

CSC 220: Computer Organization

Unit 4

Signed Number Representation

Prepared by:

Md Saiful Islam, PhD

Updated by:

Isra Al-Turaiki, PhD

Department of Computer Science
College of Computer and Information Sciences

Overview

- Unsigned Representation
- Representation of signed numbers
 - Signed Magnitude Representation
 - One's Complement Notation
 - Two's Complement Notation
- Signed Overflow
- Sign Extension

Unsigned Representation

- Positive integers and the number zero can be represented as *unsigned numbers*.
- Ex: 8 bit unsigned numbers:

Position	7	6	5	4	3	2	1	0
Contribution	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
157	1	0	0	1	1	1	0	1
1	0	0	0	0	0	0	0	1
10	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	0	0

Binary Addition

Addition is simple:

- Add individual bits
- Propagate carries

The addition table for binary numbers is

$0+0 =$	0
$0+1 =$	1
$1+0 =$	1
$1+1 =$	1 0

carry 1 to the next column

result

Binary Addition

Example: Add 13_{10} and 11_{10} in binary.

$$\begin{array}{r} 1111 \leftarrow \text{carries} \\ 13_{10} = 1101 \\ 11_{10} = \underline{1011} \\ 11000 = 24_{10} \end{array}$$

Binary Subtraction

$$\begin{array}{r} \text{Minuend} \rightarrow \quad \quad \quad 0 \quad \quad \quad 1 \quad \quad \quad 1 \\ \text{Subtrahend} \rightarrow \quad \quad \quad - 0 \quad \quad \quad - 0 \quad \quad \quad - 1 \\ \hline \quad \quad \quad \quad 0 \quad \quad \quad \quad 1 \quad \quad \quad 0 \end{array}$$

A "borrow" is made from
the next highest bit position

$$\begin{array}{r} 1 \ 0 \\ - 1 \\ \hline 1 \end{array}$$

Example:

$$\begin{array}{r} 0 \ 1 \quad \quad \quad 0 \\ \cancel{1} \cancel{0} \cancel{1} \quad \quad \quad \cancel{1} \cancel{1} \cancel{0} \ 1 \ 1 \\ - 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \\ \hline 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \end{array}$$

Unsigned Representation

Advantages:

- Simple addition
- One representation of zero

Disadvantages

- Negative numbers can not be represented.

Representation of signed numbers

- Is a representation of negative numbers possible?
 - you can not just stick a negative sign in front of a binary number. (it does not work like that)
- There are three methods used to represent negative numbers.
 - Signed magnitude representation
 - One's complement representation
 - Two's complement representation

Signed Magnitude Representation

For an n-bit word,

- the first bit is the **sign** (0 for +ve, 1 for -ve).
- the remaining n-1 bits represent the **magnitude** of the number.

Example: for n=4

$+3_{10}$ 0011

-3_{10} 1011

Signed Magnitude Representation

Exercise: Find the signed magnitude in 8 bits?

	Positive	Negative
37_{10}		
24_{10}		
63_{10}		

Signed Magnitude Representation

Exercise: Find the signed magnitude in 8 bits?

	Positive	Negative
37_{10}	0010 0101	1010 0101
24_{10}	0001 1000	1001 1000
63_{10}	0011 1111	1011 1111

Disadvantage of Signed Magnitude

- Addition and subtractions are **difficult**:
 - Signs and magnitude are processed separately
 - Subtraction requires comparison of signs and magnitudes.
- There are two representations of 0 : **00000000** and **10000000**
 - To test if a number is 0 or not, the CPU will need to see whether it is 00000000 or 10000000.
 - 0 is always performed in programs. Therefore, having two representations of 0 is **inconvenient**.

One's Complement

- Given a number N in binary having n digits, the 1's complement of N is defined as $(2^n - 1) - N$.
- $2^n - 1$ is a binary number represented by n 1's.
- Example:** find the 1's complement of $(+2_{10})$
- Solution: remember $(+2_{10}) = (0010)_2$ and $n=4$
$$(2^n - 1) - N = (1111)_2 - (0010)_2 = 1101$$

One's Complement

- **I's complement shortcut:**

I's complement of a binary number is formed by changing all 1's to 0's and all 0's to 1's.

- The sign bit is complemented along with rest of bits.
- The sign bit is **0** for **+ve** and **1** for **-ve** numbers.
- Complementing a bit is equivalent to **subtracting it from 1**.

X	X'	1-X
0	1	1
1	0	0

One's Complement

- **Example:** find the 1's complement of the following:

Number	1's complement
1011001	
0001111	

One's Complement

- **Example:** find the 1's complement of the following:

Number	1's complement
1011001	0100110
0001111	1110000

Addition in One's Complement

There are two steps in adding 1's complement numbers:

1. Do unsigned addition, including the sign bit
2. Take the carry out and add it to the sum

Example:

$$\begin{array}{r} 0111 \\ + 1011 \\ \hline 10010 \end{array} \quad \begin{array}{r} (+7) \\ + (-4) \\ \hline \end{array}$$

$$\begin{array}{r} 0010 \\ + 1 \\ \hline 0011 \end{array} \quad (+3)$$

$$\begin{array}{r} 0011 \\ + 0010 \\ \hline 00101 \end{array} \quad \begin{array}{r} (+3) \\ + (+2) \\ \hline \end{array}$$

$$\begin{array}{r} 0101 \\ + 0 \\ \hline 0101 \end{array} \quad (+5)$$

Problem: Two representation of zero (0000 = +0, 1111 = -0)

Two's Complement Representation

- Given a number N in binary having n digits, the 2's complement of N is defined as $2^n - N$.
- 2^n is represented by a binary number that consists of a 1 followed by n 0s.
- Example:** find the 2's complement of $+2_{10}$
- Solution: $+2_{10} = (0010)_2$ and $n=4$
 $2^n - N = (10000)_2 - (0010)_2 = 1110$

Two's Complement Representation

The sign bit is **0** for **+ve** and **1** for **-ve** numbers.

2's complement shortcuts:

- **Methods 1:** Complement each bit and then add 1.
- **Method 2:** Complement all of the bits to the left of the rightmost one.

Example: find the 2's complement of 0101100

Answer: 1010100

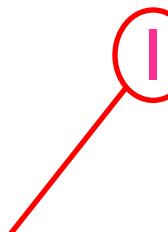
Addition in Two's Complement

Adding 2's complement numbers is done as follows:

1. Do unsigned addition, including the sign bit.
2. Any carry from the sign position is *ignored*.

Example: Add 0111 to 1100

$$\begin{array}{r} 0111 \\ + 1100 \\ \hline 0011 \end{array} \quad \begin{array}{r} +7 \\ -4 \\ \hline +3 \end{array}$$



ignore the carry

Addition in Two's Complement

Example: Add 1101 to 1110

$$\begin{array}{r} 1101 \\ + 1110 \\ \hline 1011 \end{array} \quad \begin{array}{r} -3 \\ -2 \\ \hline -5 \end{array}$$

ignore the carry

An Algebraic Explanation

- For n -bit numbers, the negation of B in two's complement is $2^n - B$. (This was one of the alternate ways of negating a two's complement number.)

$$\begin{aligned}A - B &= A + (-B) \\&= A + (2^n - B) \\&= (A - B) + 2^n\end{aligned}$$

- If $A \geq B$, then $(A - B)$ has to be positive, and the 2^n represents a carry out of 1. Discarding this carry out leaves us with the desired result, $(A - B)$.
- If $A < B$, then $(A - B)$ must be negative, and $2^n - (A - B)$ corresponds to the correct result $-(A - B)$ in two's complement form.

Advantages of Two's Complement Notation

- One representation of zero as 0000 using 4-bit binary sequence.
- It is easy to add two numbers.
- Subtraction can be easily performed.
- Multiplication is just a repeated addition.
- Division is just a repeated subtraction
- Two's complement is widely used in ALU

Comparing Signed Number Systems

- Positive numbers are the same in all representation.
- There are two representations of zero in signed magnitude and 1's complement → complicate things.
- In 2's complement one more negative number -8 (but no +8)
- 2's complement is preferred because it has one representation of zero and a simple addition algorithm.

Decimal	SM	1C	2C
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
-0	1000	1111	—
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	—	—	1000

Ranges of Signed Number Systems

How many negative and positive numbers can be represented in each of the 4-bit systems?

	Unsigned	SM	1C	2C
Smallest	0000 (0)	1111 (-7)	1000 (-7)	1000 (-8)
Largest	1111 (15)	0111 (+7)	0111 (+7)	0111 (+7)

The ranges for n-bit numbers (including the sign bit) are as follows:

	Unsigned	SM	1C	2C
Smallest	0	$-(2^{n-1}-1)$	$-(2^{n-1}-1)$	-2^{n-1}
Largest	2^n-1	$+(2^{n-1}-1)$	$+(2^{n-1}-1)$	$+(2^{n-1}-1)$

Overflow

- With 4-bit 2's complement, the largest representable decimal value is +7 and the smallest is -8.
- But, what if we compute $4+5$ or $(-4)+(-5)$?

$$\begin{array}{r} 0100 \quad (+4) \\ + 0101 \quad + (+5) \\ \hline 01001 \quad (-7) \end{array} \qquad \begin{array}{r} 1100 \quad (-4) \\ + 1011 \quad + (-5) \\ \hline 10111 \quad (+7) \end{array}$$

- if the correct representation of the sum (including sign) requires more than n bits, we say that an *overflow* occurs.

Overflow

Signed overflow is different from unsigned:

- Unsigned:
 - an overflow is detected in addition from the end carry out of the most significant position.
- Signed:
 - the most significant bit always represents the sign.
 - When two signed numbers are added, the sign bit is treated as a part of the number, and an end carry of 1 does not necessarily indicate an overflow.

Detecting Overflow

- The easiest way to detect signed overflow is to look at the sign bit.

$$\begin{array}{r} 0100 \\ + 0101 \\ \hline 01001 \end{array} \quad \begin{array}{r} (+4) \\ + (+5) \\ \hline (-7) \end{array}$$

$$\begin{array}{r} 1100 \\ + 1011 \\ \hline 10111 \end{array} \quad \begin{array}{r} (-4) \\ + (-5) \\ \hline (+7) \end{array}$$

- An overflow **may occur** if the two numbers added are both positive or both negative.
 - If you add **two positive** numbers and get a **negative** result.
 - If you add **two negative** numbers and get a **positive** result.

No Overflow Examples

Example 1

$$\begin{array}{r} +3 \\ +4 \\ \hline +7 \end{array} \qquad \begin{array}{r} 0011 \\ 0100 \\ \hline 0111 \end{array}$$

Correct answer

Example 2

$$\begin{array}{r} +5 \\ -6 \\ \hline -1 \end{array} \qquad \begin{array}{r} 0101 \\ 1010 \\ \hline 1111 \end{array}$$

Correct answer

No Overflow Examples

Example 3

$$\begin{array}{r} -5 \\ +6 \\ \hline +1 \end{array} \qquad \begin{array}{r} 1011 \\ 0110 \\ \hline (1)0001 \end{array}$$

Correct answer

Example 4

$$\begin{array}{r} -3 \\ -4 \\ \hline -7 \end{array} \qquad \begin{array}{r} 1101 \\ 1100 \\ \hline (1)1001 \end{array}$$

Correct answer

correct answer when the carry from the sign bit is ignored (this is *not* an overflow)

Overflow Examples

Example 5

$$\begin{array}{r} +5 \\ +6 \\ \hline \end{array} \qquad \begin{array}{r} 0101 \\ 0110 \\ \hline 1011 \end{array}$$

wrong answer because of overflow (+11 requires 5 bits including sign)

Example 6

$$\begin{array}{r} -5 \\ -6 \\ \hline \end{array} \qquad \begin{array}{r} 1011 \\ 1010 \\ \hline (1)0101 \end{array}$$

wrong answer because of overflow (-11 requires 5 bits including sign)

Sign Extension

- Decimal numbers are assumed to have an infinite number of 0s in front of them, which helps in “lining up” values for arithmetic operations.

$$\begin{array}{r} 225 \\ + 006 \\ \hline 231 \end{array}$$

- You need to be careful in extending signed binary numbers, because the leftmost bit is the *sign* and not part of the magnitude.
- To extend a signed binary number, you have to replicate the sign bit. If you just add 0s in front, you might accidentally change a negative number into a positive one!
- For example, consider going from 4-bit to 8-bit numbers.

$$\begin{array}{rcl} (+5) & 0101 & \xrightarrow{\hspace{1.5cm}} & 0000\ 0101 & (+5) \\ (-4) & 1100 & \xrightarrow{\hspace{1.5cm}} & 1111\ 1100 & (-4) \end{array}$$