_{3}=(3,0,-2)$.
$\vec{u}_{2} \wedge \vec{u}_{3}=(-6,8,-9),\left\langle\vec{u}_{1},\left(\vec{u}_{2} \wedge \vec{u}_{3}\right)\right\rangle=21$.

The Dot (or the Inner) Product

Remark

$$
\left\langle\vec{u}_{1},\left(\vec{u}_{2} \wedge \vec{u}_{3}\right)\right\rangle=\left\langle\left(\vec{u}_{1} \wedge \vec{u}_{2}\right), \vec{u}_{3}\right\rangle .
$$

Lines

A line L in three-dimensional space is determined by

- A point $M_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the line
- A vector $\vec{v}=(a, b, c)$ that gives the direction of the line. Any point M on the line can be expressed as $M_{0}+t \vec{V}$ for some real number t called the parameter.

Line - Vector Equation

The parametrization $t \longmapsto M_{0}+t \vec{v}$ is called the vector equation of a line L, where M_{0} is a point on the line and \vec{v} is the direction of the line.

Line - Parametric Equation

If $M_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $\vec{v}=(a, b, c)$, the equations

$$
\left\{\begin{array}{l}
x=x_{0}+a t \\
y=y_{0}+b t \\
z=z_{0}+c t
\end{array}\right.
$$

give the parametric equations for the line passing through M_{0} and in direction of the vector \vec{v}.

Line Symmetric Equation

If we begin with the parametric equations of a line:

$$
\left\{\begin{array}{l}
x=x_{0}+a t \\
y=y_{0}+b t \\
z=z_{0}+c t
\end{array}\right.
$$

we can eliminate the parameter to get the symmetric equation of a line;

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Let $M_{1}=\left(x_{1}, y_{1}, z_{1}\right), M_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ be two points on the space. The parametric equation of the line passing through M_{1} to M_{2} is the parametric equation of the line with M_{1} on the line and the direction $\overrightarrow{M_{1} M_{2}}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$.
The vector equation of the line is: $M(t)=M_{1}+t \overrightarrow{M_{1} M_{2}}$. If $t \in[0,1]$, this equation in the is segment which goes from M_{1} to M_{2}.

The Dot (or the Inner) Product

Theorem (Distance between a point to a line)

The distance between a point and a line is

$$
\frac{\left.\| \overrightarrow{M_{0} M} \wedge \vec{u}\right\rangle \|}{\|\vec{u}\|},
$$

where M_{0} on the line.

Example

Find the distance from $M=(2,-3,1)$ to the line containing
$M_{1}=(1,3,-1)$ and $M_{2}=(2,-1,1)$.
$\overrightarrow{M_{1} M_{2}}=(1,-4,2), \overrightarrow{M M_{1}}=(1,-6,2), \overrightarrow{M_{1} M_{2}} \wedge \overrightarrow{M M_{1}}=(4,0,-2)$.
The distance is $\frac{\sqrt{20}}{\sqrt{21}}$.

Planes

In order to find the equation of a plane, we need:

- a point on the plane $M_{0}=\left(x_{0}, y_{0}, z_{0}\right)$
- a vector that is orthogonal to the plane $\vec{n}=(a, b, c)$. This vector is called the normal vector the to plane.

Plane - Vector Equation

Any point M of the plane verifies $\left\langle\overrightarrow{M_{0} M}, \vec{u}\right\rangle=0$. This is the vector equation of the plane.

The Dot (or the Inner) Product

IVIOngI BLEL

Plane - Scalar Equation

The scalar (or component) equation of the plane is $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$.

Example

Determine the equation of the plane that passes through the points $M_{1}=(1,2,3), M_{2}=(3,2,1)$ and $M_{3}=(-1,-2,2)$.
$\overrightarrow{M_{1} M_{2}}=(2,0,-2), \overrightarrow{M_{1} M_{3}}=(-2,-4,-1)$,
$\overrightarrow{M_{1} M_{2}} \wedge \overrightarrow{M_{1} M_{3}}=(-8,6,-8)$. The scalar equation of the plane is
$-8(x-1)+6(y-2)-8(z-3)=0 \Longleftrightarrow 4 x-3 y+4 z=10$.

The Dot (or the Inner) Product

Remark

Two planes are parallel if and only if the normal vectors are parallel i.e. $\overrightarrow{n_{1}} \wedge \overrightarrow{n_{2}}=0$.

Theorem [Distance between a point and a plane]

The distance between a point and a plane is

$$
\frac{\left|\left\langle\overrightarrow{M_{0} M}, \vec{n}\right\rangle\right|}{\|\vec{n}\|}
$$

where M_{0} on the plane.
If $M_{0}=\left(x_{0}, y_{0}, z_{0}\right), M=(x, y, z)$ and $\vec{n}=(a, b, c)$, then

$$
d(M, P)=\frac{\left|a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

Example

Find the distance from $M=(1,2,0)$ to the plane $2 x-3 y+2 z=1$. $M_{1}=(-1,-1,0), \vec{n}=(2,-3,2), \overrightarrow{M_{1} M}=(2,3,0)$.

$$
d(M, P)=\frac{5}{\sqrt{17}}
$$

A quadratic curve is the graph of a second-degree equation in two variables taking one of the forms

The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=$ 1 with foci $(\pm c, 0)$, where $a^{2}=b^{2}+c^{2}$.

The Dot (or the Inner) Product

The parabola $x^{2}=4 p y$ with focus at $(0, p)$ and directrix at $y=-p$

The hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ with foci at $(\pm c, 0)$ where $c^{2}=a^{2}+b^{2}$.

Cylinders which consist of all lines (called rulings) that are parallel to a given line and pass through a given plane curve

The Dot (or the Inner) Product

Example

|VIOngI BLEE

Example

The set of points (x, y, z) that satisfy the equation $x^{2}+y^{2}=1$ is the cylinder of radius 1 centered at $(0,0,0)$ whose axis of symmetry is the z-axis.

The Dot (or the Inner) Product

Elliptic Paraboloids which will model functions with local maxima or minima

Quadric Surfaces in \mathbb{R}^{3}

A quadric surface is the graph of a second-degree equation in x, y, and z taking one of the standard forms

$$
A x^{2}+B y^{2}+C z^{2}+D=0, \quad A x^{2}+B y^{2}+C z=0
$$

We can graph a quadric surface by studying its traces in planes parallel to the x, y, and z axes. The traces are always quadratic curves.

The Dot (or the Inner) Product

The ellipsoid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

The set of points (x, y, z) that satisfy the equation $x^{2}+y^{2}+$ $z^{2}=1$ is the sphere of radius 1 centered at $(0,0,0)$.

The Dot (or the Inner) Product

Elliptic Paraboloid $z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$

The Dot (or the Inner) Product
The Cross Product
Lines and Planes
Quadratic Curves in \mathbb{R}^{2}
Surfaces in Space
Vector-Valued Functions
Arc Length
Vector Functions and Space Curves
Vector Fields

Hyperbolic Paraboloid (Saddle) $z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$

The Dot (or the Inner) Product
The Cross Product
Lines and Planes
Quadratic Curves in \mathbb{R}^{2}
Surfaces in Space
Vector-Valued Functions
Arc Length
Vector Functions and Space Curves
Vector Fields

Hyperboloid of one sheet $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

Cone: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=z^{2}$
You can have similar equations with x, y, z permuted or with the origin shifted.

Definition

A vector-valued function is a function $\mathbf{r}(t)$ whose domain is a set of real numbers and whose range is a set of vectors in two- or three-dimensional space. We can specify $\mathbf{r}(t)$ through its component functions:

$$
\mathbf{r}(t)=(f(t), g(t), h(t))=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

The Dot (or the Inner) Product

Example

$\mathbf{r}(t)=(\cos t, t, \sin t)$.

Definition

The limit of a vector-valued function is the limit of the component functions:

$$
\lim _{t \rightarrow a}(x(t), y(t), z(t))=\left(\lim _{t \rightarrow a} x(t), \lim _{t \rightarrow a} y(t), \lim _{t \rightarrow a} z(t)\right) .
$$

A vector-valued function $\mathbf{r}(t)=(x(t), y(t), z(t))$ is continuous if each of the component functions $x(t), y(t), z(t)$ is continuous. A vector-valued function $\mathbf{r}(t)=(x(t), y(t), z(t))$ is differentiable if each of the component functions $x(t), y(t), z(t)$ is differentiable and we have $\mathbf{r}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$.

$$
\mathbf{r}^{\prime}(t)=\frac{d \mathbf{r}}{d t}=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

|Vongi BLEL

Definition

The integral of a vector-valued function $\mathbf{r}(t)=(x(t), y(t), z(t))$ on an interval $[a, b]$ is defined by:

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} x(t) d t, \int_{a}^{b} y(t) d t, \int_{a}^{b} z(t) d t\right)
$$

Remark

The vector $\frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}$ measures the displacement from t to $t+h$.

The vector $\mathbf{r}^{\prime}(t)$ gives the instantaneous change in displacement The magnitude $\left|\mathbf{r}^{\prime}(t)\right|$ gives instantaneous speed.

Tangent Lines

Consider the curve $\mathbf{r}(t)=\left(2 t, e^{-t}, \cos t-t^{2}\right)$.
$\mathbf{r}^{\prime}(t)=\left(2,-e^{-t},-\sin t-2 t\right)$ and $\mathbf{r}^{\prime}(0)=(2,-1,0)$. The parametric equations for the tangent line to the curve at $(0,1,1)$ is

$$
\left\{\begin{array}{c}
x=2 t \\
y=1-t \\
z=1
\end{array}\right.
$$

Definition

The unit tangent to $\mathbf{r}(t)$ is the vector

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}
$$

Definition

The arc length of a plane curve $\mathbf{r}(t)=(x(t), y(t)), t \in[a, b]$ is

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t
$$

The arc length of a plane curve $\mathbf{r}(t)=(x(t), y(t), z(t)) t \in[a, b]$ is

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t .
$$

If $\mathbf{r}(t)$ is the space curve of a moving body and if t is time:
(1) $\mathbf{r}^{\prime}(t)$ is the velocity of the moving body
(2) $\left\|\mathbf{r}^{\prime}(t)^{\prime}\right\|$ is the speed of the moving body
(3) $\mathbf{r}^{\prime \prime}(t)$ is the acceleration of the moving body

Definition-(The Arc Length Function)

Let \mathscr{C} be a space curve given by a vector function

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

for $t \in[a, b]$.
the arc length function for \mathscr{C} is defined by:

$$
s(t)=\int_{a}^{t}\left\|\mathbf{r}^{\prime}(u)\right\| d u
$$

By the Fundamental Theorem of Calculus,

$$
\begin{array}{c|c}
\frac{d s}{d t}=\left\|\mathbf{r}^{\prime}(t)\right\| . \\
\text { /VIOng| BLEL } & \text { Vector Calculus }
\end{array}
$$

The Partial Derivatives

Let f be a function defined on a domain $D \subset \mathbb{R}^{2}$. For $\left(x_{0}, y_{0}\right) \in D$, the partial derivatives of f with respect to x and y if they exist are defined by:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0},, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
\end{aligned}
$$

Consider a smooth function $f: D \subset \mathbb{R}^{3} \longrightarrow \mathbb{R}$, the partial derivatives of f with respect to x, y and z if they exist are defined by:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, y, z)=f_{x}(x, y, z)=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h} ; \\
& \frac{\partial f}{\partial y}(x, y, z)=f_{y}(x, y, z)=\lim _{h \rightarrow 0} \frac{f(x, y+h, z)-f(x, y, z)}{h} ; \\
& \frac{\partial f}{\partial z}(x, y, z)=f_{z}(x, y, z)=\lim _{h \rightarrow 0} \frac{f(x, y, z+h)-f(x, y, z)}{h}
\end{aligned}
$$

Theorem (Schwarz's Theorem)

Let f be a function defined on a domain D that contains the point (a, b). If the functions $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ are both continuous on
D, then

$$
\frac{\partial^{2} f}{\partial x \partial y}(a, b)=\frac{\partial^{2} f}{\partial y \partial x}(a, b)
$$

The Directional Derivative

Let f be a function defined on a domain $D \subset \mathbb{R}^{2}$. For $\left(x_{0}, y_{0}\right) \in D$ and $\vec{u}=(a, b)$ a unit vector in \mathbb{R}^{2}. The directional derivative of f in the direction of \vec{u} at $\left(x_{0}, y_{0}\right)$ if it exists is

$$
\begin{aligned}
D_{u} f\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(\left(x_{0}, y_{0}\right)+h u\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+a h, y_{0}+b h\right)-f\left(x_{0}, y_{0}\right)}{h} .
\end{aligned}
$$

If f is a function defined on a domain $D \subset \mathbb{R}^{3}$. For $\left(x_{0}, y_{0}, z_{0}\right) \in D$ and $\vec{u}=(a, b, c)$ a unit vector in \mathbb{R}^{3}. The directional derivative of f in the direction of \vec{u} at $\left(x_{0}, y_{0}, z_{0}\right)$ if it exists is

Example

(1) If $\vec{u}=(a, b), D_{u} f\left(x_{0}, y_{0}\right)$ is the same as the derivative of $f\left(x_{0}+a t, y_{0}+b t\right)$ at $t=0$. We can compute this by the chain rule and get

$$
D_{u} f\left(x_{0}, y_{0}\right)=a f_{x}\left(x_{0}, y_{0}\right)+b f_{y}\left(x_{0}, y_{0}\right) .
$$

(2) Find the directional derivative of $f(x, y)=x y^{3}-x^{2}$ at $(1,2)$ in the direction $\vec{u}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
(3) Find the directional derivative of $f(x, y)=x^{2} \ln y$ at $(3,1)$ in the direction of $\vec{u}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

Tangent Plane

The derivatives $\frac{\partial f}{\partial x}(a, b)$ and $\frac{\partial f}{\partial y}(a, b)$ define a tangent plane to the graph of f at $(a, b, f(a, b))$.
The differential of $z=f(x, y)$ is

$$
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

Definition

If f has continuous partial derivatives, the tangent plane to $z=f(x, y)$ at $(a, b, f(a, b))$ is

$$
z=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)
$$

Chain Rule for Functions of One Variable

If $y=f(u)$ and $u=u(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=f^{\prime}(u) \cdot \frac{d u}{d x} .
$$

The Chain Rule, 2 Variables

If $z=f(x, y), x=g(t)$, and $y=h(t)$, then

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

If

$$
z=f(x, y), x=g(s, t), y=h(s, t)
$$

then

$$
\frac{\partial z}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}, \quad \frac{\partial z}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
$$

Definition

A two-dimensional transformation is a function f that maps each point (x, y) in a domain $\Omega \subset \mathbb{R}^{2}$ to a point $f(x, y)=(u(x, y), v(x, y))$ in \mathbb{R}^{2}.
A two-dimensional vector field is a function f that maps each point (x, y) in a domain $\Omega \subset \mathbb{R}^{2}$ to a two-dimensional vector $f(x, y)=u(x, y) \overrightarrow{\mathbf{i}}+v(x, y) \overrightarrow{\mathbf{j}}$, where $\overrightarrow{\mathbf{i}}=(1,0)$ and $\overrightarrow{\mathbf{j}}=(0,1)$.

Definition

A three-dimensional transformation is a function f that maps each point (x, y, z) in a domain $\Omega \subset \mathbb{R}^{3}$ to a point $f(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))$ in \mathbb{R}^{3}.
A three-dimensional vector field maps (x, y, z) in a domain $\Omega \subset \mathbb{R}^{3}$ to a three-dimensional vector
$f(x, y, z)=u(x, y, z) \overrightarrow{\mathbf{i}}+v(x, y, z) \overrightarrow{\mathbf{j}}+w(x, y, z) \overrightarrow{\mathbf{k}}$, where $\overrightarrow{\mathbf{i}}=(1,0,0), \overrightarrow{\mathbf{j}}=(0,1,0)$ and $\overrightarrow{\mathbf{k}}=(0,0,1)$.

Vector fields have many important applications, as they can be used to represent many physical quantities:

- Mechanics: the classical example is a gravitational field.
- Electricity and Magnetism: electric and magnetic fields.
- Fluid Mechanics: wind speed or the velocity of some other fluid.

If $\mathbf{r}(t)=x(t) \overrightarrow{\mathbf{i}}+y(t) \overrightarrow{\mathbf{j}}+z(t) \overrightarrow{\mathbf{k}}$ is the position vector field of an object. We can define various physical quantities associated with the object as follows:
velocity: $v(t)=\mathbf{r}^{\prime}(t)=\frac{d \mathbf{r}}{d t}=x^{\prime}(t) \overrightarrow{\mathbf{i}}+y^{\prime}(t) \overrightarrow{\mathbf{j}}+z^{\prime}(t) \overrightarrow{\mathbf{k}}$, acceleration:
$a(t)=v^{\prime}(t)=\frac{d v}{d t}=\mathbf{r}^{\prime \prime}(t)=\frac{d^{2} r}{d t^{2}}=x^{\prime \prime}(t) \overrightarrow{\mathbf{i}}+y^{\prime \prime}(t) \overrightarrow{\mathbf{j}}+z^{\prime \prime}(t) \overrightarrow{\mathbf{k}}$, The norm $\|v(t)\|$ of the velocity vector is called the speed of the object.

Example

(1) The gravitational force field between the Earth with mass M and a point particle with mass m is given by:

$$
F(x, y, z)=-\frac{G m M}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}(x \overrightarrow{\mathbf{i}}+y \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}})
$$

where G is the gravitational constant, and the (x, y, z) coordinates are chosen so that $(0,0,0)$ is the center of the Earth.
(2) The Electrostatic fields:
$\ln 3 D, E=-\frac{q}{4 \pi \varepsilon_{0}\|\mathbf{r}\|^{3}} \mathbf{r}$.
$\ln 2 D, E=\frac{\rho}{2 \pi \varepsilon_{0}\|\mathbf{r}\|^{2}} \mathbf{r}$.

Gradient Fields

Let f be a scalar function of two variables, the gradient of f is defined by

$$
\nabla f(x, y)=\left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right) .
$$

If f is a scalar function of three variables, its gradient is a vector field on \mathbb{R}^{3} given by

$$
\nabla f(x, y, z)=\left(\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right) .
$$

The operator ∇ will be denoted by:
$\nabla=\frac{\partial}{\partial x} \overrightarrow{\mathbf{i}}+\frac{\partial}{\partial y} \overrightarrow{\mathbf{j}}+\frac{\partial}{\partial z} \overrightarrow{\mathbf{k}}$ or $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ as a vector.

Remark

Let f be a function. The vector $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is orthogonal to the level surface of $f S=\left\{(x, y, z) \in \mathbb{R}^{3}: f(x, y, z)=C\right\}$ that contains $\left(x_{0}, y_{0}, z_{0}\right)$.

Theorem

Consider f and g two smooth scalar functions $\mathbf{F}=\left(f_{1}, f_{2}, f_{3}\right)$ and $\mathbf{G}=\left(g_{1}, g_{2}, g_{3}\right)$ two smooth vector fields defined on a domain $\Omega \subset \mathbb{R}^{3}$. We have:

$$
\begin{aligned}
\nabla(f g)= & \left(\frac{\partial(f g)}{\partial x}, \frac{\partial(f g)}{\partial y}, \frac{\partial(f g)}{\partial z}\right) \\
= & f \nabla(g)+g \nabla(f) . \\
\nabla(\mathbf{F . G})= & \nabla\left(f_{1} g_{1}+f_{2} g_{2}+f_{3} g_{3}\right) \\
= & \nabla\left(f_{1} g_{1}\right)+\nabla\left(f_{2} g_{2}\right)+\nabla\left(f_{3} g_{3}\right) \\
= & f_{1} \nabla\left(g_{1}\right)+g_{1} \nabla\left(f_{1}\right)+f_{2} \nabla\left(g_{2}\right)+g_{2} \nabla\left(f_{2}\right) \\
& +f_{3} \nabla\left(g_{3}\right)+g_{3} \nabla\left(f_{3}\right) .
\end{aligned}
$$

The Dot (or the Inner) Product

Example

$$
\begin{aligned}
\mathbf{F} & =\left(\frac{-x}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \frac{-y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}, \frac{-z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right) \\
& =\nabla \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} .
\end{aligned}
$$

Definition (Inverse square field)

Let $\mathbf{r}(x, y, z)=x \overrightarrow{\mathbf{i}}+y \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}}$ be the position vector of the point $M(x, y, z)$. The vector field $\mathbf{F}(x, y, z)=\frac{C}{\|\mathbf{r}\|^{3}} \mathbf{r}(x, y, z)$ is called an inverse square field, where $c \in \mathbb{R}$.

