ags2sclloll

King Saud University

CSC 220: Computer Organization

Unit 12
CPU Design & Programming

Department of Computer Science
College of Computer and Information Sciences

Overview

» Simple Computer Architecture

* Single-Cycle Hardwired Control
* PC Function
* Instruction Decoder

° Example Instruction Execution

Chapter-8
M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design
Fundamentals, Global (51") Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Introduction

* Systems are:
— Non-programmable:
* sequence of fixed operations.

 execute fixed operations sequenced by inputs and status
signals only.

— Programmable:
* user inputs a program (loaded into memory).

* system decodes and executes each instruction in the
program.

* example: the simple computer in this chapter.

* A programmable system uses a sequence of instructions to
control its operation.

Introduction

* A typical instruction specifies:
— Operation to be performed.
— Operands to use.
— Where to place the result.
— Sometimes, which instruction to execute next.

* |nstructions are stored in RAM or ROM as a
program.

* SC needs to know the address in RAM\ROM of the
instruction to be executed.

— stored in PC (program counter) register.

Introduction

* The PC and associated control logic are part of the Control
Unit (CU).
* 3 steps performed by the CU:

— Fetch instruction from memory into IR (Instruction
Register).

— Decode the instruction.

— Execute the instruction: sequence of micro-operations.

Some Basic Terminology

* a program: a list of instructions

* specifies the operations to be performed by the
processor and,

* their sequence

* an instruction is a collection of bits that instructs the
processor to perform a specific operation.

* the collection of all instructions for a processor is called
instruction set.

* A thorough description of the instruction set for a
processor is called instruction set architecture (ISA).

Instruction Set Architecture (ISA)

* Any instruction set architecture has the following three
major components.

— Storage resources: the resources the user sees
available for storing information.

— Instruction formats: determine the meaning of the
bits used to encode each instruction.

— Instruction specifications: describe each of the
distinct instructions that can be executed by a
processor.

ISA: Storage Resources

* Resources available for Program counter
storing information (PC)
. . Instruction
— Register file memory
2'°x 16
— Program counter
(PC) Register file
8 X16

— Instruction memory
(program memory)

— Data memory Data

memory
219x 16

FIGURE 8-13 Storage Resource Diagram for a Simple Computer

ISA: Instruction Format

An instruction consists of a bit vector.

The fields of an instruction are subvectors representing

specific functions and having specific binary codes
defined.

An ISA usually contains multiple formats.

The SC ISA contains the three formats presented on
the next slide.

Instruction Format

15 9 8 6 5 3 2 0

Destination Source reg- Source reg-

Opcode register (DR) | ister A (SA) ister B (SB)

(a) Register

15 9 8 6 5 3 2 0

Opcode rogister (DR) | ister A (34) | OPerand (OP)
(b) Immediate
15 9 8 6 5 3 2 0
Address (AD) Source reg- | Address (AD)
Opcode (Left) ister A (SA) (Right)
(¢) Jump and Branch

The three formats are: Register, Immediate, and Jump and
Branch.

All formats contain an Opcode field in bits 9 through |5.
The Opcode specifies the operation to be performed.

More details on each format are provided on the next three

slides. 10

Instruction Format (Register)

15 9 8 6 5 3 2 0

Destination Source Source

Opcode
register (DR) | register A (SA)| register B (SB)

(a) Register
This format supports instructions represented by:
— RI <~ R2 +R3
— RI «sIR2
There are three 3-bit register fields:
— DR - specifies destination register (R1| in the examples)
— SA - specifies the A source register (R2 in the first example)

— SB - specifies the B source register (R3 in the first example and R2 in the
second example)

Rl < R2 + R3: 0000010001 01001 |
RI < sl R2: 0001110001 XXX 0I0

Why is R2 in the second example SB instead of SA?

— The source for the shifter in our datapath to be used in implementation
is Bus B rather than Bus A.

11

Instruction Format (Immediate)

15 9 8 65 32 0
Destination Source reg-
Opcode register (DR) | ister A (SA) |©OPerand (OF)

(b) Immediate

This format supports instructions described by:
— Rl «~R2+3

The B Source Register field is replaced by an Operand
field OP which specifies a constant.

The Operand:

— 3-bit constant.

— Values from 0 to 7.
The constant:

— Zero-fill (on the left of) the Operand to form 16-bit
constant.

— 1 6-bit representation for values 0 through 7.

Rl < R2 + 3: 0000010 OOl OlO O
12

Instruction Format (Jump and Branch)

15 9 8 6 5 3 2 0
Address (AD) | Source reg- | Address (AD)
Opcode (Left) ister A (SA) (Right)

(c) Jump and Branch

* This instruction supports changes in the sequence of
instruction execution

* by adding an extended, 6 bit, signed 2’s complement
address offset to the PC value.

* sign extension is applied to the 6-bit address to form a
| 6-bit offset before the addition

13

Else
PC = 45+| = 46 (45 + (— 12) = 33).

Instruction Format (Jump and Branch)

15 9 8 6 5 3 2 0

Address (AD) | Source reg- | Address (AD)
Opcode (Left) ister A (SA) (Right)

(c) Jump and Branch

Example |: suppose that PC =45, (0...0101101),

15 98 65 32 0

| 100000 110 100
branch-on-zero (BRZ)

Instruction Description
if (R[SA] = 0) PC<«< PC + se AD,
if (R[SA] # 0) PC < PC + 1

If R6 contains O Then
PC=0...0101101 + (I... 100) =

14

Instruction Format (Jump and Branch)

15 9 8 6 5 32 0
Address (AD) | Source reg- | Address (AD)
Opcode (Left) ister A (SA) (Right)

(c) Jump and Branch

Example 2: suppose that PC = 35 |,

15 98 65 32 0

| 100000
branch-on-zero (BRZ)

00| 100

Instruction Description

if (R[SA] = 0) PC<«< PC + se AD,
if (R[SA] # 0)PC<—PC + 1

If Rl contains O Then
PC=35+20=55

Instruction Format (Jump and Branch)

15 9 8 6 5 3 2 0
Address (AD) | Source reg- | Address (AD)
Opcode (Left) ister A (SA) (Right)

(c) Jump and Branch

Example 3: R2=70

15 9 8 65 32 0
1110000 010 e
JMP
Instruction Description jump target.
PC < R[SA]

After the instruction is executed: PC=70

Instruction Format (Jump and Branch)

Summary:

2.
3.
4

15

Affects the PC.
Can load the PC from source SA.

Can add the sign-extended 6-bit offset (AD) to the PC.

Can be either unconditional, or conditional based on
some flag value (i.e. Z, N, C,V).

9

8

6

5

o)
D

2 0

Opcode

Address (AD)
(Left)

Source reg-
ister A (SA)

Address (AD)
(Right)

17

ISA: Instruction Specifications

* The instruction specifications describe in detail each
instruction the system can execute.

* A mnemonic is written (instead of binary opcode) by
the programmer to represent the opcode in text.

= This representation is converted to the binary
representation by a program called an assembler.

= Example assemblers for Intel x86 processor:
NASM,YASM, MASM

= Not every instruction sets every flag
* Refer to Table 8-8

18

Instruction Specifications for SC -1

] TABLE 8-8

Instruction Specifications for the Simple Computer

Mne- Status

Instruction Opcode monic Format Description Bits
Move A 0000000 MOVA RD,RA R[DR] < R[SA]* N,Z
Increment 0000001 INC RD,RA R[DR] <« R[SA] + 1* N,Z
Add 0000010 ADD RD,RA,RB R[DR]<« R[SA] + R[SB]* N,Z
Subtract 0000101 SUB RD,RA,RB R[DR] <« R[SA] — R[SBJ* N,Z
Decrement 0000110 DEC RD,RA R[DR] <« R[SA] — 1* N,Z
AND 0001000 AND RD,RA,RB R[DR]<« R[SA] A R[SB]* N,Z
OR 0001001 OR RD,RA,RB R[DR]<« R[SA] VvV R[SB]* N,Z
Exclusive OR 0001010 XOR RD,RA,RB R[DR] <« R[SA] @ R[SB]* N,Z
NOT 0001011 NOT RD,RA R[DR] < R[SA]J* N,Z
Move B 0001100 MOVB RD, RB R[DR] < R[SB]*
Shift Right 0001101 SHR RD,RB R[DR] «sr R[SB]*
Shift Left 0001110 SHL. RD,RB R[DR] <« sl R[SB]*

Instruction Specifications for SC -2

[l TABLE 8-8
Instruction Specifications for the Simple Computer
Mne- Status

Instruction Opcode monic Format Description Bits
Load 1001100 LDI RD,OP R[DR] « zf OP*

Immediate

Add Immediate 1000010 ADI RD,RA,OP R[DR] <« R[SA] + zf OP* N,Z
Load 0010000 LD RD, RA R[DR] < M[SA]*
Store 0100000 ST RA,RB M[SA] < R[SB]*

Branchon Zero 1100000 BRZ RA,AD if (R[SA] = 0) PC«PC + se AD, N,Z
if (R[SA] # 0) PC«<PC + 1

Branch on 1100001 BRN RA,AD if (R[SA] < 0) PC«PC + se AD,N,Z
Negative if (R[SA] 2) PC<—PC + 1
Jump 1110000 JMP RA PC < R[SA]*

* For all of these instructions, PC <~ PC + 1 is also executed to prepare for the next cycle.

ISA: Instruction Specifications

* The specifications provide:
— The name of the instruction.

— The instruction's opcode.

— A shorthand name for the opcode called a mnemonic.

— A specification for the instruction format.
— A register transfer description of the instruction.

— Status bits important to this operation.

21

ISA: Instruction Specifications

Example:
Suppose R4 = 70, R5= 80, and memory location 70=192

M[70]<80

[0 TABLE 8-9
Memory Representation of Instructions and Data
Decimal Decimal
Address Memory Contents Opcode Other Fields Operation
25 | 0000101001010011 | 5 (Subtract) DR:1,SA:2,SB:3 R1« R2-R3
35 | 0100000000100 101 | 32 (Store) SA:4,SB:5 M[R4] < RS
45 | 1000010010111011 | 66 (Add DR:2,SA:70P33 Ro R7 + 3
Immediate)
55 | 1100000101 110100 | 96 (Branch AD:44,SA:6 If R6 = 0,
on Zero) PC«PC-20
70 | 00000000011000000 | Data = 192. After execution of instruction in 35,
Data = 80. <
22

Single-cycle hardwired control Unit

Vo ‘4|_%mlndIR(8:6) I TR (ﬁ))
C —|Branch Jump Address
N —{Control EC

. Z—> = =
control unit =~ 17 m=3andn=16
PJB Address
LBC Instruction 1
memory RW — D
Instruction DA — Register
AA—| Afilep |«<—BA
]
\ IR (2:0) | Zero fill] Constant
Instruction decoder m Yy
10 ~— MB
MUX B
Address out
Bus A Bus B
Data out
MW
DBAMFMRMP J B R
e b s B D el FS —> A B Data in Address
CONTROL
v . Data
C<— Funcpon memory
N unit
7 Data out
. . == E
Single-cycle computer: has a hardwired
control unit and that fetches and Data in
executes an instruction in a single clock ,
cycle. MD —{MUX D
Bus D T
DATAPATH

23

0 FIGURE 8-15
Block Diagram for a Single-Cycle Computer

Single-cycle hardwired control Unit

PC is used to select a word from

. | [Extend [t (O IR(E)) the instruction memory
C —|Branch ump Address
N —{Control DC /
7 —
PJB Address
LBC Instruction P -
memory S
Instruction DA Ol deCodc
AA A B BA
7o £l
Zero fill
\ IR (2:0) =0 M Constant
Instruction decoder n !
10 ~— MB
MUX B
Address out
Bus A Bus B
Data out
MW
DBAMFMRMP J B , Vo
AAABSDWWLBC - A B Datain Address
CONTROL
V=< . Data
C=— e e memory
unit
N <~—
Data out
7 <—]
F
Data in
01
MD —
Bus D MI{X D
DATAPATH

[J FIGURE 8-15

24

Block Diagram for a Single-Cycle Computer

Single-cycle hardwired control Unit

provide the address offset to the PC
IR (8:6) Il IR (2:0)

V -] Extend o
S: g;?lrtlfgll DC Jump Address
7 —
PJB Address
LBC Instruction
memory
Instruction
[T el
\ IR (2:0) | Zero fill] Constant
Instruction decoder i A |
10 <~ MB
MUX B
Address out
Bus A Bus B
Data out MW
DBAMFMRMP J B Vo
AAABSDWWLBC S A B Data in Address
CONTROL v 5
. ata
C<«—| Function memory
N unit
7 Data out
F
Data in
01
MD —>
MUX D
Bus D T
DATAPATH

25

0 FIGURE 8-15
Block Diagram for a Single-Cycle Computer

Instruction Decoder

The combinational instruction decoder
converts the instruction into the signals
necessary to control all parts of the
computer during the single cycle execution.

The input is the |6-bit Instruction.

The outputs are control signals:

Instruction

ol

Instruction
Decoder

Register file addresses DA, AA, and BA.
Function Unit Select FS.
Multiplexer Select Controls MB and MD.

Register file and Data Memory Write Controls
RW and MW.

PC Controls PL, |B, and BC.

g

Control Word

26

PC Function

* Branch Control determines the PC transfers based on five of

its inputs defined as follows:

— N,Z — negative and zero status bits
— PL — load enable for the PC

— |B — Jump/Branch select: If |B = I, Jump, else Branch
— BC — Branch Condition select: If BC = I, branch for N = |, else

branch for Z = |.

* The above is summarized by the following table:

PC Operation PL | JB | BC
Count Up 0 X | X
Jump I I X
Branch on Negative (else Count Up) I 0 I
Branch on Zero (else Count Up) I 0 0

27

Instruction Decoder

Instruction
Opcode DR SA SB
15 14 13 12 11 10 9 86 5-3 2-0
L
19-17 16-14 13-11 10 9-6 4 3 2 1 0
DA AA BA MB FS MD|RW | MW| PL | JB | BC
Control word

[0 FIGURE 8-16

Diagram of Instruction Decoder

28

Instruction Decoder

Instruction
Opcode DR SA SB
15 14 13 12 11 10 9 86 5-3 2-0

e — |

19-17 16-14 13-11 10 9-6 4 3 2 1 0
DA AA BA MB FS MD|RW | MW| PL | JB | BC
Control word

Instruction Decoder

Instruction
Opcode DR SA SB
15 14 13 12 11 10 9 86 5-3 2-0
L
19-17 16-14 13-11 10 9-6 4 3 2 1 0
DA AA BA MB FS MD|RW | MW| PL | JB | BC
Control word

FS(7:9) = 1(10:12)

[0 FIGURE 8-16

Diagram of Instruction Decoder

30

Instruction Decoder

[0 TABLE 8-10
Truth Table for Instruction Decoder Logic

Instruction Bits Control-Word Bits

Instruction Function Type i5 14 13 9 MB MD RW MW PL JB BC

Function-unit operations using o o 0 X O o0 1 0o 0 X X
registers

Memory read o o 1 X o0 1 1 0 0 X X
Memory write o 1 0 X 0 X O 0 X X
Function-unit operations using 1 0 0 X 1 O 0 0 X X
register and constant

Conditional branch on zero (Z) 1 1 0 0 X X 0 1 0
Conditional branch on negative (N) 1 1 1 X X 1
Unconditional jump 1 1 X X X 1 X
* The remaining control-word fields: MB, MD, RW, and MW

« MB=1(15), MD = I(13)
< RW=1I(14), MW = [(14).1(15)
= There are two added bits for the control of the PC: PL and JB
« PL=1(14).1(15)
- JB=1(13), BC=1(9)

Assembly Language Programming

Data

Example Program: address | memory

* Write an assembly language program to evaluate the

equationz =y - (x + 3) 248 2
e Assume that: 249 83
250

e X is located at the address 248

* yis located at the address 249

* zis located at the address 250
e R3=248

Solution:

=y - (x+3)

l M[248]
M[249]

Example Program:

Data
* Write an assembly language program to evaluate the address | memory
equationz =y - (x + 3)
* Assume that: 248 2
249 83

* X is located at the address 248
* yislocated at the address 249.
* zis located at the address 250

Assembly Language Programming

250

e R3=248

Solution:
LD R1, R3 Load R1 with contents of location 248 in memory (R1 = 2)
ADI R1,R1,3 Add3toR1(R1=5)
INC R3, R3 Increment the contents of R3 (R3= 249)
LD R2, R3 Load R2 with contents of location 249 in memory (R2 = 83)
SUB R2, R2, R1 Subtract contents of R1 from contents of R2 (R2 = 78)
INC R3, R3 Increment the contents of R3 (R3 = 250)
ST R3, R2 Store R2 in memory location 250 (M[250] = 78)

33

Control Unit Design

Single-cycle hardwired control Unit

. Extend IR(8:6) Il IR(2:0)
= the PC is updated on each clock cycle. Each C~{ Branchl —"5
. N = Control
instruction is completed in a single cycle. Z—»t -
= The PC is used to select a word from the PIE |EE
. . LBC Instruction
Instruction memory: memory
. .)) Instruction
* load the instruction to Instruction Register (IR) .
IR
* which is driven to the instruction decoder TRO0) [Zero fin}-
* The instruction decoder then provides: SIS R REIeRs
* the control word to the datapath to activate the
desired functionality,
* determines how the PC is updated. DBAMFMRMIPJB
AAABSDWW|LBC

Control Unit

34

Programming and CPUs

Programs written in a high-level High-level program
language like C++ must be compiled 1
to produce an executable program.

The result is a CPU-specific machine Compiler

language program. This can be loaded 1

into memory and executed by the Executable file

processor. s oo Software |
CSC 220 focuses on stuff below the Hardware
dotted blue line, but machine language Control Unit

serves as the interface between 1

hardware and software. Control words

Machine language instructions are 1
sequences of bits in a specific order.

Datapath

