

CSC 220: Computer Organization

Unit 3 Simplification of Logic Function

Prepared by:

Md Saiful Islam, PhD

Updated by:

Isra Al-Turaiki, PhD

**Department of Computer Science
College of Computer and Information Sciences**

Overview

- Minimal Sum of Product (MSP)
- K-Map Simplification Procedure
 - Two Variable K-Map
 - Three Variable K-Map
 - Four Variable K-Map
- Don't Care Condition
- Examples

Chapter-2

M. Morris Mano, Charles R. Kime and Tom Martin, **Logic and Computer Design Fundamentals**, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Overview

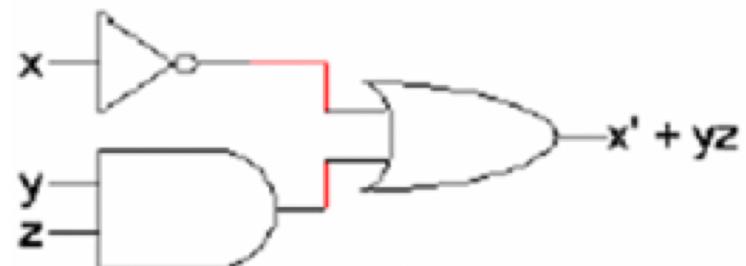
- Complexity of a logic circuit is directly related to the algebraic expression.
- To obtain the simplest implementation for a given function, use: Karnaugh map, or K-map.
- What is a K-map?
 - a graphical representation of a Boolean function
 - a reorganized version of the truth table
 - lead directly to minimum cost two-level circuits composed of AND and OR gates.

Minimum Sum-of-Products

Minimum sum-of-products is a sum of product terms which has:

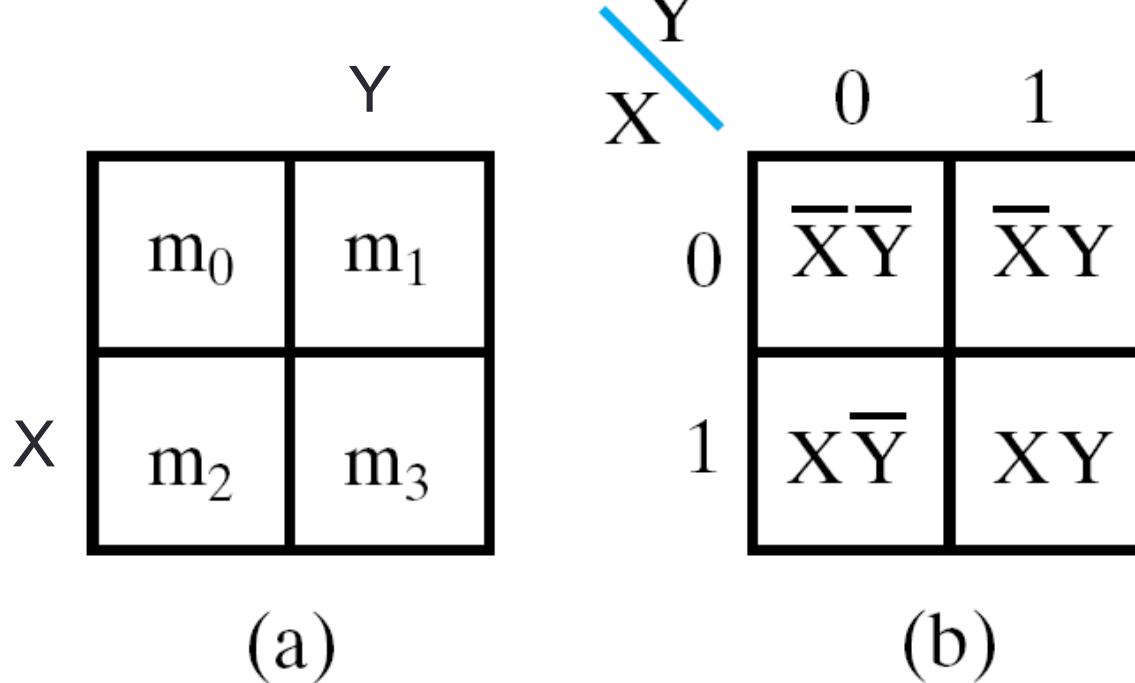
- a minimum number of **terms**
- a minimum number of **literals**
- **Why do we care?**
 - corresponds to a minimum two-level gate circuit which has (a) a minimum number of **gates** and (b) a minimum number of **gate inputs**

$$x'y' + yz + x'y = x' + yz$$



Two-Variable Maps

- The map is a diagram made up of squares, each **square** representing one **row** of a truth table, or correspondingly, one minterm of a single output function.



Every 2 *adjacent* cells differ in the value of 1 variable only.

Two-Variable Maps

- Example:

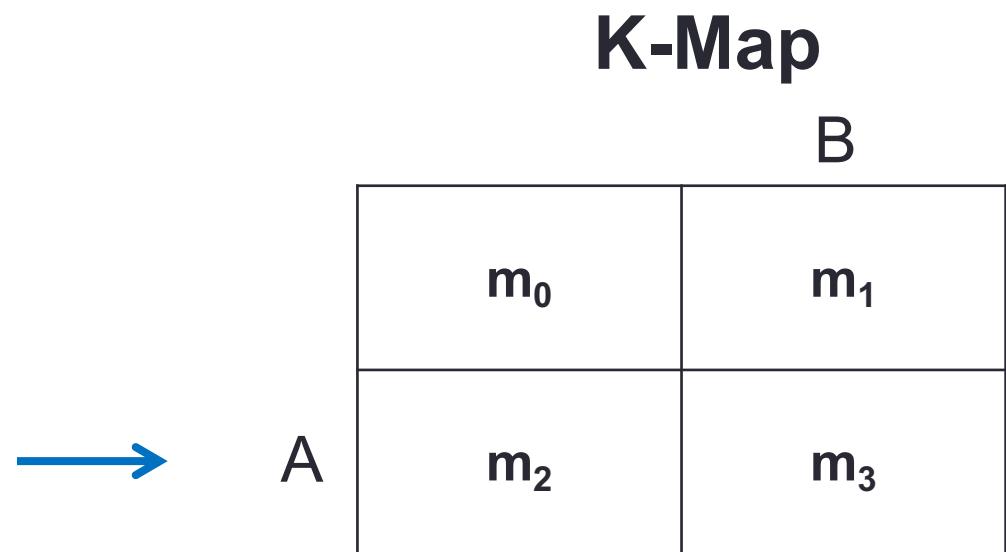
□ TABLE 2-12

Two-Variable Function $F(A, B)$

A	B	F
0	0	1
0	1	1
1	0	0
1	1	1

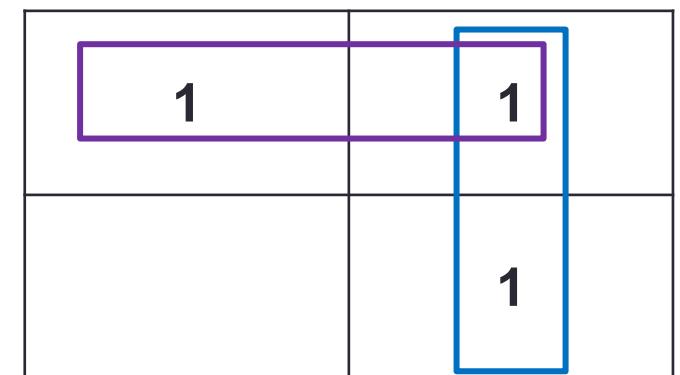
Algebraically:

$$\begin{aligned} F &= A'B' + A'B + AB \\ &= A'(B' + B) + AB \\ &= A' + AB \\ &= (A' + A)(A' + B) \\ &= 1 \cdot (A' + B) \\ &= A' + B \end{aligned}$$



A

B



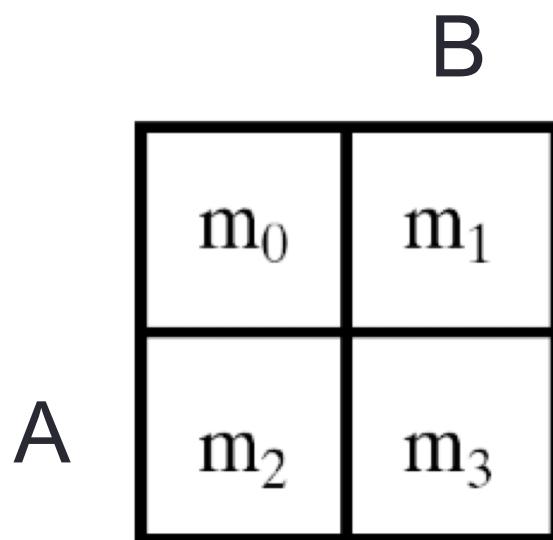
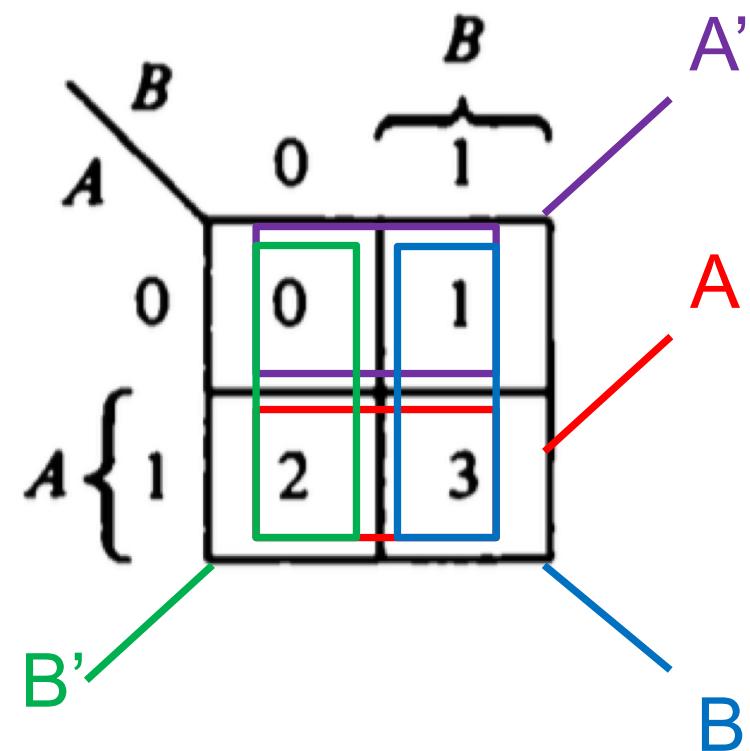
A

B

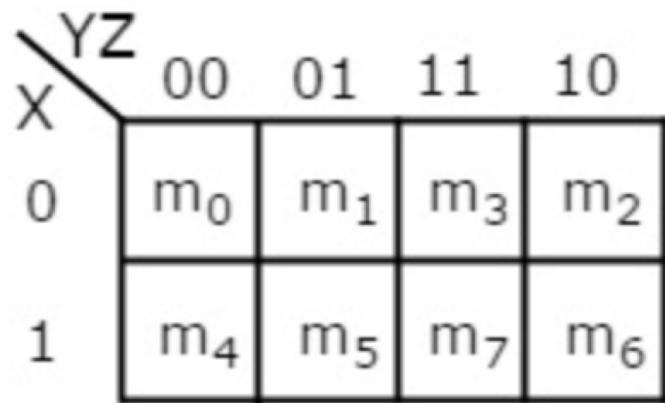
$$F = \overline{A} + B$$

Two-Variable Maps

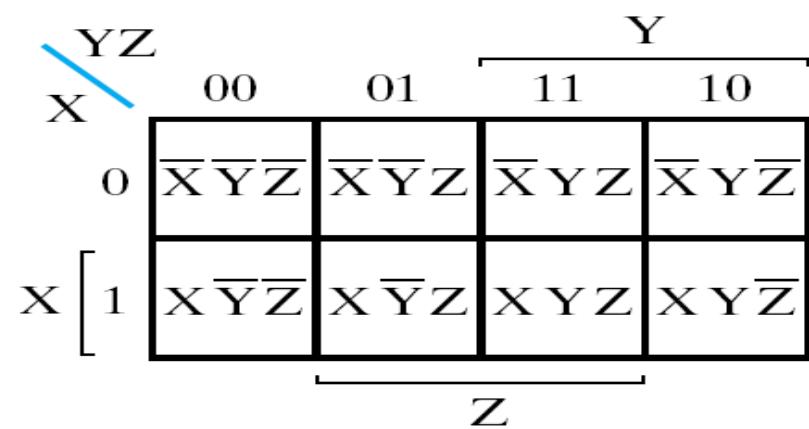
- whenever we have two squares sharing edges that are minterms of a function, these squares can be combined to form a product term with one less variable.



Three-Variable Maps



	Y Z	00	01	11	10
X	0	m_0	m_1	m_3	m_2
0	1	m_4	m_5	m_7	m_6
1					



	Y Z	00	01	11	10
X	0	$\bar{X}\bar{Y}\bar{Z}$	$\bar{X}\bar{Y}Z$	$\bar{X}YZ$	$\bar{X}Y\bar{Z}$
0	1	$X\bar{Y}\bar{Z}$	$X\bar{Y}Z$	XYZ	$XY\bar{Z}$
1					

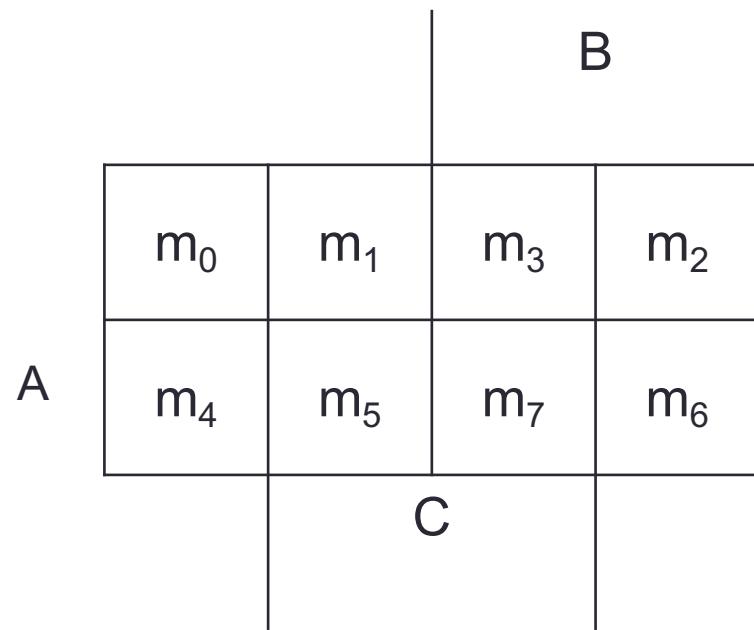
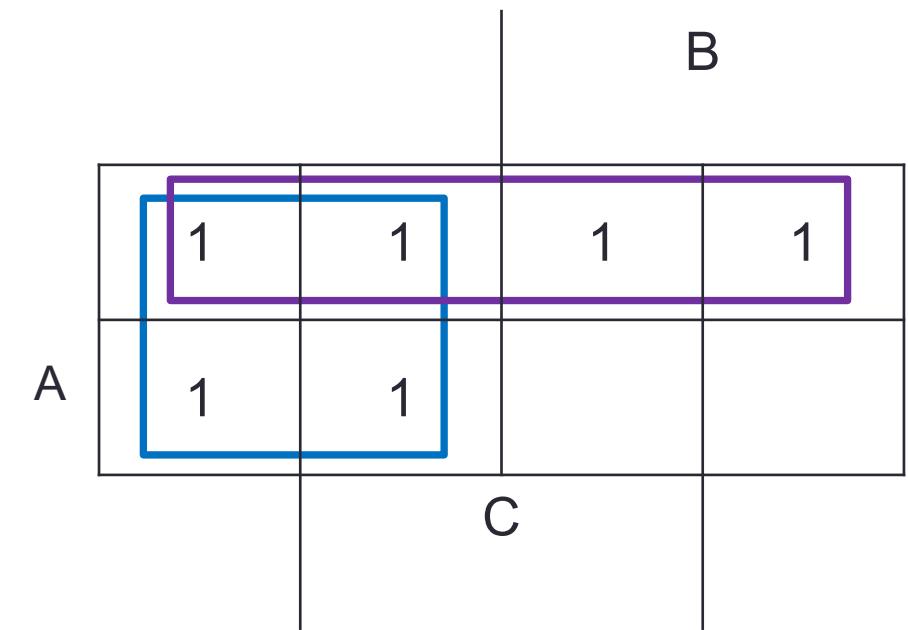
Every 2 *adjacent* cells differ in the value of 1 variable only.

Three-Variable Maps

- **Example:**

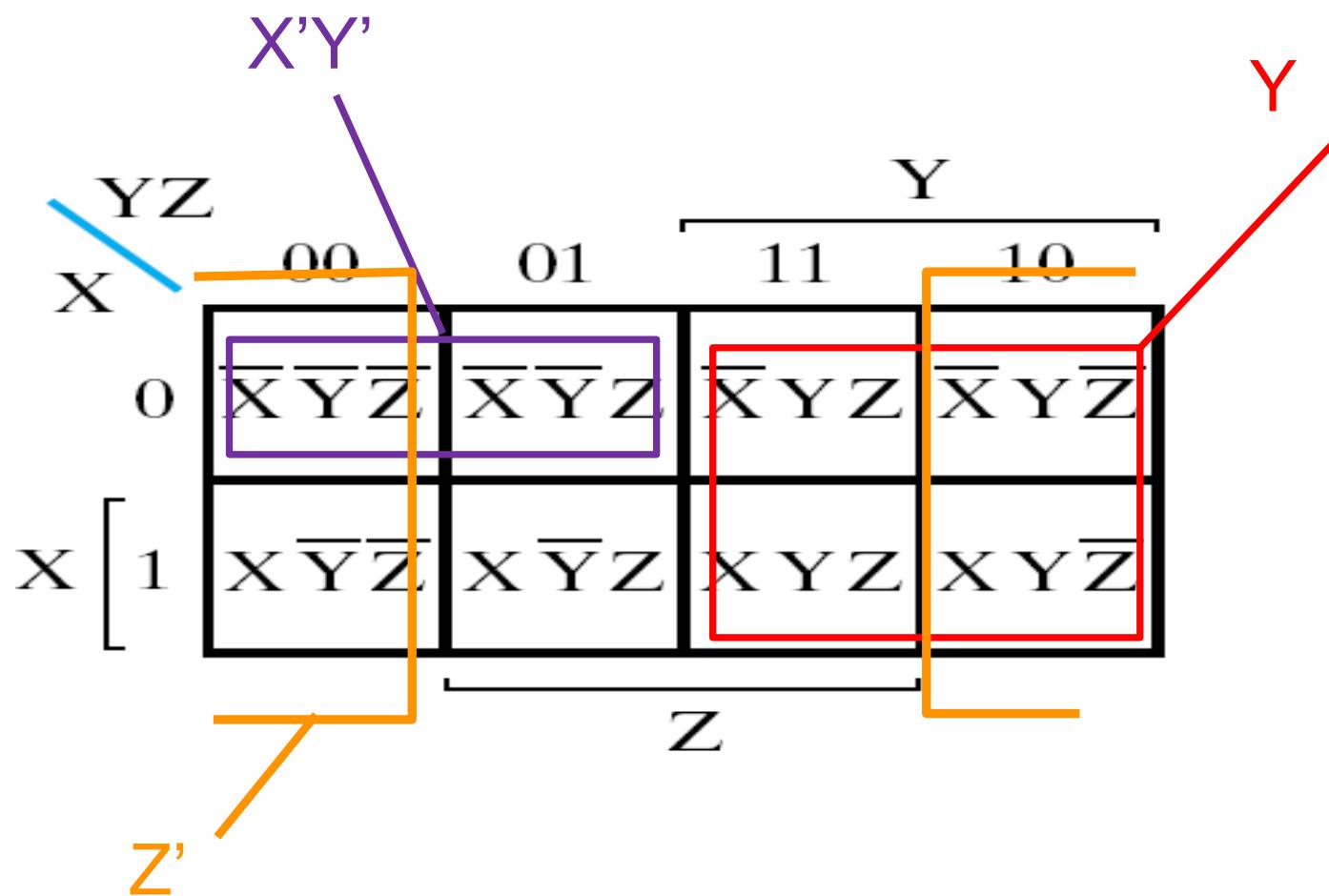
Simplify the Boolean function $F(A, B, C) = \sum m(0, 1, 2, 3, 4, 5)$

K-Map



$$F = \overline{A} + \overline{B}$$

Three-Variable Maps



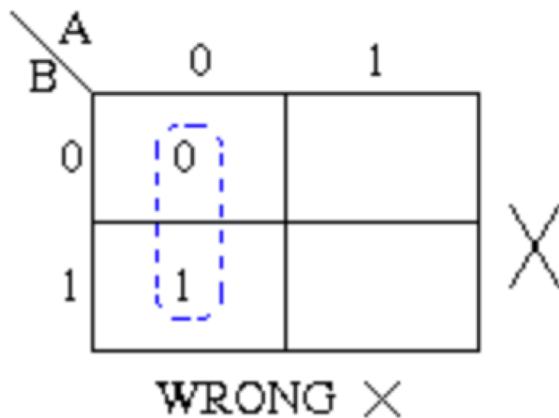
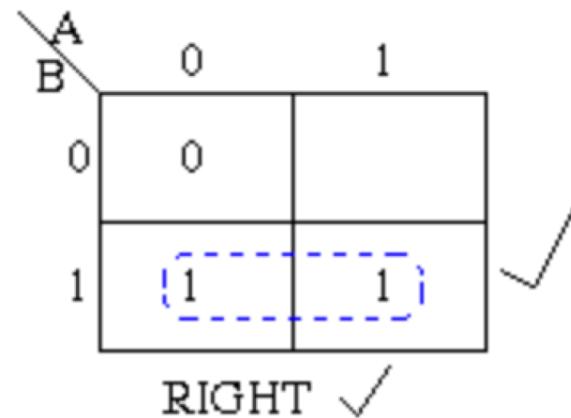
Combining Squares

Groupings to select product-terms must be:

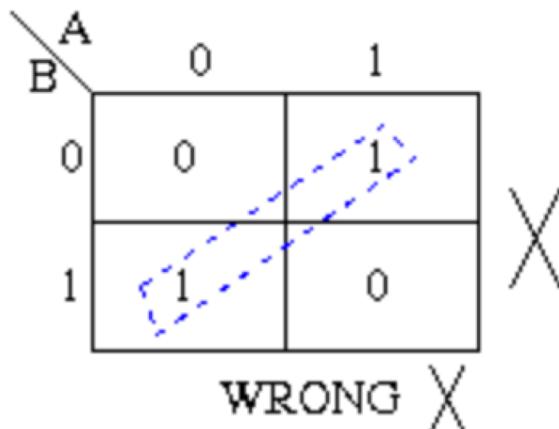
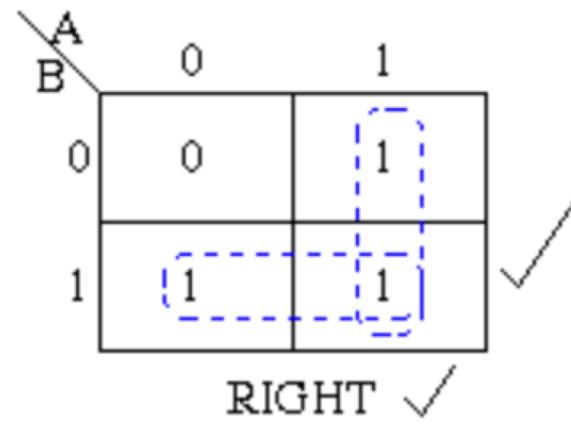
- Rectangular in shape
- In powers of twos (1, 2, 4, 8, etc.)
- Always select largest possible groupings of minterms (i.e. prime implicants)
- Eliminate redundant groupings

Combining Squares

- Groups may not include any cell containing a **zero**



- Groups may be horizontal or vertical, but not diagonal.



Combining Squares

- Groups must contain 1, 2, 4, 8, or in general 2^n cells.

That is if $n = 1$, a group will contain two 1's since $2^1 = 2$.

If $n = 2$, a group will contain four 1's since $2^2 = 4$.

	A	0	1
B	0	1	1
	0	0	0
	1	0	0

Group of 2

RIGHT ✓

	AB	00	01	11	10
C	0	0	1	1	1
	1	0	0	0	0

Group of 3

WRONG ✗

	A	0	1
B	0	1	1
	0	1	1
	1	1	1

Group of 4

RIGHT ✓

	AB	00	01	11	10
C	0	1	1	1	1
	1	0	0	0	1

Group of 5

WRONG ✗

Combining Squares

- Each group should be as large as possible.

AB
C

	00	01	11	10
0	1	1	1	1
1	0	0	1	1

RIGHT ✓

AB
C

	00	01	11	10
0	1	1	1	1
1	0	0	1	1

WRONG ✗

(Note that no Boolean laws broken, but not sufficiently minimal)

- Each cell containing a **one** must be in at least one group.

AB
C

	00	01	11	10
0	0	0	1	1
1	0	0	0	1

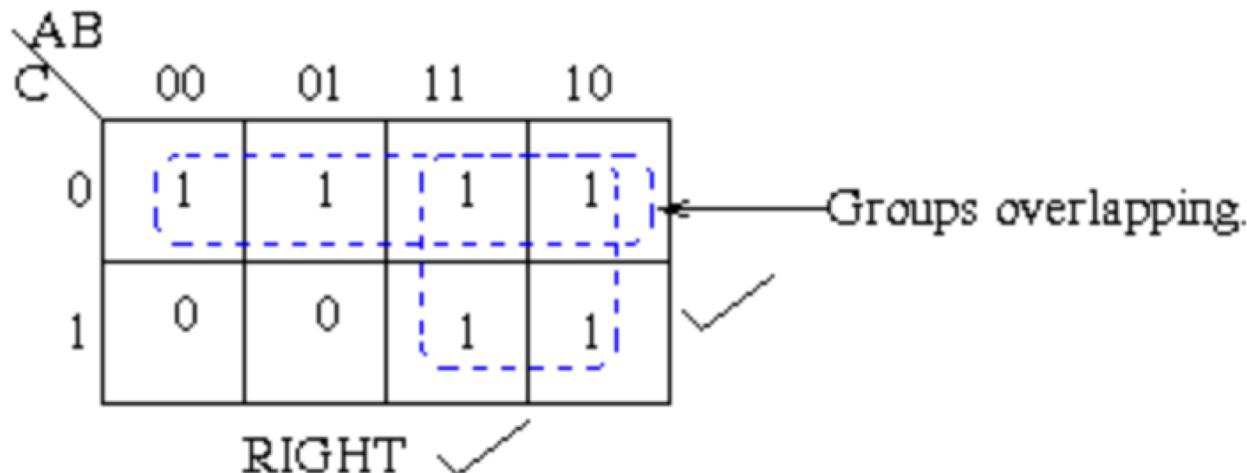
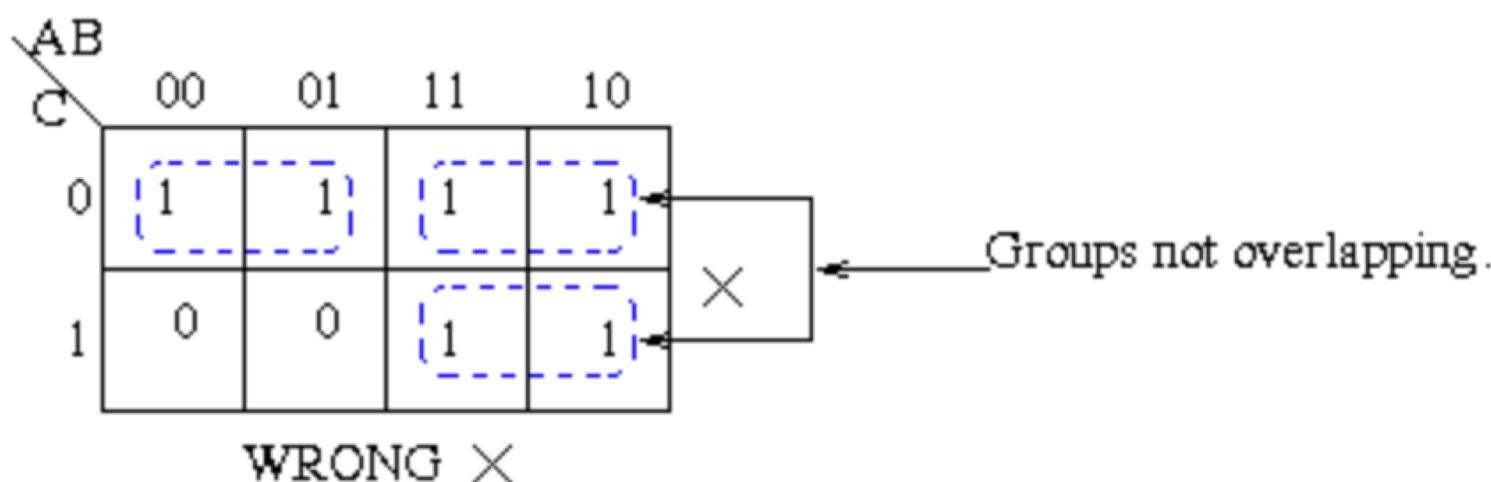
Group I

Group II

1 present in at least one group.

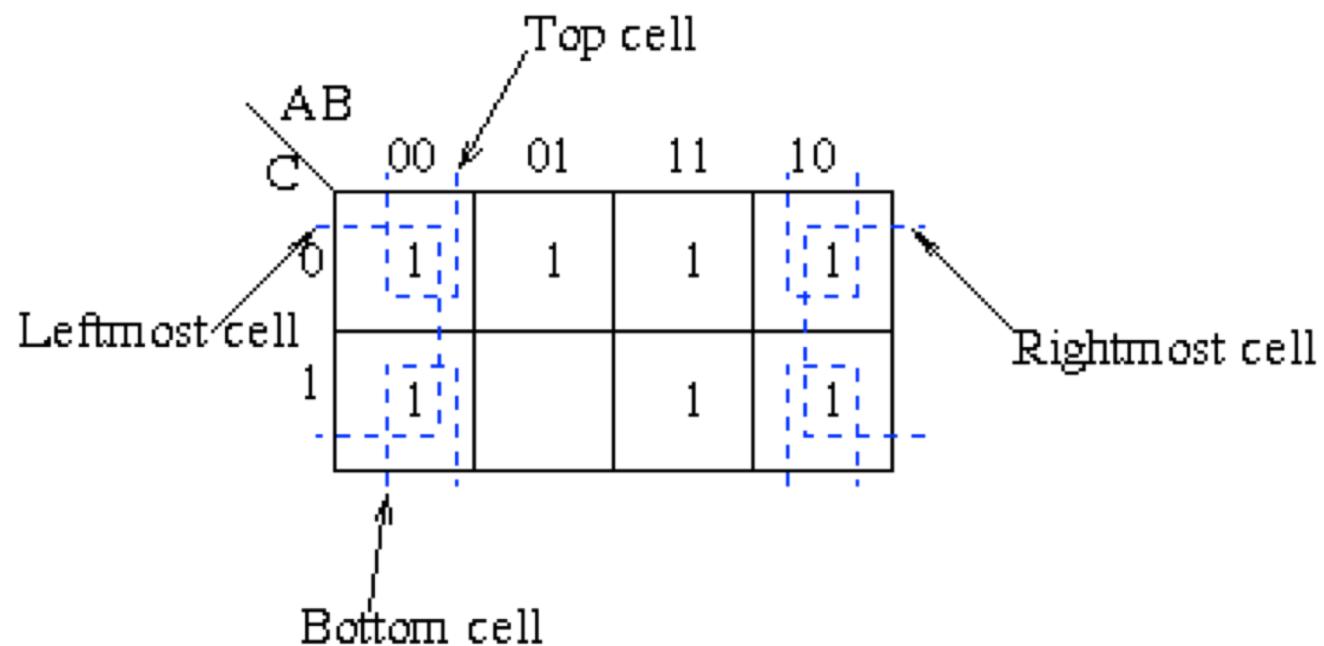
Combining Squares

- Groups may overlap.



Combining Squares

- Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell.



Combining Squares

- There should be as few groups as possible, as long as this does not contradict any of the previous rules.

AB
C

	00	01	11	10
0	1	1	1	1
1	0	0	1	1

RIGHT ✓

AB
C

	00	01	11	10
0	1	1	1	1
1	0	0	1	1

WRONG ✗

Simplification

Four steps in K-map simplifications

1. Start with a sum of minterms or truth table.

$$x'y'z' + x'y'z + xyz + xyz'$$

2. Plot the minterms on a Karnaugh map.

				y
	1	1	0	0
x	0	0	1	1
			z	

3. Find rectangular groups of minterms whose sizes are powers of two. Be sure to include all the minterms in at least one group!

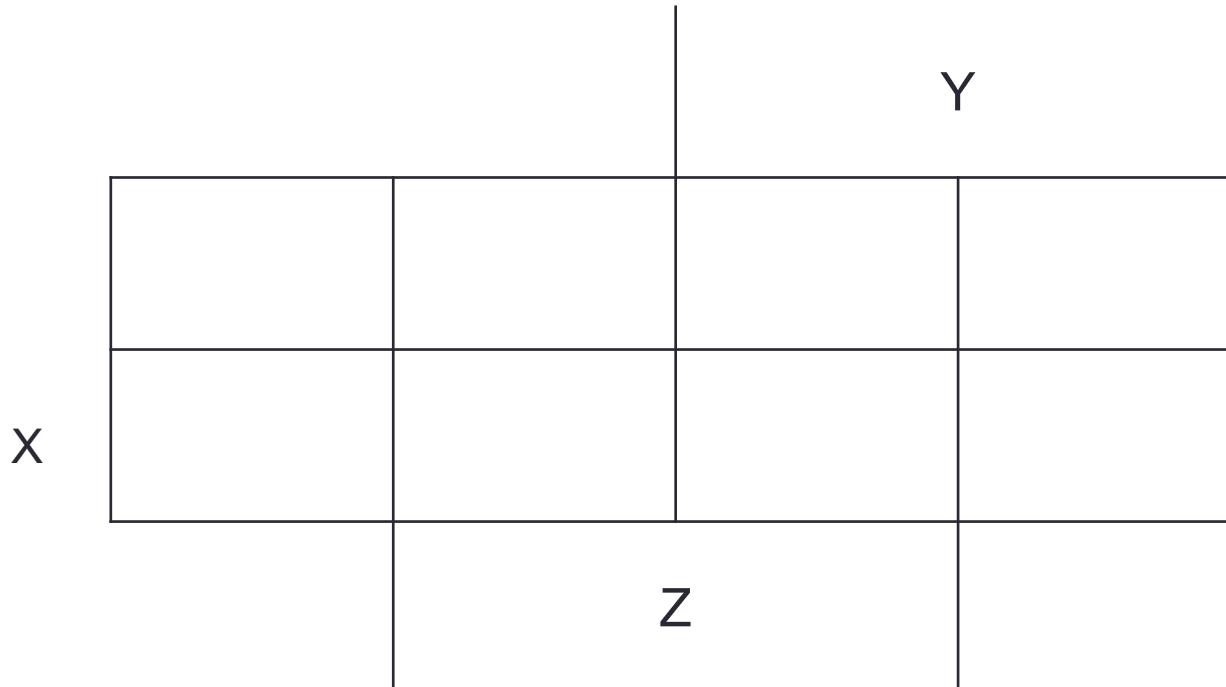
				y
	1	1	0	0
x	0	0	1	1

4. Reduce each group to one product term.

$$x'y' + xy$$

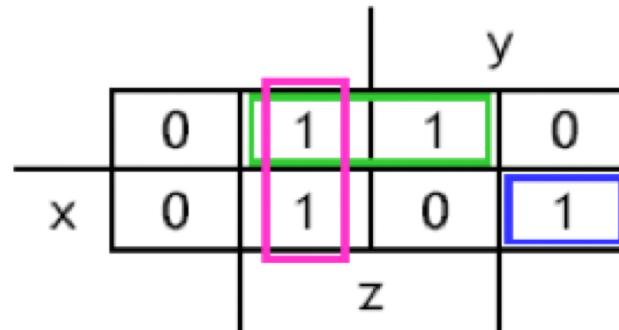
Example

- Here is the K-map for $f(x,y,z) = m_1 + \overline{m_3} + m_5 + m_6$, with all groups shown.
 - The magenta and green groups overlap, which makes each of them as large as possible.
 - Minterm m_6 is in a group all by its lonesome.



Example

- Here is the K-map for $f(x,y,z) = m_1 + m_3 + m_5 + m_6$, with all groups shown.
 - The magenta and green groups overlap, which makes each of them as large as possible.
 - Minterm m_6 is in a group all by its lonesome.



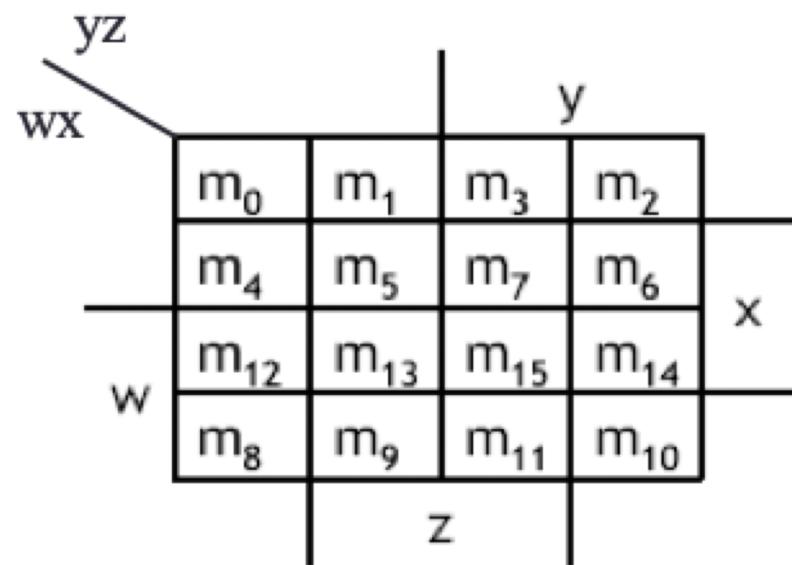
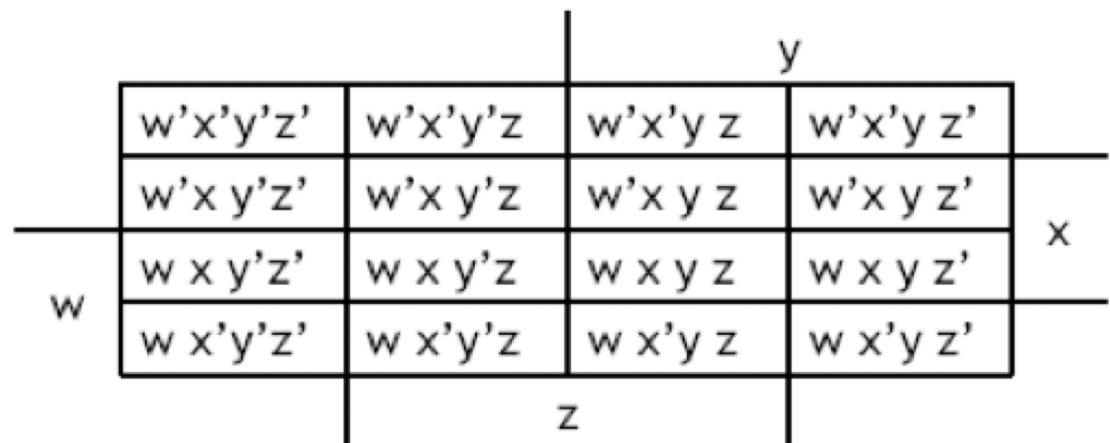
MSP

Minimal Sum of Product

- The final MSP here is $x'z + y'z + xyz'$.

A

Four-Variable Maps



Four-Variable Maps

- Let's say we want to simplify $m_0 + m_2 + m_5 + m_8 + m_{10} + m_{13}$

		y		
	m_0	m_1	m_3	m_2
	m_4	m_5	m_7	m_6
w	m_{12}	m_{13}	m_{15}	m_{14}
	m_8	m_9	m_{11}	m_{10}
		z		

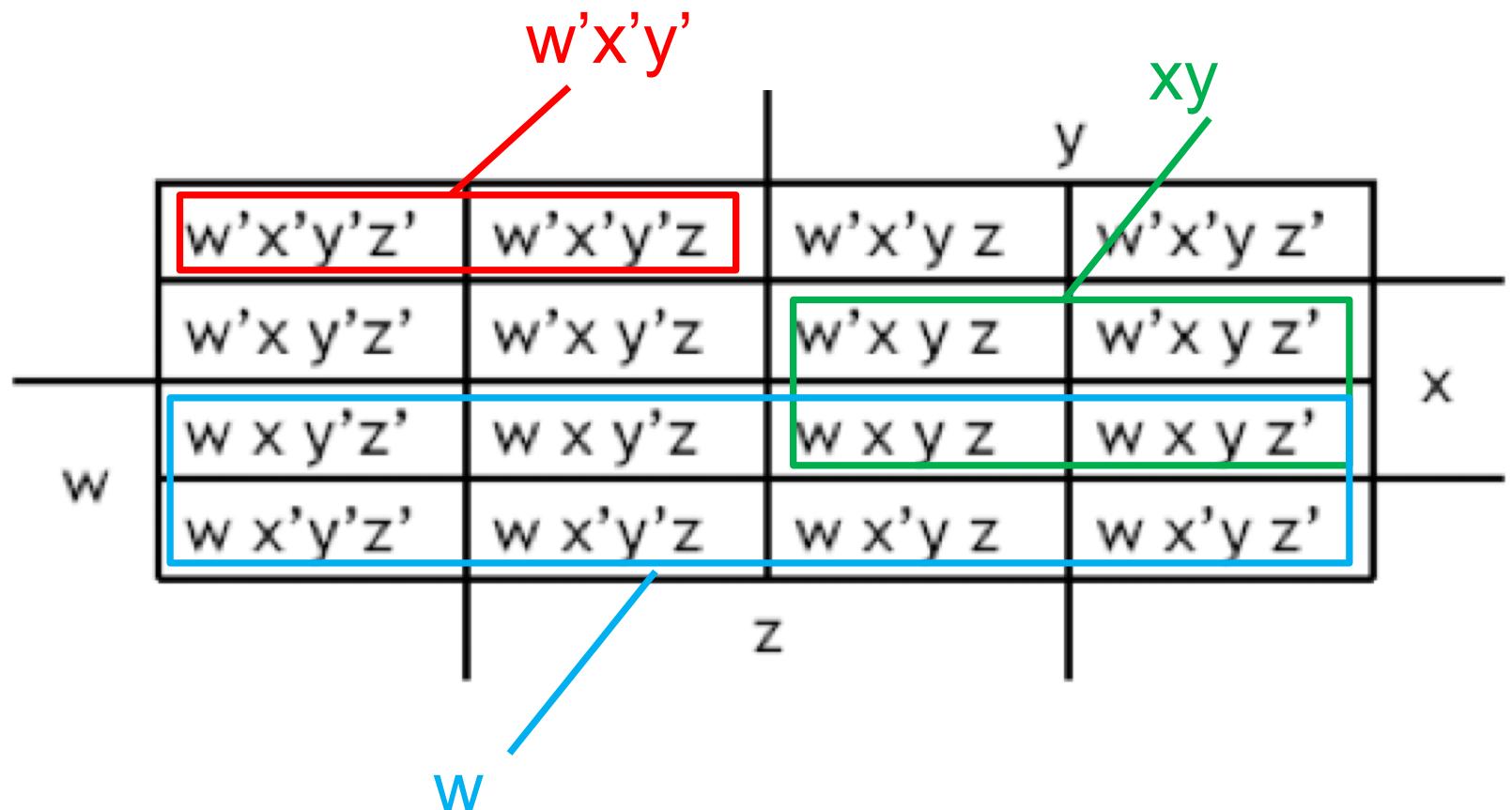
		y		
	1	0	0	1
	0	1	0	0
w	0	1	0	0
	1	0	0	1
		z		

Example 6

- The following groups result in the minimal sum of products $x'z' + xy'z$.

		y		
	1	0	0	1
	0	1	0	0
w	0	1	0	0
	1	0	0	1
		z		

Four-Variable Maps



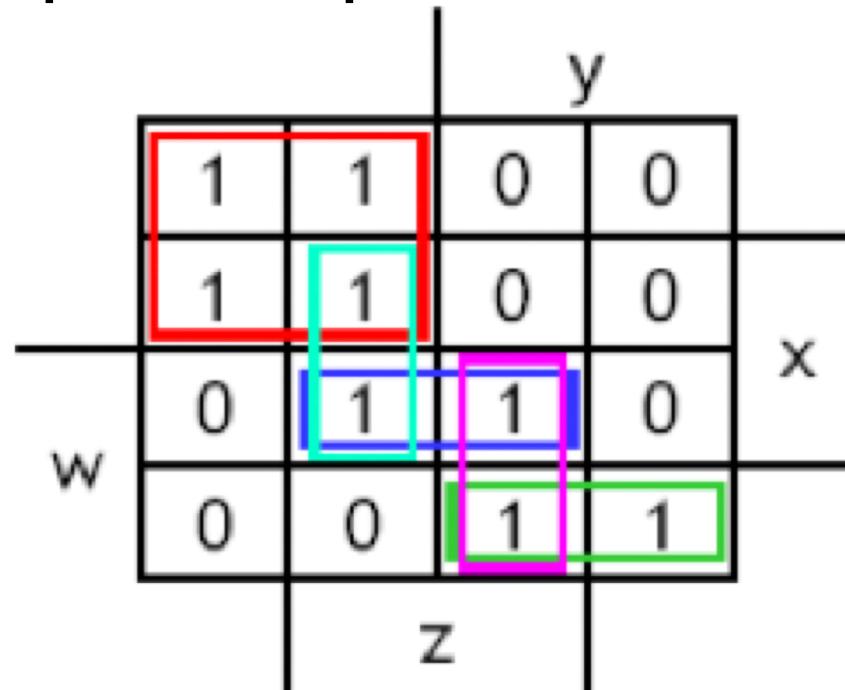
Map Manipulation

- *Implicant*: A product term that has the value 1 for all minterms of the product term.
 - all rectangles on a map made up of squares containing 1s correspond to implicants.

Map Manipulation

Prime Implicant: is a product term obtained by combining the **maximum** possible number of adjacent squares in the map into a rectangle with the number of squares a power of 2.

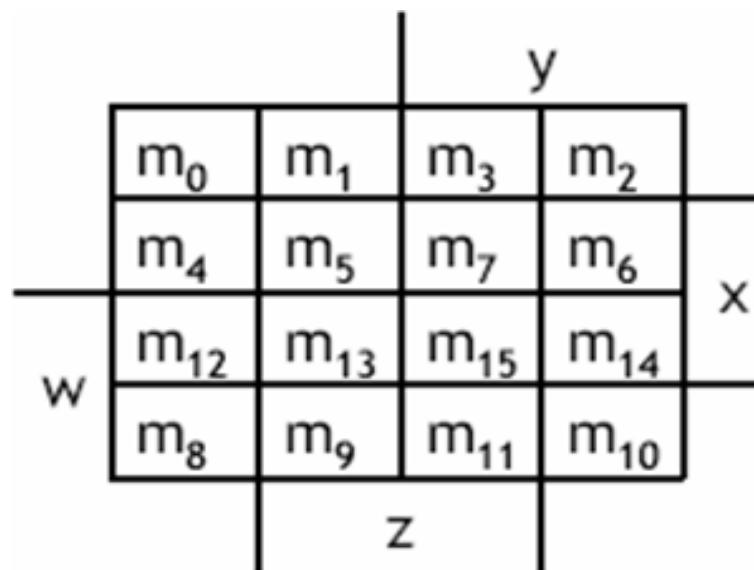
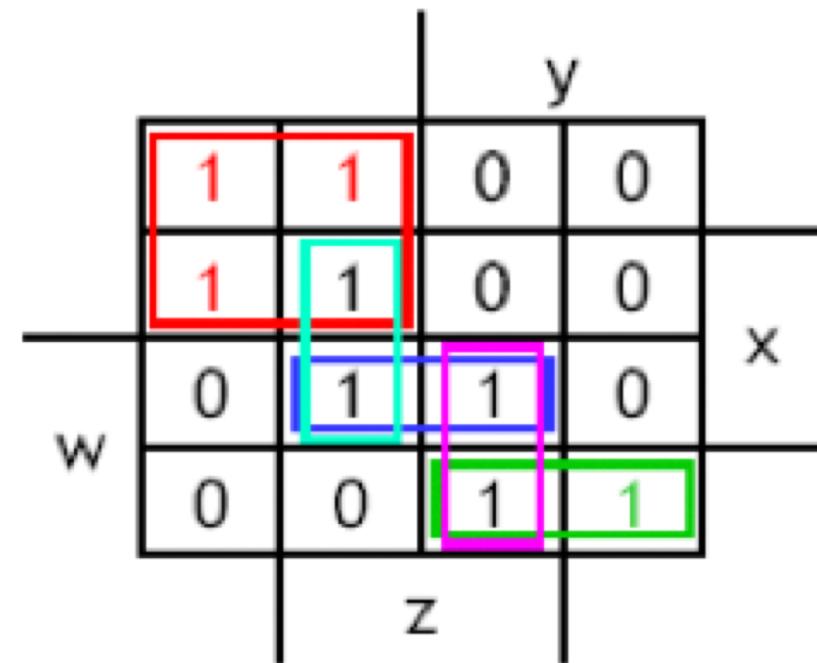
- **Example:** All prime implicants are marked



Map Manipulation

Essential Prime Implicant: If a minterm of a function is included in only one prime implicant.

- **Example:** red and green groups are essential



Don't Cares in K-Maps

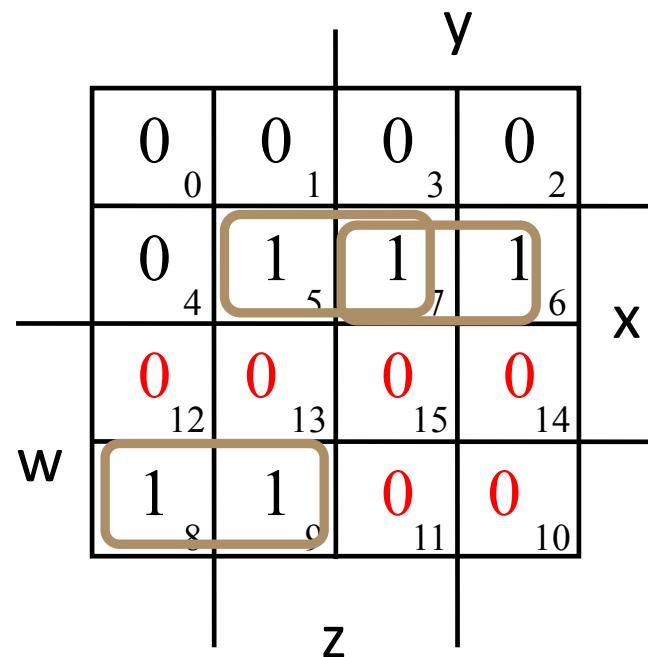
- There are times when we don't care what a function outputs—some input combinations might never occur, or some outputs may have no effect.
- We can express these situations with **don't care conditions**, denoted with **X** in truth table rows.
- An expression for this function has two parts.
 - One part includes the function's minterms.
 - Another describes the don't care conditions.

$$f(x,y,z) = m_3, \quad d(x,y,z) = m_2 + m_4 + m_5$$

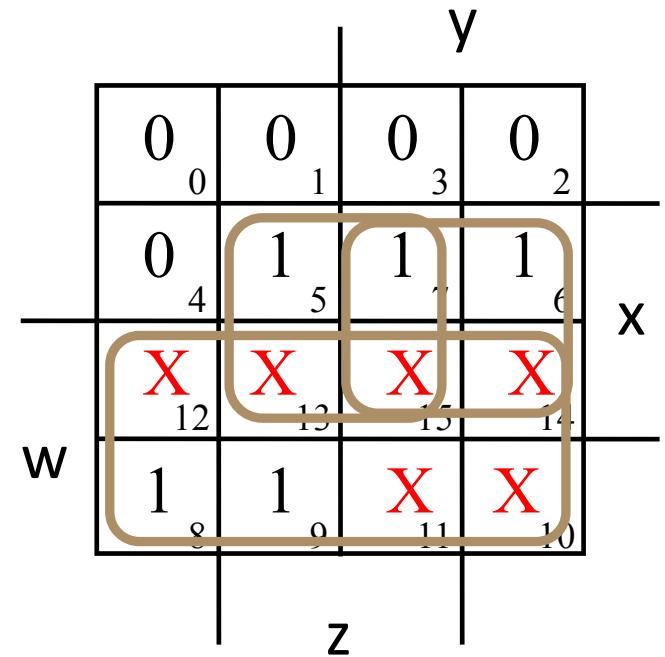
- Circuits *always* output 0 or 1; there is no value called "X". Instead, the Xs just indicate cases where both 0 or 1 would be acceptable outputs.

x	y	z	$f(x,y,z)$
0	0	0	0
0	0	1	0
0	1	0	X
0	1	1	1
1	0	0	X
1	0	1	X
1	1	0	0
1	1	1	0

Don't Cares in K-Maps



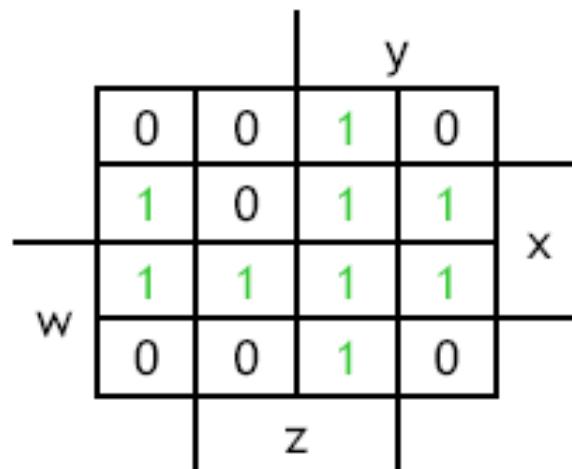
$$F = wx'y' + w'xz + w'xy$$

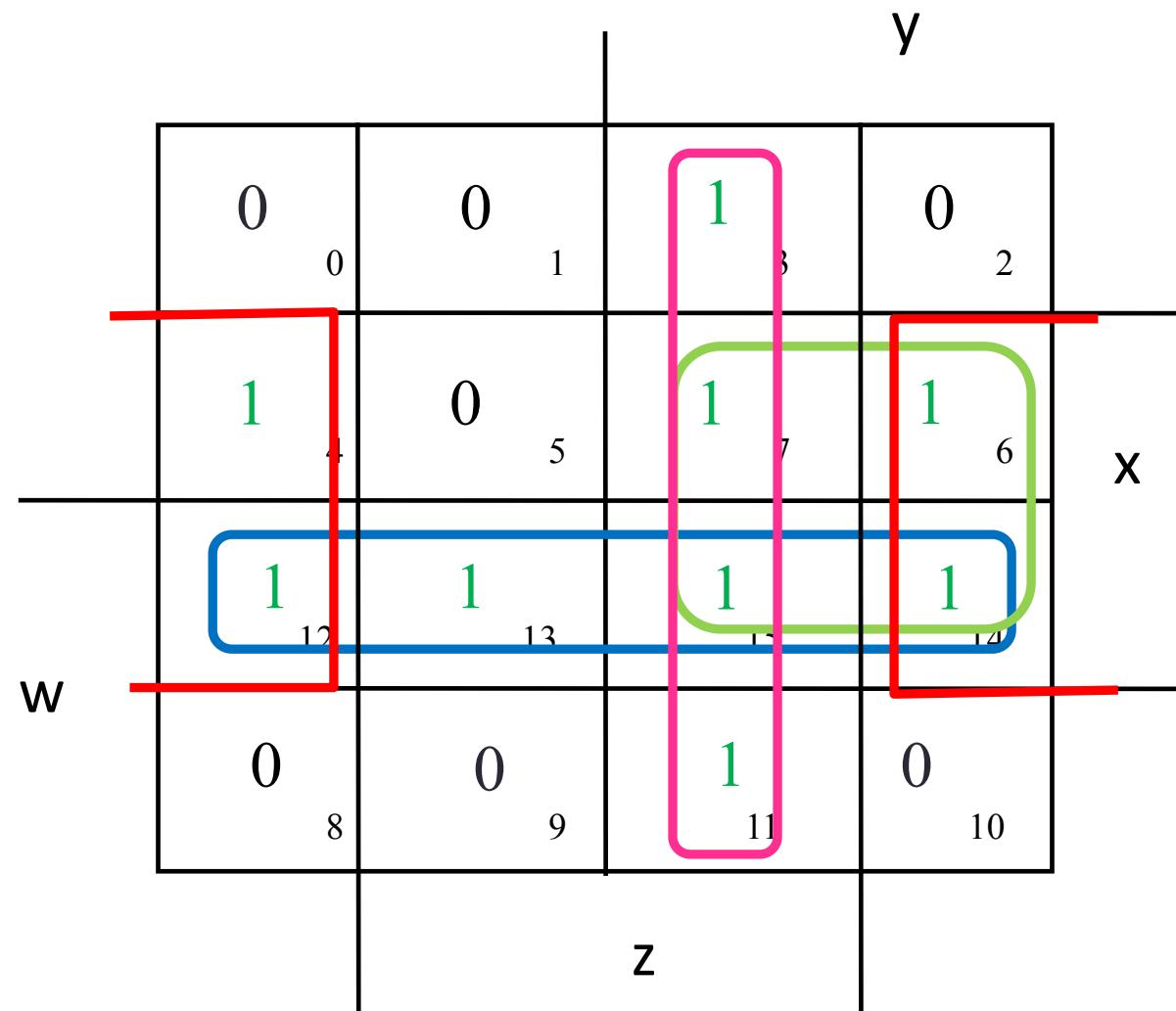


$$F = w + xz + xy$$

Practice K-map 2

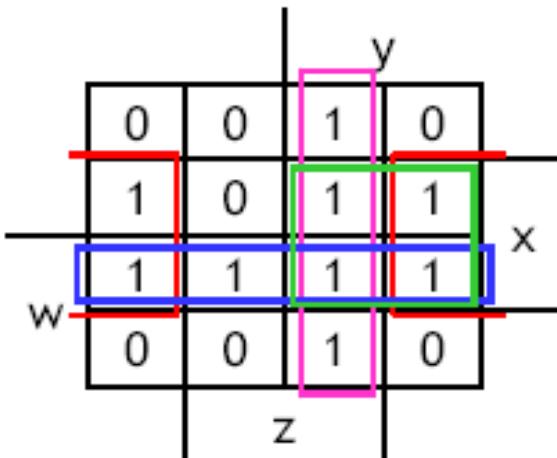
- Simplify the following K-map.





Solutions for practice K-map 2

- Simplify the following K-map.

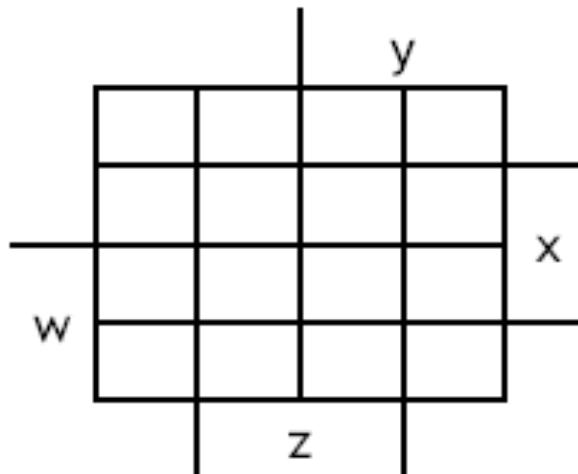


- All prime implicants are circled.
- The essential prime implicants are xz' , wx and yz .
- The MSP is $xz' + wx + yz$. (Including the group xy would be redundant.)

Practice K-map 3

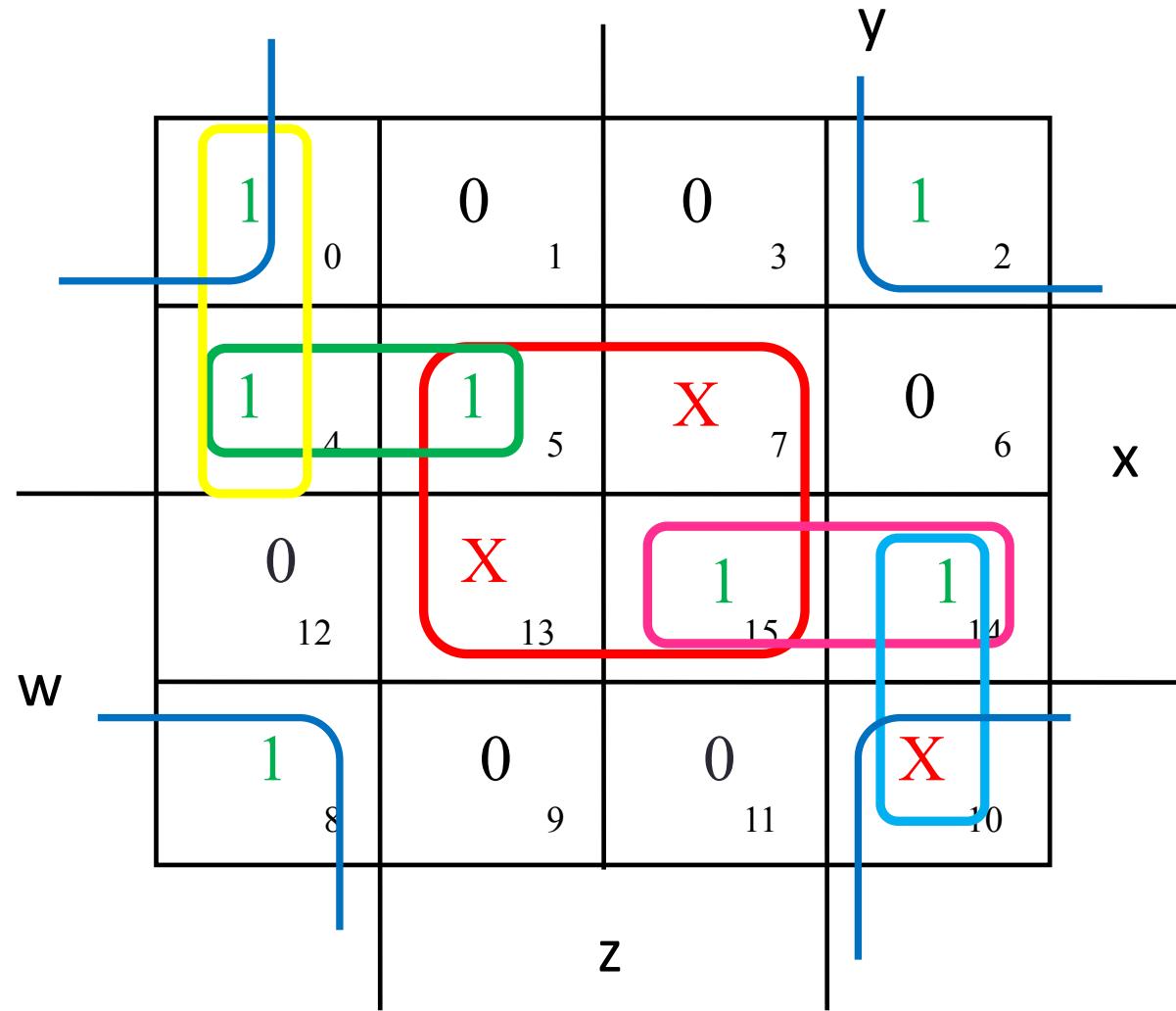
- Find a minimal sum of products for the following.

$$f(w,x,y,z) = \Sigma m(0,2,4,5,8,14,15), d(w,x,y,z) = \Sigma m(7,10,13)$$



- Find a minimal sum of products for the following.

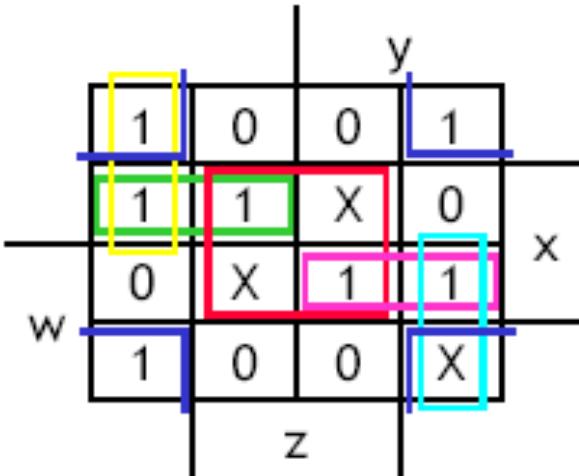
$$f(w,x,y,z) = \Sigma m(0,2,4,5,8,14,15), d(w,x,y,z) = \Sigma m(7,10,13)$$



Solutions for practice K-map 3

- Find a minimal sum of products for the following.

$$f(w,x,y,z) = \Sigma m(0,2,4,5,8,14,15), d(w,x,y,z) = \Sigma m(7,10,13)$$



- All prime implicants are circled. We can treat Xs as 1s if we want, so the red group includes two Xs, and the light blue group includes one X.
- The *only* essential prime implicant is $x'z'$. The red group is not essential because the two minterms in it also appear in other groups.
- The MSP is $x'z' + wxy + w'xy'$. It turns out the red group is redundant; we can cover all of the minterms in the map without it.