University #	U	niv	ersity	#
--------------	---	-----	--------	---

name

King Saud University
College of Science
Department of Physics and Astronomy

1 st term 1437-1438H*	Physics 103	First mid term
Thursday 24 /2/ 1438 H	24th Nov. 2016	7:00 – 8:30 PM

Submit all pages to the Examiner/ Invigilator

Name	
University number	
Section/ Dr Name	

Write your answers for each question in CAPITAL LETTERS in the table given

Q. 1	Q. 2	Q. 3	Q. 4	Q. 5
Q. 6	Q. 7	Q. 8	Q. 9	Q. 10
Q. 11	Q. 12	Q. 13	Q. 14	Q. 15

Take $g = 9.8 \text{ ms}^{-2}$ where ever needed

- Assume the equation $x = At^3 + Bt^2 + Ct$ describes the motion of an object, with x having the dimension of length and t having the dimension of time. A, B, and C are constants. The dimension of the constant A is:
 - a) LT
- **b)** LT²
- c) LT-3
- **d)** LT⁻²
- e) LT-1
- The distance between two cities is 100 mi. The number of kilometers between the two cities is:
 - **a)** equal to 100
- **b)** larger than 100
- c) smaller than 100
- d) larger than 200
- e) larger than 300

3 A person drives a truck along a route shown in the figure. the magnitude and direction of the resultant displacement are:

- a) $7.8 \text{ km}, 38^{\circ}$
- **b)** 9.5 km, 30°
- c) 12.2 km, 23°
- **d)** 9.5 km, 44°
- **e)** 7.8 km, 27°
- Vector A has y-component $A_y = +9.6$ m. A makes an angle of 32° counterclockwise from the + yaxis. The x-component A_x and the magnitude of A are:
 - a) 8.1 m, 15.3 m
- **b)** 6 m, 12.2 m
- **c)** 6.9 m, 4.3 m
- **d)** 6 m, 11.3 m
- **e)** 6.9 m, 13 m
- A particle is moving clockwise in a circle of radius 2.5 m with 5 acceleration $a = 15 \text{ m/s}^2$ (see the figure). The speed of the particle and its tangential acceleration respectively are:

- **a)** 4.7 m/s, 5 m/s^2
- **b)** 6.6 m/s, 10 m/ s^2

- **c)** 4.7 m/s, 3.4 m/ s² **d)** 5.7 m/s, 8.7 m/ s² **e)** 5.7 m/s, 7.5 m/ s²
- A ball is thrown vertically upward and is caught 2 s later by someone at 4 m above the ground while it is going in the upward direction. The initial velocity of the object is:
 - **a)** 16 m/s
- **b)** 12 m/s
- c) 8 m/s
- **d)** 6 m/s
- **e)** 21 m/s
- An airplane accelerates from rest down a runway at 3.2 m/s² for 33 seconds until it finally lifts off the ground. The distance traveled before taking off is:
 - **a)** 1310 m
- **b)** 1530 m
- **c)** 1740 m
- **d)** 1630 m
- **e)** 1850 m
- A race car accelerates uniformly from 15 m/s to 45 m/s in 3 seconds. The acceleration of the car and the distance traveled are:
 - a) 10 m/s^2 , 90 m
- **b)** 6 m/s^2 , 150 m
- **c)** 8 m/s^2 , 124 m
- **d)** 10 m/s^2 , 75 m
- **e)** 6 m/s², 130 m

9					direction and moves e y coordinate of the
	particle is 18 m, the x coordinate of the particle is:				
	a) 21 m	b) 15 m	c) 35 m	d) 25 m	e) 27 m
10	An archer shoots an arrow horizontally from a top of a tower of height 78.4 m. The arrow hits the ground at a horizontal distance of 200 m from the bottom of the tower. The speed of the arrow just before it hits the ground is:				
	a) 56.0 m/s	b) 39.6 m/s	c) 47.4 m/s	d) 63.5 m/s	e) 46.5 m/s
11	If vector B is added to vector A , under what conditions does the resultant vector A + B have magnitude $A + B$?				
	a) A and B are parallel and in the same direction	b) A and B are parallel and in opposite directions	c) A and B are perpendicular	d) A and B are antiparallel	e) None of those
12	A ball is thrown upward. While the ball is in free fall, does its speed:				
	a) increase	b) decrease	c) increase and then decrease	d) decrease and then increase	e) remain constant
13	Under which of the following conditions is the magnitude of the average velocity of a particle moving in one dimension smaller than the average speed over some time interval?				
	a) A particle moves in the + x direction without reversing.	b) A particle moves in the - x direction without reversing	c) A particle moves in the + x direction and then reverses the direction of its motion	d) there are no conditions for which this is true	e) None of those
14		nrown up in the air free air, its acceleration		e at an angle of 45° a	above the horizontal.
	a) 9.8 m/s ² upward	b) 9.8 m/s ² downward	c) 4.9 m/s ² downward	d) 4.9 m/s ² upward	e) zero
15	Suppose you are driving in an open top car. The car is moving to the right at a constant velocity (as shown in the figure), you point a gun straight upward and fire it. In the absence of air resistance, the bullet (علقة) will land:				
	a) behind you (خافائے)	b) ahead of you (امامك)	c) none of those	d) far away and it can't be seen	e) in the gun barrel (فو ههّ)

The end

University #name	
------------------	--

Rough work