
CSC 220: Computer Organization

Unit 2
Digital Circuit Design

Prepared by: Updated by:
Md Saiful Islam, PhD Isra Al-Turaiki, PhD

Department of Computer Science
College of Computer and Information Sciences

• Binary Logic and gates
• Binary Logic
• Logic Gates

• Boolean Algebra
• Standard Forms (SOP/POS)

Chapter-2
M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design
Fundamentals, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Overview

Binary Logic

§ Deals with binary variables and with operations that
assume logical meaning.

§ Variables are designated by letters of the alphabet,
such as A, B, C, X, Y, and Z.

§ Basic logical operations: AND, OR, NOT

} Basic logical operators are the logic functions:
} AND denoted by a dot (·) Ex: Y= A.B or AB
} OR is denoted by a plus (+) Ex: Y= A+B
} NOT denoted by an overbar (¯), a single quote

mark (') after, or (~) before the variable. Ex: Y=A’

} Should not be confused with binary arithmetic.

Binary Logic

1 + 1 = 2 (read “one plus one equals two”)
is not the same as

1 + 1 = 1 (read “1 or 1 equals 1”).

A
rit
hm
et
ic

Lo
gi
c

Digital Circuit
} Digital Circuit (hardware) manipulate binary information

} Input-output: one or more binary values
} Hardware consists of a few simple building blocks called logic gates
} Logic gate: a electronic device the operates on one or more

input signals and produce an output.
} Basic Logic gates: AND, OR, NOT, …
} Additional gates: NAND, NOR, XOR, XNOR…

} Logic gates are built using transistors
} NOT gate can be implemented by a single transistor
} AND-OR gate requires 3 transistors

} Transistors are the fundamental devices
} Pentium consists of 3 million transistors
} Compaq Alpha consists of 9 million transistors
} Now we can build chips with more than 100 million transistors

Integrated Circuits

Quadruple AND Chip Logic Diagram of a Quadruple AND Chip

Levels of Integration

} Integration levels
} SSI (small scale integration)

} Introduced in late 1960s
} 1-10 gates (previous examples)

} MSI (medium scale integration)
} Introduced in late 1960s
} 10-100 gates

} LSI (large scale integration)
} Introduced in early 1970s
} 100-10,000 gates

} VLSI (very large scale integration)
} Introduced in late 1970s
} More than 10,000 gates

Typical SSI Circuits

Logic Gates

} Basic gates
} AND
} OR
} NOT

} Functionality can be
expressed by a truth table
} A truth table lists output for each

possible input combination

} Precedence
} NOT > AND > OR
} F = A B + A B

= (A (B)) + ((A) B)

Additional Logic Gates

} NAND= = AND + NOT
} NOR = OR + NOT
} NAND and NOR gates

require only 2 transistors
} AND and OR need 3

transistors!

}XOR: exclusive-OR
}XNOR: complement of XOR

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

The XOR gate produces a HIGH output only when the
inputs are at opposite logic levels. The truth table is

The XOR Gate

Inputs
A B X

Output

0 0
0 1
1 0
1 1

0
1
1
0

A
B

X A
B

X= 1

The XOR operation is written as X = AB + AB. Alternatively, it
can be written with a circled plus sign between the variables as

X = A + B.

XOR Gate-1

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Example waveforms:

A

X
Notice that the XOR gate will produce a HIGH only when exactly one input
is HIGH.

The XOR Gate

B

A
B

X A
B

X= 1

XOR Gate-2

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

The XNOR gate produces a HIGH output only when the
inputs are at the same logic level. The truth table is

The XNOR Gate

Inputs
A B X

Output

0 0
0 1
1 0
1 1

1
0
0
1

A
B

X A
B

X

The XNOR operation can be shown as X = AB + AB.

= 1

XNOR Gate-1

© 2009 Pearson Education, Upper Saddle River, NJ 07458. All Rights ReservedFloyd, Digital Fundamentals, 10th ed

Example waveforms:

A

X
Notice that the XNOR gate will produce a HIGH when both inputs are the
same. This makes it useful for comparison functions.

The XNOR Gate

B

A
B

X A
B

X
= 1

XNOR Gate-2

} A Boolean function consists of
} Binary variables
} Constants 0, 1
} Logic operators: AND (.), OR (+), NOT(-), …

} A function with N input variables
} With N logical variables, we can define

2
N

combination of inputs

} A Boolean function can be:
} single-output function
} multiple-output function

Boolean Algebra

} Designing a Logic Circuit
} A truth table is used to represent a logic function
} Logical expressions can be obtained from truth table
} Logical expressions can be transfer to logic diagram of the

circuit

} Example:
} Majority function

} Output is one whenever majority of inputs is 1
} We use 3-input majority function

Boolean Algebra

Boolean Algebra

Logical expression form
F = A’BC + AB’C + ABC’ + ABC

= AB + BC + AC (after simplification)

Truth Table:
3-input majority function

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Logic diagram

18

1.
3.
5.
7.
9.

11.
13.
15.
17.

Commutative
Associative
Distributive
DeMorgan’s

2.
4.
6.
8.

X . 1 X=
X . 0 0=
X . X X=

0=X . X

§ An algebraic structure defined on a set of at least two elements, (X,Y)
together with three binary operators (denoted +, · and) that
satisfies the following basic identities:

10.
12.
14.
16.

X + Y Y + X=
(X + Y) Z+ X + (Y Z)+=
X(Y + Z) XY XZ+=
X + Y X . Y=

XY YX=
(XY) Z X(YZ)=
X + YZ (X + Y) (X + Z)=
X . Y X + Y=

X + 0 X=

+X 1 1=
X + X X=

1=X + X
X = X

Boolean Algebra

Boolean Algebra

1.

3.

5.

7.

9.

11.
13.
15.
17.

Commutative
Associative
Distributive
DeMorgan’s

2.

4.

6.

8.

X . 1 X=
X . 0 0=
X . X X=

0=X . X

§ An algebraic structure defined on a set of at least two elements, (X,Y)
together with three binary operators (denoted +, · and) that
satisfies the following basic identities:

10.
12.
14.
16.

X + Y Y + X=
(X + Y) Z+ X + (Y Z)+=
X(Y + Z) XY XZ+=
X + Y X . Y=

XY YX=
(XY) Z X(YZ)=
X + YZ (X + Y) (X + Z)=
X . Y X + Y=

X + 0 X=

+X 1 1=
X + X X=

1=X + X
X = X

between a single variable X, its
complement X, and the binary
constants 0 and 1.

20

1.
3.
5.
7.
9.

11.

13.

15.
17.

Commutative
Associative
Distributive
DeMorgan’s

X . 1 X=
X . 0 0=
X . X X=

0=X . X

2.
4.
6.
8.

§ An algebraic structure defined on a set of at least two elements, (X,Y)
together with three binary operators (denoted +, · and) that
satisfies the following basic identities:

10.

12.

14.

16.

X + Y Y + X=
(X + Y) Z+ X + (Y Z)+=
X(Y + Z) XY XZ+=
X + Y X . Y=

XY YX=
(XY) Z X(YZ)=
X + YZ (X + Y) (X + Z)=
X . Y X + Y=

X + 0 X=

+X 1 1=
X + X X=

1=X + X
X = X

have counterparts in ordinary
algebra

Boolean Algebra

Boolean Algebra

21

1.
3.
5.
7.
9.

11.
13.
15.
17.

Commutative
Associative
Distributive
DeMorgan’s

2.
4.
6.
8.

X . 1 X=
X . 0 0=
X . X X=

0=X . X

§ The dual of an algebraic expression is obtained by interchanging OR
and AND operations and replacing 1s by 0s and 0s by 1s.

10.
12.
14.
16.

X + Y Y + X=
(X + Y) Z+ X + (Y Z)+=
X(Y + Z) XY XZ+=
X + Y X . Y=

XY YX=
(XY) Z X(YZ)=
X + YZ (X + Y) (X + Z)=
X . Y X + Y=

X + 0 X=

+X 1 1=
X + X X=

1=X + X
X = X

do not apply in ordinary algebra

x y z F1 F2 F3 F4
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 0 1
1 1 0 1 1
1 1 1 0 1

22

1

0

0

1

1

1

0

0

0

1

0

1

1

1

0

0

Boolean Algebra

F1= xyz
F2= x+yz
F3= xyz+xyz+xy
F4= xy+xz

} NAND and NOR gates are called universal gates

} Proving NAND gate is universal

Universal Gates-1

} Proving NOR gate is universal

Universal Gates-2

Standard Forms

Standard Forms Boolean Expressions
l Sum-of-Products (SOP)

- Derived from the Truth table for a function by
considering those rows for which F = 1.

- The logical sum (OR) of product (AND) terms.
- Realized using an AND-OR circuit.

l Product-of-Sums (POS)
- Derived from the Truth table for a function by

considering those rows for which F = 0.
- The logical product (AND) of sum (OR) terms.
- Realized using an OR-AND circuit.

26

Sum-of-Products

27

Product-of-Sums

Minterms

Minterms

30

Sum-of-Minterms

l Any function F can be represented by a sum of minterms,
where each minterm is ANDed with the corresponding value
of the output for F.

- F = S (mi . fi)
l where mi is a minterm
l and fi is the corresponding functional output

- Only the minterms for which fi = 1 appear in the expression
for function F.

- F = S (mi) = S m(i) shorthand notation

Denotes the logical
sum operation

Sum-of-Minterms

l Sum of minterms are a.k.a. Canonical Sum-of-
Products

l Synthesis process
- Determine the Canonical Sum-of-Products
- Use Boolean Algebra (and K-maps) to find an

optimal, functionally equivalent, expression.

Sum-of-Minterms

Maxterms

Maxterms

35

When the o/p is Zero
When the o/p is 1

Product-of-Maxterms

l Any function F can be represented by a product of Maxterms, where each
Maxterm is ANDed with the complement of the corresponding value of
the output for F.

- F = P (Mi . f 'i)

l where Mi is a Maxterm
l and f 'i is the complement of the corresponding

functional output
- Only the Maxterms for which fi = 0 appear in the expression for

function F.
- F = P (Mi) = P M(i) shorthand notation

Denotes the logical
product operation

Product-of-Maxterms

f=M2= X1+X2

l The Canonical Product-of-Sums for function F is the Product-of-Sums
expression in which each sum term is a Maxterm.

l Synthesis process
- Determine the Canonical Product-of-Sums
- Use Boolean Algebra (and K-maps) to find an optimal, functionally

equivalent, expression.

Product-of-Maxterms

Logical Equivalence
} When two circuits implement same logic function

Example: All three circuits implement F = A B function

Logical Equivalence …
} Proving logical equivalence:
} Derivation of logical expression from a circuit

} Trace from the input to output
} Write down intermediate logical expressions along the path

} Build the truth table relating inputs to the output for each
circuit

} If each function give the same output, they are logically
equivalent

A B F1 = A B F3 = (A + B) (A + B) (A + B)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

Logical Equivalence …

} Exercise:
} Show that XÅY is logically equivalent to X’Y+XY’

