
1

CSC 220: Computer Organization

Unit 12
CPU Design & Programming

Prepared by: Updated by:
Md Saiful Islam, PhD Isra Al-Turaiki, PhD

Department of Computer Science
College of Computer and Information Sciences

Overview

• Simple Computer Architecture
• Single-Cycle Hardwired Control

• PC Function
• Instruction Decoder
• Example Instruction Execution

Chapter-8
M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design
Fundamentals, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

3

• Systems are:
– Non-programmable:

• sequence of fixed operations.
• execute fixed operations sequenced by inputs and status

signals only.
– Programmable:

• user inputs a program (loaded into memory).
• system decodes and executes each instruction in the

program.
• example: the simple computer in this chapter.

• A programmable system uses a sequence of instructions to
control its operation.

Introduction

4

Introduction

• A typical instruction specifies:
– Operation to be performed.
– Operands to use.
– Where to place the result.
– Sometimes, which instruction to execute next.

• Instructions are stored in RAM or ROM as a
program.

• SC needs to know the address in RAM\ROM of the
instruction to be executed.
– stored in PC (program counter) register.

5

• The PC and associated control logic are part of the Control
Unit (CU).

• 3 steps performed by the CU:
– Fetch instruction from memory into IR (Instruction

Register).
– Decode the instruction.
– Execute the instruction: sequence of micro-operations.

Introduction

6

Some Basic Terminology

• a program: a list of instructions
• specifies the operations to be performed by the

processor and,
• their sequence

• an instruction is a collection of bits that instructs the
processor to perform a specific operation.

• the collection of all instructions for a processor is called
instruction set.

• A thorough description of the instruction set for a
processor is called instruction set architecture (ISA).

7

Instruction Set Architecture (ISA)

• Any instruction set architecture has the following three
major components.
– Storage resources: the resources the user sees

available for storing information.
– Instruction formats: determine the meaning of the

bits used to encode each instruction.
– Instruction specifications: describe each of the

distinct instructions that can be executed by a
processor.

• Resources available for
storing information
– Register file

– Program counter
(PC)

– Instruction memory
(program memory)

– Data memory

8

ISA: Storage Resources

Instruction
memory
215x 16

Data
memory
215x16

Register file
8x16

Program counter
(PC)

FIGURE 8-13 Storage Resource Diagram for a Simple Computer

• An instruction consists of a bit vector.
• The fields of an instruction are subvectors representing

specific functions and having specific binary codes
defined.

• An ISA usually contains multiple formats.
• The SC ISA contains the three formats presented on

the next slide.

9

ISA: Instruction Format

10

Instruction Format

• The three formats are: Register, Immediate, and Jump and
Branch.

• All formats contain an Opcode field in bits 9 through 15.

• The Opcode specifies the operation to be performed.

• More details on each format are provided on the next three
slides.

(c) Jump and Branch

(a) Register

Opcode Destination
register (DR)

Source reg-
ister A (SA)

Source reg-
ister B (SB)

15 9 8 6 5 3 2 0

(b) Immediate

Opcode Destination
register (DR)

Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

Opcode Source reg-
ister A (SA)

15 9 8 6 5 3 2 0
Address (AD)

(Right)
Address (AD)

(Left)

11

Instruction Format (Register)

• This format supports instructions represented by:
– R1 ← R2 + R3
– R1 ← sl R2

• There are three 3-bit register fields:
– DR - specifies destination register (R1 in the examples)
– SA - specifies the A source register (R2 in the first example)
– SB - specifies the B source register (R3 in the first example and R2 in the

second example)

• R1 ← R2 + R3: 0000010 001 010 011
• R1 ← sl R2: 0001110 001 XXX 010

• Why is R2 in the second example SB instead of SA?
– The source for the shifter in our datapath to be used in implementation

is Bus B rather than Bus A.

(a) Register

Opcode
Destination

register (DR)

Source

register A (SA)

15 9 8 6 5 3 2 0

Source

register B (SB)

12

Instruction Format (Immediate)

(b) Immediate

Opcode
Destination

register (DR)
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

• This format supports instructions described by:
– R1 ← R2 + 3

• The B Source Register field is replaced by an Operand
field OP which specifies a constant.

• The Operand:
– 3-bit constant.
– Values from 0 to 7.

• The constant:
– Zero-fill (on the left of) the Operand to form 16-bit

constant.
– 16-bit representation for values 0 through 7.

• R1 ← R2 + 3: 0000010 001 010 011

13

Instruction Format (Jump and Branch)

• This instruction supports changes in the sequence of
instruction execution

• by adding an extended, 6 bit, signed 2’s complement
address offset to the PC value.

• sign extension is applied to the 6-bit address to form a
16-bit offset before the addition

(c) Jump and Branch

Opcode
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)

14

Example 1: suppose that PC = 4510 (0…0101101)2

Instruction Format (Jump and Branch)

(c) Jump and Branch

Opcode
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)

If R6 contains 0 Then
PC = 0…0101101 + (1…110100) =
(45 + (– 12) = 33).

Else
PC = 45+1 = 46

branch-on-zero (BRZ)

110

15 9 8 6 5 3 2 0

1001101100000

Instruction Description

15

Instruction Format (Jump and Branch)

(c) Jump and Branch

Opcode
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)

15

Example 2: suppose that PC = 35 10

If R1 contains 0 Then
PC = 35 + 20 = 55Else

PC = 36

branch-on-zero (BRZ)
001

15 9 8 6 5 3 2 0

1000101100000

Instruction Description

After the instruction is executed: PC=70

16

Instruction Format (Jump and Branch)

(c) Jump and Branch

Opcode
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)

jump target.

Example 3: R2= 70

JMP
010

15 9 8 6 5 3 2 0

xxxxxx1110000

Instruction Description

Summary:

1. Affects the PC.
2. Can load the PC from source SA.

3. Can add the sign-extended 6-bit offset (AD) to the PC.
4. Can be either unconditional, or conditional based on

some flag value (i.e. Z, N, C, V).

17

Instruction Format (Jump and Branch)

18

ISA: Instruction Specifications

§ The instruction specifications describe in detail each
instruction the system can execute.

§ A mnemonic is written (instead of binary opcode) by
the programmer to represent the opcode in text.

§ This representation is converted to the binary
representation by a program called an assembler.

§ Example assemblers for Intel x86 processor:
NASM, YASM, MASM

§ Not every instruction sets every flag
• Refer to Table 8-8

Instruction Specifications for SC -1

Instruction Specifications for SC -2

21

ISA: Instruction Specifications

• The specifications provide:
– The name of the instruction.

– The instruction's opcode.

– A shorthand name for the opcode called a mnemonic.

– A specification for the instruction format.

– A register transfer description of the instruction.

– Status bits important to this operation.

22

ISA: Instruction Specifications

Example:
Suppose R4 = 70, R5= 80, and memory location 70=192

M[70]ß80

23

Single-cycle hardwired control Unit

Single-cycle computer: has a hardwired
control unit and that fetches and
executes an instruction in a single clock
cycle.

m = 3 and n = 16 control unit

Data Memory

24

Single-cycle hardwired control Unit
PC is used to select a word from

the instruction memory

Selected instruction goes to
instruction decoder

25

Single-cycle hardwired control Unit
provide the address offset to the PC

Provide constant input

26

Instruction Decoder

• The combinational instruction decoder
converts the instruction into the signals
necessary to control all parts of the
computer during the single cycle execution.

• The input is the 16-bit Instruction.

• The outputs are control signals:
– Register file addresses DA, AA, and BA.

– Function Unit Select FS.
– Multiplexer Select Controls MB and MD.

– Register file and Data Memory Write Controls
RW and MW.

– PC Controls PL, JB, and BC.

Instruction

Control Word

16

20

Instruction
Decoder

27

PC Function
• Branch Control determines the PC transfers based on five of

its inputs defined as follows:
– N,Z – negative and zero status bits
– PL – load enable for the PC

– JB – Jump/Branch select: If JB = 1, Jump, else Branch

– BC – Branch Condition select: If BC = 1, branch for N = 1, else
branch for Z = 1.

• The above is summarized by the following table:

PC Operation PL JB BC
Count Up 0 X X

Jump 1 1 X

Branch on Negative (else Count Up) 1 0 1

Branch on Zero (else Count Up) 1 0 0

28

Instruction Decoder

29

Instruction Decoder

DA, AA, and BA are equal to the instruction fields DR, SA, and SB, respectively.

30

Instruction Decoder

FS(7:9) = I(10:12)

31

§ The remaining control-word fields: MB, MD, RW, and MW
• MB = I(15), MD = I(13)
• RW = I(14)¢, MW = I(14).I(15)¢

§ There are two added bits for the control of the PC: PL and JB
• PL = I(14).I(15)
• JB = I(13), BC = I(9)

Instruction Decoder

32

Assembly Language Programming
Data

memoryaddress
……
2248
83249

250
……
……

Example Program:

• Write an assembly language program to evaluate the
equation z = y - (x + 3)

• Assume that:

• x is located at the address 248

• y is located at the address 249

• z is located at the address 250

• R3 = 248

Solution:

z = y - (x + 3)

M[248]M[250]
M[249]

33

Assembly Language Programming

LD R1, R3 Load R1 with contents of location 248 in memory (R1 = 2)
ADI R1, R1, 3 Add 3 to R1 (R1=5)
INC R3, R3 Increment the contents of R3 (R3= 249)
LD R2, R3 Load R2 with contents of location 249 in memory (R2 = 83)
SUB R2, R2, R1 Subtract contents of R1 from contents of R2 (R2 = 78)
INC R3, R3 Increment the contents of R3 (R3 = 250)
ST R3, R2 Store R2 in memory location 250 (M[250] = 78)

Data
memoryaddress

……
2248
83249

250
……
……

Example Program:

• Write an assembly language program to evaluate the
equation z = y - (x + 3)

• Assume that:

• x is located at the address 248

• y is located at the address 249.

• z is located at the address 250

• R3 = 248

Solution:

34

Control Unit Design
Single-cycle hardwired control Unit
§ the PC is updated on each clock cycle. Each

instruction is completed in a single cycle.

§ The PC is used to select a word from the
instruction memory:

• load the instruction to Instruction Register (IR)
• which is driven to the instruction decoder

§ The instruction decoder then provides:
• the control word to the datapath to activate the

desired functionality,
• determines how the PC is updated.

Control Unit

IR

Programming and CPUs

• Programs written in a high-level
language like C++ must be compiled
to produce an executable program.

• The result is a CPU-specific machine
language program. This can be loaded
into memory and executed by the
processor.

• CSC 220 focuses on stuff below the
dotted blue line, but machine language
serves as the interface between
hardware and software.

• Machine language instructions are
sequences of bits in a specific order.

Datapath

High-level program

Executable file

Control words

Compiler

Control Unit
Hardware

Software

