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Overview



Binary Logic 

§ Deals with binary variables and with operations that 
assume logical meaning. 

§ Variables are designated by letters of the alphabet, 
such as A, B, C, X, Y, and Z. 

§ Basic logical operations: AND, OR, NOT



} Basic logical operators are the logic functions:
} AND denoted by a dot (· ) Ex: Y= A.B or AB
} OR is denoted by a plus (+) Ex: Y= A+B
} NOT denoted by an overbar ( ¯ ), a single quote 

mark (') after, or (~) before the variable. Ex: Y=A’

} Should not be confused with binary arithmetic.

Binary Logic 

1 + 1 = 2 (read “one plus one equals two”)
is not the same as

1 + 1 = 1 (read “1 or 1 equals 1”).
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Digital Circuit
} Digital Circuit (hardware) manipulate binary information

} Input-output: one or more binary values
} Hardware consists of a few simple building blocks called logic gates
} Logic gate: a electronic device the operates on one or more 

input signals and produce an output.
} Basic Logic gates: AND, OR, NOT, … 
} Additional gates: NAND, NOR, XOR, XNOR…

} Logic gates are built using transistors
} NOT gate can be implemented by a single transistor
} AND-OR gate requires 3 transistors

} Transistors are the fundamental devices
} Pentium consists of 3 million transistors
} Compaq Alpha consists of 9 million transistors
} Now we can build chips with more than 100 million transistors



Integrated Circuits

Quadruple AND Chip Logic Diagram of a Quadruple AND Chip



Levels of Integration

} Integration levels
} SSI (small scale integration)

} Introduced in late 1960s
} 1-10 gates (previous examples)

} MSI (medium scale integration)
} Introduced in late 1960s
} 10-100 gates

} LSI (large scale integration)
} Introduced in early 1970s
} 100-10,000 gates

} VLSI (very large scale integration)
} Introduced in late 1970s
} More than 10,000 gates



Typical SSI Circuits



Logic Gates

} Basic gates
} AND
} OR
} NOT

} Functionality can be 
expressed by a truth table
} A truth table lists output for each 

possible input combination

} Precedence
} NOT > AND > OR
} F = A B + A B

=  (A (B)) + ((A) B)



Additional Logic Gates

} NAND= = AND + NOT
} NOR = OR + NOT
} NAND and NOR gates 

require only 2 transistors
} AND and OR need 3 

transistors!

}XOR: exclusive-OR
}XNOR: complement of XOR
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The XOR gate produces a HIGH output only when the 
inputs are at opposite logic levels.  The truth table is

The XOR Gate

Inputs
A    B  X   

Output

0    0
0    1
1    0
1    1

0
1 
1
0

A
B

X A
B

X= 1

The XOR operation is written as X = AB + AB. Alternatively, it 
can be written with a circled plus sign between the variables as 

X = A  +  B.

XOR Gate-1
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Example waveforms:

A

X
Notice that the XOR gate will produce a HIGH only when exactly one input 
is HIGH. 

The XOR Gate

B

A
B

X A
B

X= 1

XOR Gate-2
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The XNOR gate produces a HIGH output only when the 
inputs are at the same logic level.  The truth table is

The XNOR Gate

Inputs
A    B  X   

Output

0    0
0    1
1    0
1    1

1
0
0
1

A
B

X A
B

X

The XNOR operation can be shown as X = AB + AB. 

= 1

XNOR Gate-1
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Example waveforms:

A

X
Notice that the XNOR gate will produce a HIGH when both inputs are the 
same. This makes it useful for comparison functions. 

The XNOR Gate

B

A
B

X A
B

X
= 1

XNOR Gate-2



} A Boolean function consists of 
} Binary variables
} Constants 0, 1
} Logic operators: AND (.), OR (+), NOT(-), …

} A function with N input variables 
} With N logical variables, we can define

2
N

combination of inputs

} A Boolean function can be:
} single-output function
} multiple-output function

Boolean Algebra



} Designing a Logic Circuit
} A truth table is used to represent a logic function
} Logical expressions can be obtained from truth table
} Logical expressions can be transfer to logic diagram of the 

circuit

} Example:
} Majority function

} Output is one whenever majority of inputs is 1
} We use 3-input majority function

Boolean Algebra



Boolean Algebra

Logical expression form
F = A’BC + AB’C + ABC’ + ABC

= AB + BC + AC (after simplification)

Truth Table: 
3-input majority function

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Logic diagram 
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X . 1 X=
X . 0 0=
X . X X=

0=X . X

§ An algebraic structure defined on a set of at least two elements, (X,Y) 
together with three binary operators (denoted +, · and ) that 
satisfies the following basic identities:

10.
12.
14.
16.

X + Y Y + X=
(X + Y) Z+ X + (Y Z)+=
X(Y + Z) XY XZ+=
X + Y X . Y=

XY YX=
(XY) Z X(YZ)=
X + YZ (X + Y) (X + Z)=
X . Y X + Y=

X + 0 X=

+X 1 1=
X + X X=

1=X + X
X = X

Boolean Algebra



Boolean Algebra
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§ An algebraic structure defined on a set of at least two elements, (X,Y) 
together with three binary operators (denoted +, · and ) that 
satisfies the following basic identities:

10.
12.
14.
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X + Y Y + X=
(X + Y) Z+ X + (Y Z)+=
X(Y + Z) XY XZ+=
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X = X

between a single variable X, its 
complement X, and the binary 
constants 0 and 1.
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§ An algebraic structure defined on a set of at least two elements, (X,Y) 
together with three binary operators (denoted +, · and ) that 
satisfies the following basic identities:
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X = X

have counterparts in ordinary 
algebra

Boolean Algebra



Boolean Algebra
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§ The dual of an algebraic expression is obtained by interchanging OR 
and AND operations and replacing 1s by 0s and 0s by 1s. 

10.
12.
14.
16.

X + Y Y + X=
(X + Y) Z+ X + (Y Z)+=
X(Y + Z) XY XZ+=
X + Y X . Y=

XY YX=
(XY) Z X(YZ)=
X + YZ (X + Y) (X + Z)=
X . Y X + Y=

X + 0 X=

+X 1 1=
X + X X=

1=X + X
X = X

do not apply in ordinary algebra



x y z F1 F2 F3 F4
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 0 1
1 1 0 1 1
1 1 1 0 1
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Boolean Algebra

F1= xyz
F2= x+yz
F3= xyz+xyz+xy
F4= xy+xz



} NAND and NOR gates are called universal gates

} Proving NAND gate is universal

Universal Gates-1



} Proving NOR gate is universal

Universal Gates-2



Standard Forms

Standard Forms Boolean Expressions 
l Sum-of-Products (SOP)

- Derived from the Truth table for a function by 
considering those rows for which F = 1.

- The logical sum (OR) of product (AND) terms.
- Realized using an AND-OR circuit.

l Product-of-Sums (POS)
- Derived from the Truth table for a function by 

considering those rows for which F = 0.
- The logical product (AND) of sum (OR) terms.
- Realized using an OR-AND circuit.
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Sum-of-Products
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Product-of-Sums



Minterms



Minterms
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Sum-of-Minterms



l Any function F can be represented by a sum of minterms, 
where each minterm is ANDed with the corresponding value 
of the output for F.

- F = S (mi . fi)
l where mi is a minterm
l and fi is the corresponding functional output

- Only the minterms for which fi = 1 appear in the expression 
for function F.

- F = S (mi) = S m(i) shorthand notation

Denotes the logical 
sum operation

Sum-of-Minterms



l Sum of minterms are a.k.a. Canonical Sum-of-
Products

l Synthesis process
- Determine the Canonical Sum-of-Products
- Use Boolean Algebra (and K-maps) to find an 

optimal, functionally equivalent, expression. 

Sum-of-Minterms



Maxterms



Maxterms
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When the o/p is Zero
When the o/p is 1

Product-of-Maxterms



l Any function F can be represented by a product of Maxterms, where each 
Maxterm is ANDed with the complement of the corresponding value of 
the output for F.

- F = P (Mi . f 'i)

l where Mi is a Maxterm
l and f 'i is the complement of the corresponding 

functional output
- Only the Maxterms for which fi = 0 appear in the expression for 

function F.
- F = P (Mi) = P M(i) shorthand notation

Denotes the logical 
product operation

Product-of-Maxterms

f=M2= X1+X2



l The Canonical Product-of-Sums for function F is the Product-of-Sums 
expression in which each sum term is a Maxterm.

l Synthesis process
- Determine the Canonical Product-of-Sums
- Use Boolean Algebra (and K-maps) to find an optimal, functionally 

equivalent, expression. 

Product-of-Maxterms



Logical Equivalence
} When two circuits implement same logic function

Example: All three circuits implement F = A B function



Logical Equivalence …
} Proving logical equivalence:
} Derivation of logical expression from a circuit

} Trace from the input to output
} Write down intermediate logical expressions along the path



} Build the truth table relating inputs to the output for each 
circuit

} If each function give the same output, they are logically 
equivalent

A B F1 = A B F3 = (A + B) (A + B) (A + B)
0 0 0                                        0
0 1 0                                        0
1 0 0                                        0
1 1 1                                        1

Logical Equivalence …

} Exercise:
} Show that XÅY is logically equivalent to X’Y+XY’


