

CSC 220: Computer Organization

Unit 2 Digital Circuit Design

Prepared by:
Md Saiful Islam, PhD

Updated by:
Isra Al-Turaiki, PhD

Department of Computer Science
College of Computer and Information Sciences

Overview

- Binary Logic and gates
 - Binary Logic
 - Logic Gates
- Boolean Algebra
- Standard Forms (SOP/POS)

Chapter-2

M. Morris Mano, Charles R. Kime and Tom Martin, **Logic and Computer Design Fundamentals**, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Binary Logic

- Deals with **binary variables** and with operations that assume **logical** meaning.
- Variables** are designated by letters of the alphabet, such as A, B, C, X, Y , and Z .
- Basic logical operations: **AND, OR, NOT**

□ TABLE 2-1
Truth Tables for the Three Basic Logical Operations

AND		OR		NOT	
X	Y	$Z = X \cdot Y$		X	$Z = X + Y$
0	0	0		0	0
0	1	0		0	1
1	0	0		1	0
1	1	1			

Binary Logic

Logic Arithmetic

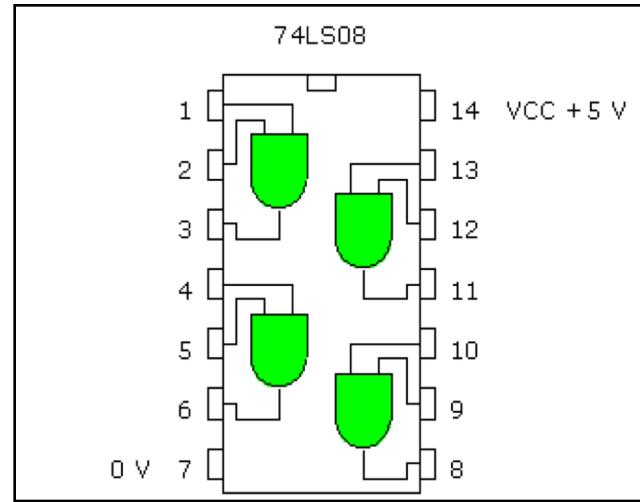
- ▶ Basic *logical operators* are the logic functions:
 - ▶ **AND** denoted by a **dot** (·) **Ex:** $Y=A.B$ or AB
 - ▶ **OR** is denoted by a **plus** (+) **Ex:** $Y=A+B$
 - ▶ **NOT** denoted by an **overbar** (̄), a single quote mark (') after, or (\sim) before the variable. **Ex:** $Y=A'$
- ▶ Should not be confused with binary arithmetic.
 - $1 + 1 = 2$ (read “one plus one equals two”) is not the same as
 - $1 + 1 = 1$ (read “1 or 1 equals 1”).

Digital Circuit

- ▶ **Digital Circuit (hardware)** manipulate binary information
 - ▶ **Input-output:** one or more binary values
 - ▶ Hardware consists of a few simple building blocks called *logic gates*
 - ▶ **Logic gate:** a electronic device the operates on one or more input signals and produce an output.
 - ▶ **Basic Logic gates:** AND, OR, NOT, ...
 - ▶ **Additional gates:** NAND, NOR, XOR, XNOR...
- ▶ Logic gates are built using *transistors*
 - ▶ NOT gate can be implemented by a single transistor
 - ▶ AND-OR gate requires 3 transistors
- ▶ Transistors are the fundamental devices
 - ▶ Pentium consists of 3 million transistors
 - ▶ Compaq Alpha consists of 9 million transistors
 - ▶ Now we can build chips with more than 100 million transistors

Integrated Circuits

Quadruple AND Chip



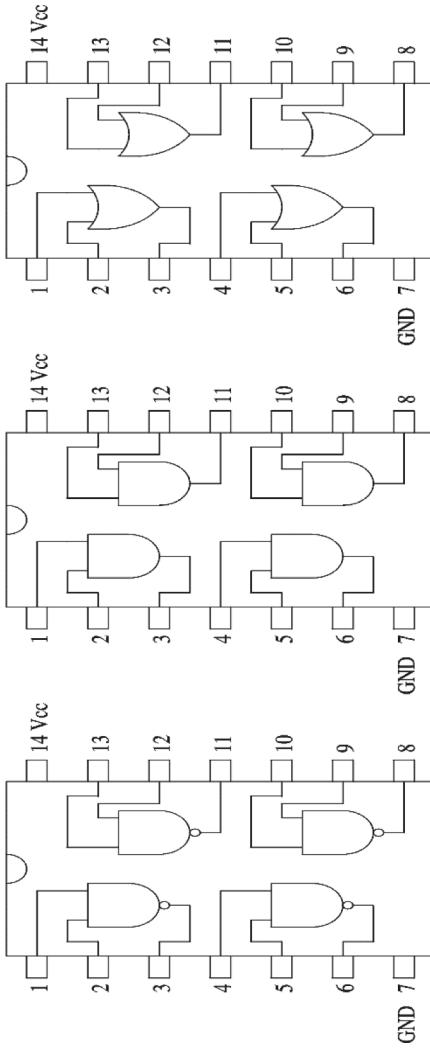
Logic Diagram of a Quadruple AND Chip

Levels of Integration

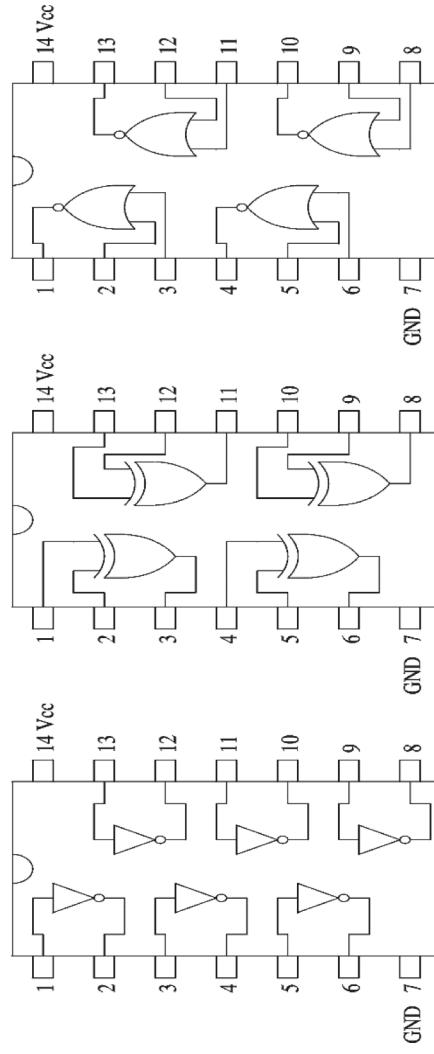
▶ Integration levels

- ▶ SSI (small scale integration)
 - ▶ Introduced in late 1960s
 - ▶ 1-10 gates (previous examples)
- ▶ MSI (medium scale integration)
 - ▶ Introduced in late 1960s
 - ▶ 10-100 gates
- ▶ LSI (large scale integration)
 - ▶ Introduced in early 1970s
 - ▶ 100-10,000 gates
- ▶ VLSI (very large scale integration)
 - ▶ Introduced in late 1970s
 - ▶ More than 10,000 gates

Typical SSI Circuits

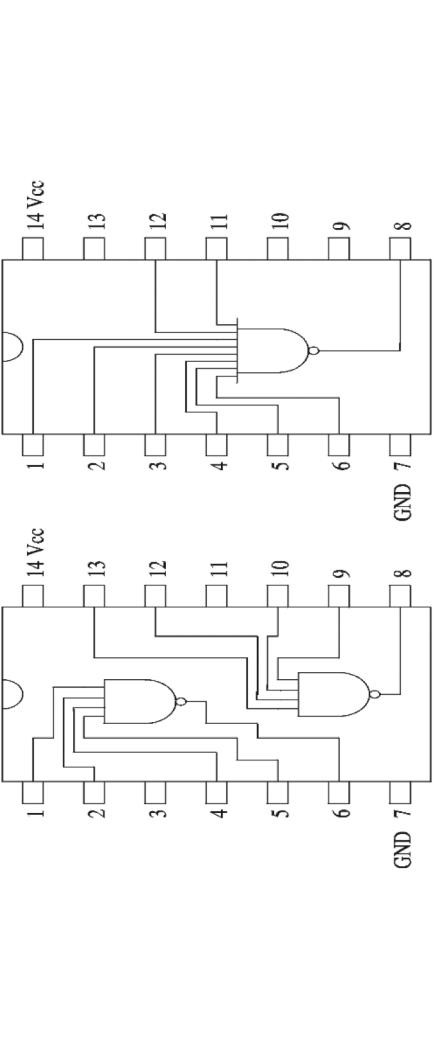


7400

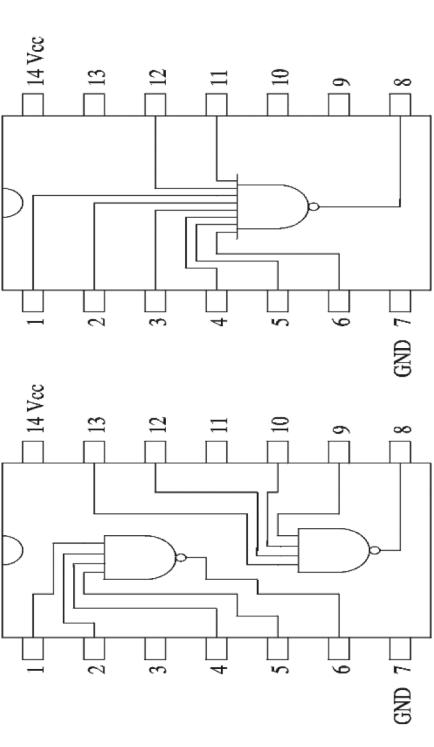


7408

7432



7432



7404

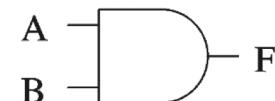
7402

7406

7420

Logic Gates

- ▶ Basic gates
 - ▶ AND
 - ▶ OR
 - ▶ NOT
- ▶ Functionality can be expressed by a truth table
 - ▶ A truth table lists output for each possible input combination
- ▶ Precedence
 - ▶ NOT > AND > OR
 - ▶ $F = A \bar{B} + \bar{A} B$
 $= (A (\bar{B})) + ((\bar{A}) B)$



AND gate

OR gate

NOT gate

Logic symbol

A	B	F
0	0	0
0	1	0
1	0	0
1	1	1

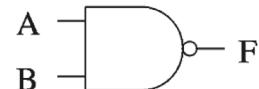
A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

A	F
0	1
1	0

Truth table

Additional Logic Gates

- ▶ **NAND** = AND + NOT
- ▶ **NOR** = OR + NOT
- ▶ NAND and NOR gates require only 2 transistors
 - ▶ AND and OR need 3 transistors!
- ▶ **XOR**: exclusive-OR
- ▶ **XNOR**: complement of XOR



NAND gate

NOR gate

XOR gate

Logic symbol

A	B	F
0	0	1
0	1	1
1	0	1
1	1	0

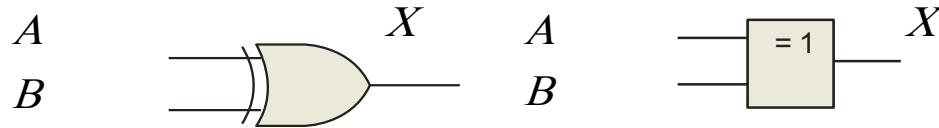
A	B	F
0	0	1
0	1	0
1	0	0
1	1	0

A	B	F
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

XOR Gate-1

The XOR Gate



The **XOR gate** produces a **HIGH** output only when the inputs are at opposite logic levels. The truth table is

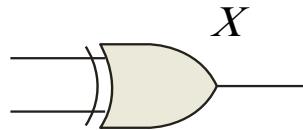
Inputs		Output
<i>A</i>	<i>B</i>	<i>X</i>
0	0	0
0	1	1
1	0	1
1	1	0

The **XOR** operation is written as $X = \overline{A}B + A\overline{B}$. Alternatively, it can be written with a circled plus sign between the variables as $X = A \oplus B$.

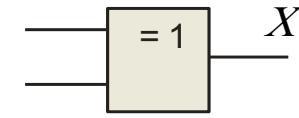
XOR Gate-2

The XOR Gate

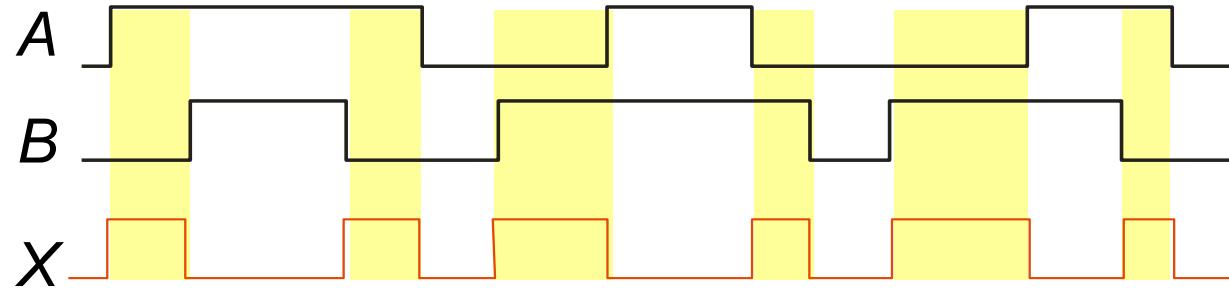
A
 B



A
 B



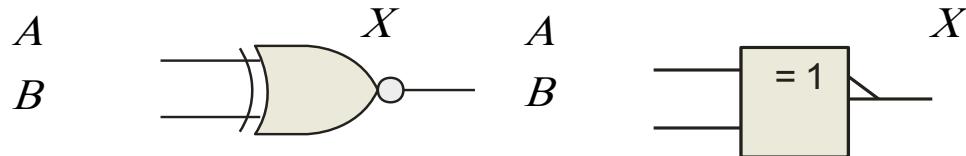
Example waveforms:



Notice that the XOR gate will produce a HIGH only when exactly one input is HIGH.

XNOR Gate-1

The XNOR Gate



The **XNOR gate** produces a **HIGH** output only when the inputs are at the same logic level. The truth table is

Inputs		Output
<i>A</i>	<i>B</i>	<i>X</i>
0	0	1
0	1	0
1	0	0
1	1	1

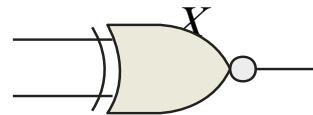
The **XNOR** operation can be shown as $X = AB + \overline{A}\overline{B}$.

XNOR Gate-2

The XNOR Gate

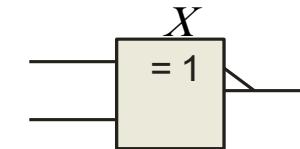
A

B

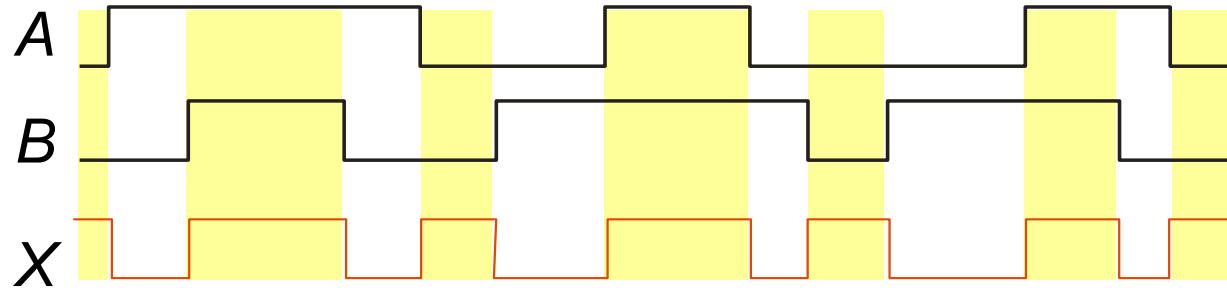


A

B



Example waveforms:



Notice that the XNOR gate will produce a HIGH when both inputs are the same. This makes it useful for comparison functions.

Boolean Algebra

- ▶ A Boolean function consists of
 - ▶ Binary variables
 - ▶ Constants 0, 1
 - ▶ Logic operators: AND (.), OR (+), NOT(-), ...
- ▶ A function with N input variables
 - ▶ With N logical variables, we can define 2^N combination of inputs
- ▶ A Boolean function can be:
 - ▶ single-output function
 - ▶ multiple-output function

Boolean Algebra

- ▶ Designing a Logic Circuit
 - ▶ A **truth table** is used to represent a logic function
 - ▶ **Logical expressions** can be obtained from truth table
 - ▶ Logical expressions can be transferred to **logic diagram** of the circuit
- ▶ Example:
 - ▶ Majority function
 - ▶ Output is one whenever majority of inputs is 1
 - ▶ We use 3-input majority function

Boolean Algebra

Truth Table:

3-input majority function

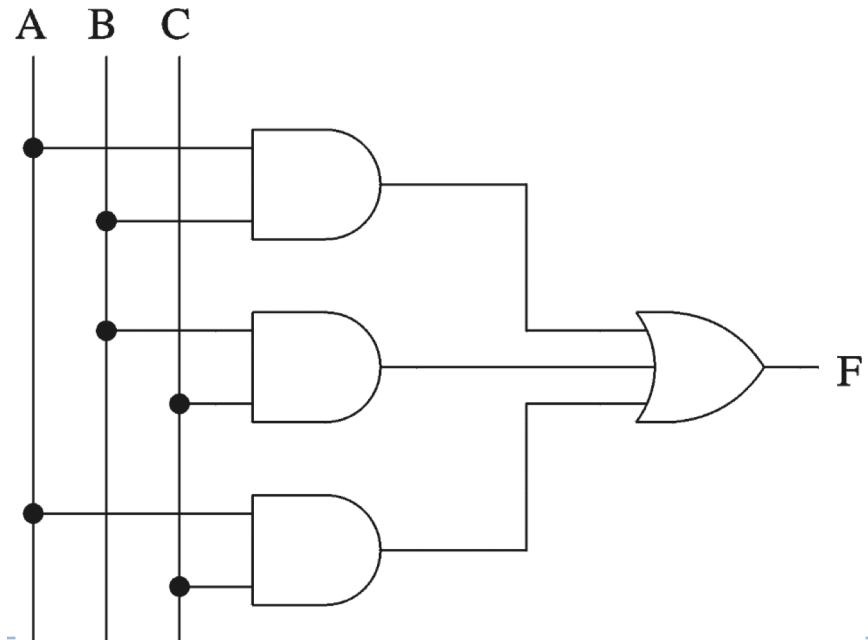
A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logical expression form

$$F = A'BC + AB'C + ABC' + ABC$$

$$= AB + BC + AC \text{ (after simplification)}$$

Logic diagram



Boolean Algebra

- An algebraic structure defined on a set of at least two elements, (X, Y) together with three binary operators (denoted $+$, \cdot and $\bar{}$) that satisfies the following *basic identities*:

$$1. \quad X + 0 = X$$

$$3. \quad X + 1 = 1$$

$$5. \quad X + X = X$$

$$7. \quad X + \bar{X} = 1$$

$$9. \quad \bar{\bar{X}} = X$$

$$2. \quad X \cdot 1 = X$$

$$4. \quad X \cdot 0 = 0$$

$$6. \quad X \cdot X = X$$

$$8. \quad X \cdot \bar{X} = 0$$

$$10. \quad X + Y = Y + X$$

$$12. \quad (X + Y) + Z = X + (Y + Z)$$

$$14. \quad X(Y + Z) = XY + XZ$$

$$16. \quad \bar{X + Y} = \bar{X} \cdot \bar{Y}$$

$$11. \quad XY = YX$$

$$13. \quad (XY)Z = X(YZ)$$

$$15. \quad X + YZ = (X + Y)(X + Z)$$

$$17. \quad \bar{X \cdot Y} = \bar{X} + \bar{Y}$$

Commutative

Associative

Distributive

DeMorgan's

Boolean Algebra

- An algebraic structure defined on a set of at least two elements, (X,Y) together with three binary operators (denoted +, · and $\bar{}$) that satisfies the following *basic identities*:

1. $X + 0 = X$

3. $X + 1 = 1$

5. $X + X = X$

7. $X + \bar{X} = 1$

9. $\bar{\bar{X}} = X$

2. $X \cdot 1 = X$

4. $X \cdot 0 = 0$

6. $X \cdot X = X$

8. $X \cdot \bar{X} = 0$

between a single variable X , its complement \bar{X} , and the binary constants 0 and 1.

10. $X + Y = Y + X$

11. $XY = YX$

Commutative

12. $(X + Y) + Z = X + (Y + Z)$

13. $(XY)Z = X(YZ)$

Associative

14. $X(Y + Z) = XY + XZ$

15. $X + YZ = (X + Y)(X + Z)$

Distributive

16. $\bar{X + Y} = \bar{X} \cdot \bar{Y}$

17. $\bar{X \cdot Y} = \bar{X} + \bar{Y}$

DeMorgan's

Boolean Algebra

- An algebraic structure defined on a set of at least two elements, (X, Y) together with three binary operators (denoted $+$, \cdot and $\bar{}$) that satisfies the following *basic identities*:

$$1. \quad X + 0 = X$$

$$3. \quad X + 1 = 1$$

$$5. \quad X + X = X$$

$$7. \quad X + \bar{X} = 1$$

$$9. \quad \bar{\bar{X}} = X$$

$$2. \quad X \cdot 1 = X$$

$$4. \quad X \cdot 0 = 0$$

$$6. \quad X \cdot X = X$$

$$8. \quad X \cdot \bar{X} = 0$$

have counterparts in ordinary algebra

$$10. \quad X + Y = Y + X$$

$$12. \quad (X + Y) + Z = X + (Y + Z)$$

$$14. \quad X(Y + Z) = XY + XZ$$

$$16. \quad \bar{X + Y} = \bar{X} \cdot \bar{Y}$$

$$11. \quad XY = YX$$

$$13. \quad (XY)Z = X(YZ)$$

$$15. \quad X + YZ = (X + Y)(X + Z)$$

$$17. \quad \bar{X \cdot Y} = \bar{X} + \bar{Y}$$

Commutative

Associative

Distributive

DeMorgan's

Boolean Algebra

- The *dual* of an algebraic expression is obtained by interchanging OR and AND operations and replacing 1s by 0s and 0s by 1s.

$$1. \quad X + 0 = X$$

$$3. \quad X + 1 = 1$$

$$5. \quad X + X = X$$

$$7. \quad X + \bar{X} = 1$$

$$9. \quad \bar{\bar{X}} = X$$

$$2. \quad X \cdot 1 = X$$

$$4. \quad X \cdot 0 = 0$$

$$6. \quad X \cdot X = X$$

$$8. \quad X \cdot \bar{X} = 0$$

do not apply in ordinary algebra

$$10. \quad X + Y = Y + X$$

$$11. \quad XY = YX$$

Commutative

$$12. \quad (X + Y) + Z = X + (Y + Z)$$

$$13. \quad (XY)Z = X(YZ)$$

Associative

$$14. \quad X(Y + Z) = XY + XZ$$

$$15. \quad X + YZ = (X + Y)(X + Z)$$

Distributive

$$16. \quad \overline{X + Y} = \bar{X} \cdot \bar{Y}$$

$$17. \quad \overline{X \cdot Y} = \bar{X} + \bar{Y}$$

DeMorgan's

Boolean Algebra

$$F1 = xy\bar{z}$$

$$F2 = x + \bar{y}z$$

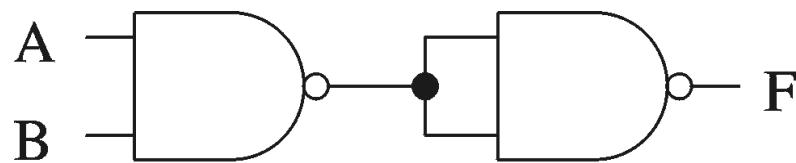
$$F3 = \bar{x}\bar{y}\bar{z} + \bar{x}yz + xy\bar{z}$$

$$F4 = x\bar{y} + \bar{x}z$$

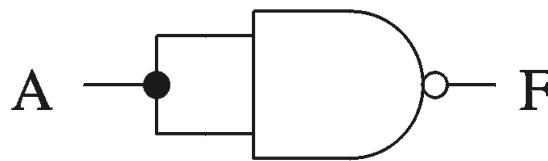
x	y	z	F1	F2	F3	F4
0	0	0	0	0	1	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Universal Gates-1

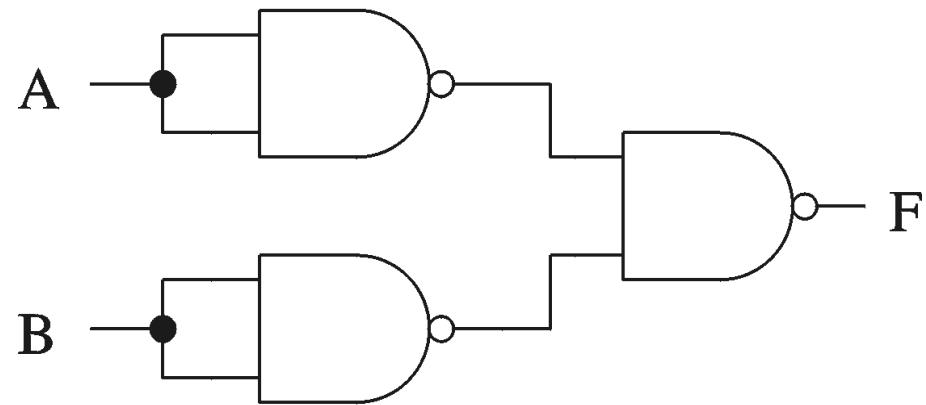
- ▶ NAND and NOR gates are called *universal gates*
- ▶ *Proving NAND gate is universal*



AND gate



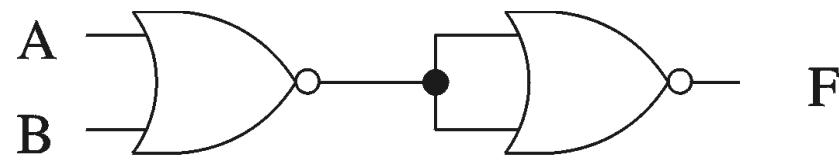
NOT gate



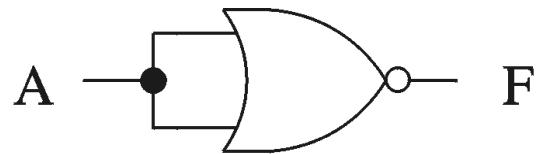
OR gate

Universal Gates-2

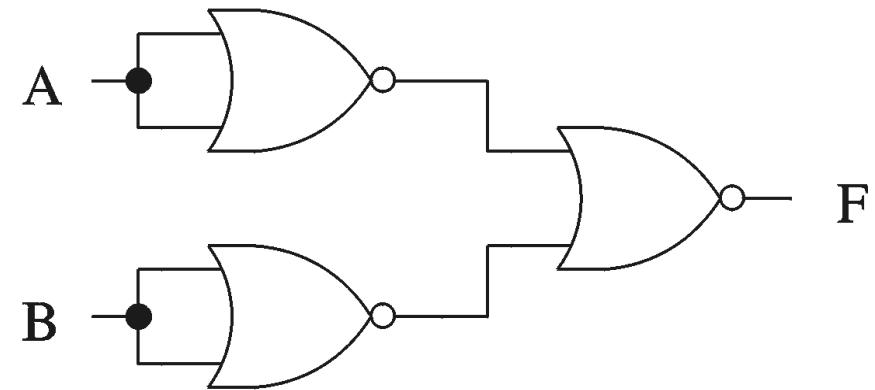
- ▶ *Proving NOR gate is universal*



OR gate



NOT gate



AND gate

Standard Forms

Standard Forms Boolean Expressions

- Sum-of-Products (SOP)
 - Derived from the Truth table for a function by considering those rows for which $F = 1$.
 - The logical sum (**OR**) of product (**AND**) terms.
 - Realized using an AND-OR circuit.
- Product-of-Sums (POS)
 - Derived from the Truth table for a function by considering those rows for which $F = 0$.
 - The logical product (**AND**) of sum (**OR**) terms.
 - Realized using an OR-AND circuit.

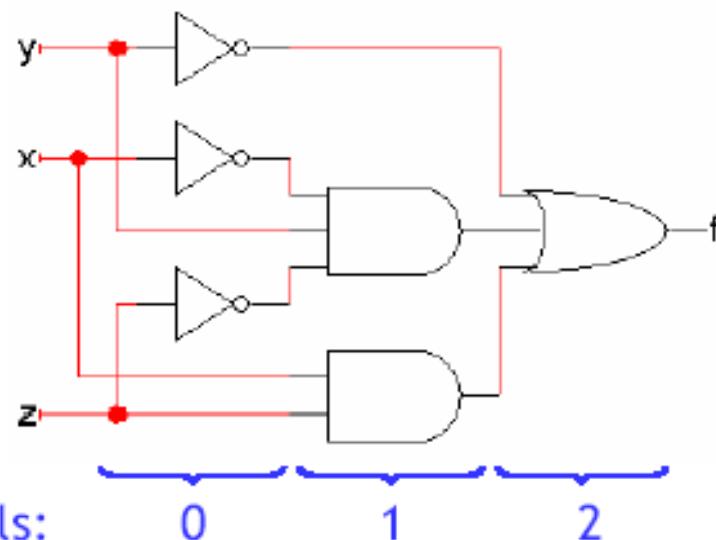
Sum-of-Products

Sum of products expressions

- There are many equivalent ways to write a function, but some forms turn out to be more useful than others.
- A **sum of products** or **SOP** expression consists of:
 - One or more terms *summed* (OR'ed) together.
 - Each of those terms is a *product of literals*.

$$f(x, y, z) = y' + x'yz' + xz$$

- Sum of products expressions can be implemented with **two-level circuits**.



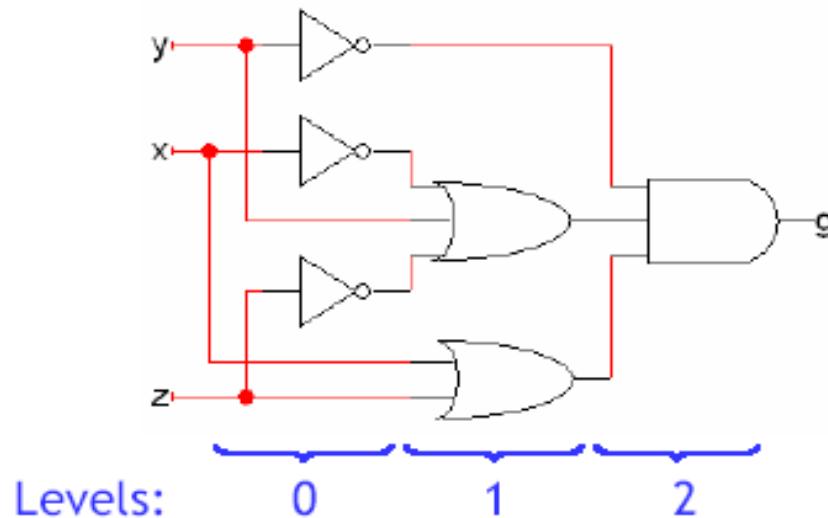
Product-of-Sums

Product of sums expressions

- As you might expect, we can work with the duals of these ideas too.
- A **product of sums** or **POS** consists of:
 - One or more terms *multiplied* (AND'ed) together.
 - Each of those terms is a *sum of literals*.

$$g(x, y, z) = y'(x' + y + z')(x + z)$$

- Products of sums can also be implemented with **two-level circuits**.



Minterms

- A **minterm** is a special product of literals, in which each input variable appears exactly once.
- A function with n input variables has 2^n possible minterms.
- For instance, a three-variable function $f(x,y,z)$ has 8 possible minterms:

$$\begin{array}{l} x'y'z' \\ x'y'z \\ x'y'z \\ x'y'z \end{array} \quad \begin{array}{l} x'y'z \\ x'y'z \\ x'y'z \\ x'y'z \end{array} \quad \begin{array}{l} x'y'z' \\ x'y'z' \\ x'y'z' \\ x'y'z' \end{array} \quad \begin{array}{l} x'y'z \\ x'y'z \\ x'y'z \\ x'y'z \end{array}$$

- Each minterm is true for exactly one combination of inputs.

Row number	x_1	x_2	x_3	Minterm	Maxterm
0	0	0	0	$m_0 = \bar{x}_1 \bar{x}_2 \bar{x}_3$	$M_0 = x_1 + x_2 + x_3$
1	0	0	1	$m_1 = \bar{x}_1 \bar{x}_2 x_3$	$M_1 = x_1 + x_2 + \bar{x}_3$
2	0	1	0	$m_2 = \bar{x}_1 x_2 \bar{x}_3$	$M_2 = x_1 + \bar{x}_2 + x_3$
3	0	1	1	$m_3 = \bar{x}_1 x_2 x_3$	$M_3 = x_1 + \bar{x}_2 + \bar{x}_3$
4	1	0	0	$m_4 = x_1 \bar{x}_2 \bar{x}_3$	$M_4 = \bar{x}_1 + x_2 + x_3$
5	1	0	1	$m_5 = x_1 \bar{x}_2 x_3$	$M_5 = \bar{x}_1 + x_2 + \bar{x}_3$
6	1	1	0	$m_6 = x_1 x_2 \bar{x}_3$	$M_6 = \bar{x}_1 + \bar{x}_2 + x_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \bar{x}_1 + \bar{x}_2 + \bar{x}_3$

Minterms

□ TABLE 2-9
Minterms for Three Variables

X	Y	Z	Product		m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
			Term	Symbol								
0	0	0	$\bar{X}\bar{Y}\bar{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\bar{X}\bar{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\bar{X}YZ$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\bar{X}Y\bar{Z}$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\bar{Y}\bar{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\bar{Y}Z$	m_5	0	0	0	0	0	1	0	0
1	1	0	$XY\bar{Z}$	m_6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m_7	0	0	0	0	0	0	0	1

Sum-of-Minterms

Sum of minterms expressions

- A **sum of minterms** is a special kind of sum of products.
- Every function can be written as a *unique* sum of minterms expression.
- A truth table for a function can be rewritten as a sum of minterms just by finding the table rows where the function output is 1.

x	y	z	$C(x,y,z)$	$C'(x,y,z)$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$\begin{aligned}C &= x'y'z + xy'z + xyz' + xyz \\&= m_3 + m_5 + m_6 + m_7 \\&= \Sigma m(3,5,6,7)\end{aligned}$$

$$\begin{aligned}C' &= x'y'z' + x'y'z + x'yz' + xy'z' \\&= m_0 + m_1 + m_2 + m_4 \\&= \Sigma m(0,1,2,4)\end{aligned}$$

C' contains all the minterms *not* in C , and vice versa.

Sum-of-Minterms

- Any function F can be represented by a sum of minterms, where each minterm is ANDed with the corresponding value of the output for F .

$$F = \sum (m_i \cdot f_i)$$

Denotes the logical sum operation

- where m_i is a minterm
- and f_i is the corresponding functional output

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

$$\begin{aligned}f &= m_0 \cdot 1 + m_1 \cdot 1 + m_2 \cdot 0 + m_3 \cdot 1 \\&= m_0 + m_1 + m_3 \\&= \bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + x_1 x_2\end{aligned}$$

- Only the minterms for which $f_i = 1$ appear in the expression for function F .
- $F = \sum (m_i) = \sum m(i)$ shorthand notation

Sum-of-Minterms

- Sum of minterms are a.k.a. Canonical Sum-of-Products
- Synthesis process
 - Determine the Canonical Sum-of-Products
 - Use Boolean Algebra (and K-maps) to find an optimal, functionally equivalent, expression.

Maxterms

- A **maxterm** is a *sum* of literals where each input variable appears once.
- A function with n input variables has 2^n possible maxterms.
- For instance, a function with three variables x , y and z has 8 possible maxterms:

$$\begin{array}{llll} x + y + z & x + y + z' & x + y' + z & x + y' + z' \\ x' + y + z & x' + y + z' & x' + y' + z & x' + y' + z' \end{array}$$

- Each maxterm is *false* for exactly one combination of inputs.

Row number	x_1	x_2	x_3	Minterm	Maxterm
0	0	0	0	$m_0 = \bar{x}_1 \bar{x}_2 \bar{x}_3$	$M_0 = x_1 + x_2 + x_3$
1	0	0	1	$m_1 = \bar{x}_1 \bar{x}_2 x_3$	$M_1 = x_1 + x_2 + \bar{x}_3$
2	0	1	0	$m_2 = \bar{x}_1 x_2 \bar{x}_3$	$M_2 = x_1 + \bar{x}_2 + x_3$
3	0	1	1	$m_3 = \bar{x}_1 x_2 x_3$	$M_3 = x_1 + \bar{x}_2 + \bar{x}_3$
4	1	0	0	$m_4 = x_1 \bar{x}_2 \bar{x}_3$	$M_4 = \bar{x}_1 + x_2 + x_3$
5	1	0	1	$m_5 = x_1 \bar{x}_2 x_3$	$M_5 = \bar{x}_1 + x_2 + \bar{x}_3$
6	1	1	0	$m_6 = x_1 x_2 \bar{x}_3$	$M_6 = \bar{x}_1 + \bar{x}_2 + x_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \bar{x}_1 + \bar{x}_2 + \bar{x}_3$

Maxterms

TABLE 2-10
Maxterms for Three Variables

Product-of-Maxterms

Product of maxterms expressions

- Every function can also be written as a unique **product of maxterms**.
- A truth table for a function can be rewritten as a product of maxterms just by finding the table rows where the function output is 0.

x	y	z	$C(x,y,z)$	$C'(x,y,z)$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$C = (x + y + z)(x + y + z') \\ (x + y' + z)(x' + y + z)$$

$$= M_0 M_1 M_2 M_4 \\ = \prod M(0,1,2,4) \quad \text{When the o/p is Zero} \\ = \sum m(3,5,6,7) \quad \text{When the o/p is 1}$$

$$C' = (x + y' + z')(x' + y + z') \\ (x' + y' + z)(x' + y' + z') \\ = M_3 M_5 M_6 M_7 \\ = \prod M(3,5,6,7)$$

C' contains all the maxterms *not* in C , and vice versa.

Product-of-Maxterms

- Any function F can be represented by a product of Maxterms, where each Maxterm is ANDed with the *complement* of the corresponding value of the output for F .

$$F = \prod (M_i \cdot f'_i)$$

- where M_i is a Maxterm

Denotes the logical product operation

- and f'_i is the complement of the corresponding functional output

- Only the Maxterms for which $f_i = 0$ appear in the expression for function F .
- $F = \prod (M_i) = \prod M(i)$ ← shorthand notation

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

$$f = M_2 = \overline{x_1} + \overline{x_2}$$

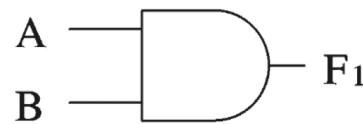
Product-of-Maxterms

- The Canonical Product-of-Sums for function F is the Product-of-Sums expression in which each sum term is a Maxterm.
- Synthesis process
 - Determine the Canonical Product-of-Sums
 - Use Boolean Algebra (and K-maps) to find an optimal, functionally equivalent, expression.

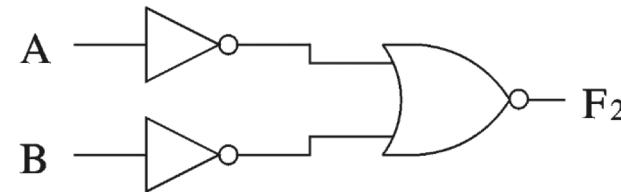
Logical Equivalence

- When two circuits implement same logic function

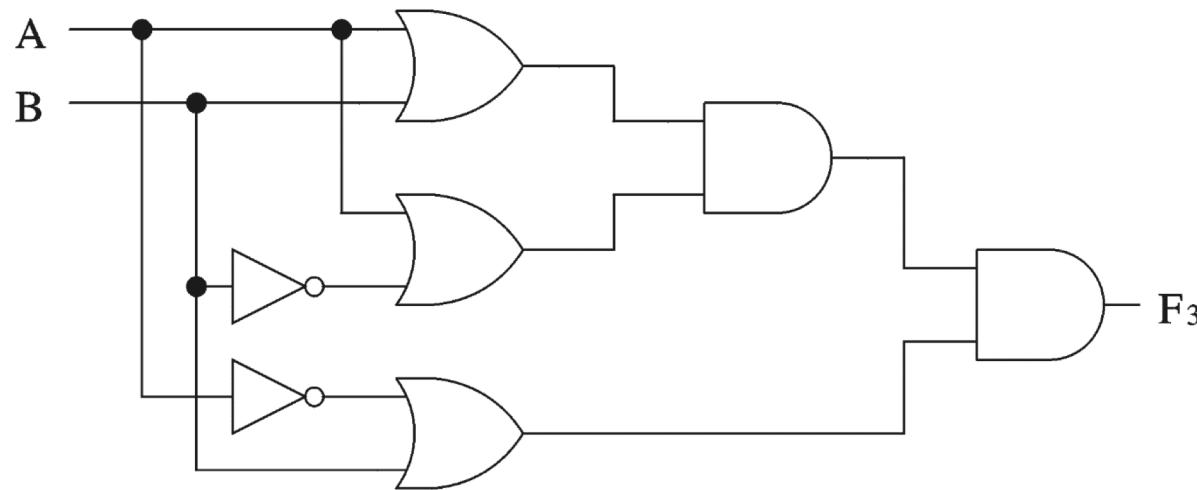
Example: All three circuits implement $F = A B$ function



(a)



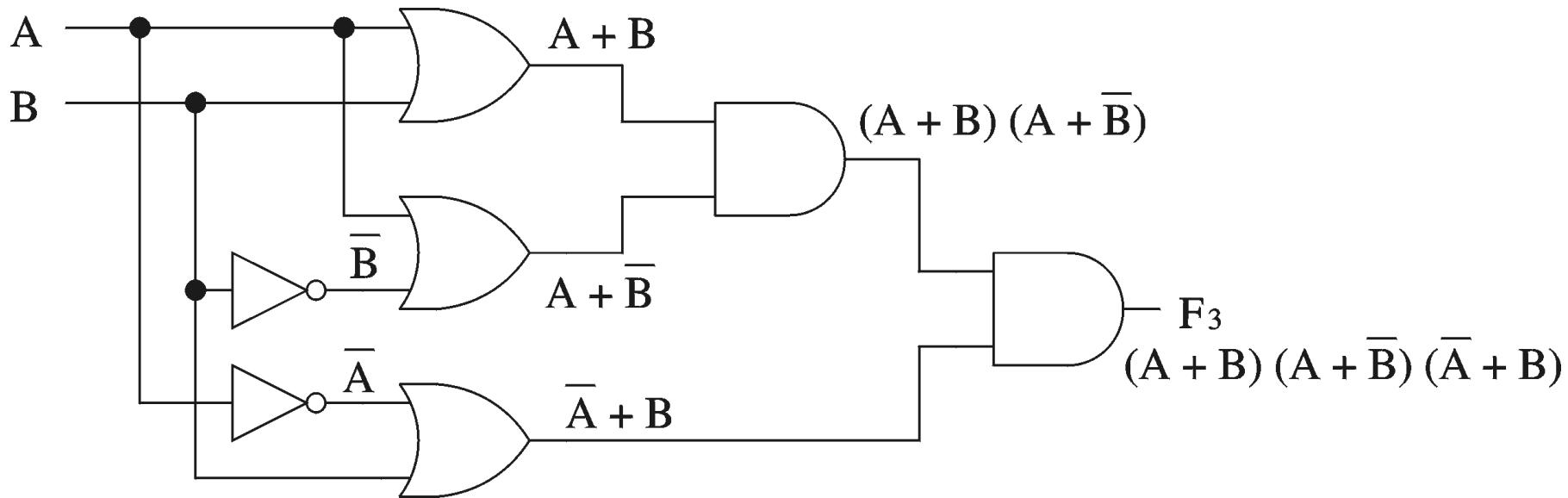
(b)



(c)

Logical Equivalence ...

- ▶ Proving logical equivalence:
- ▶ Derivation of logical expression from a circuit
 - ▶ Trace from the input to output
 - ▶ Write down intermediate logical expressions along the path



Logical Equivalence ...

- ▶ Build the truth table relating inputs to the output for each circuit
- ▶ If each function give the same output, they are logically equivalent

A	B	$F_1 = A \cdot B$	$F_3 = (\overline{A} + B) \cdot (\overline{A} + B) \cdot (\overline{A} + B)$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

- ▶ Exercise:
 - ▶ Show that $X \oplus Y$ is logically equivalent to $X'Y + XY'$