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• Systems are:
– Non-programmable:

• sequence of fixed operations. 
• execute fixed operations sequenced by inputs and status 

signals only. 
– Programmable:

• user inputs a program (loaded into memory).
• system decodes and executes each instruction in the 

program.
• example: the simple computer in this chapter. 

• A programmable system uses a sequence of instructions to 
control its operation.

Introduction
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Introduction

• A typical instruction specifies:
– Operation to be performed.
– Operands to use.
– Where to place the result.
– Sometimes, which instruction to execute next.

• Instructions are stored in RAM or ROM as a 
program.

• SC needs to know the address in RAM\ROM of the 
instruction to be executed.
– stored in PC (program counter) register.
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• The PC and associated control logic are part of the Control 
Unit (CU).

• 3 steps performed by the CU:
– Fetch instruction from memory into IR (Instruction 

Register).
– Decode the instruction.
– Execute the instruction: sequence of micro-operations.

Introduction
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Some Basic Terminology

• a program: a list of instructions
• specifies the operations to be performed by the 

processor and,
• their sequence

• an instruction is a collection of bits that instructs the 
processor to perform a specific operation.

• the collection of all instructions for a processor is called 
instruction set.

• A thorough description of the instruction set for a 
processor is called instruction set architecture (ISA).
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Instruction Set Architecture (ISA)

• Any instruction set architecture has the following three 
major components.
– Storage resources: the resources the user sees 

available for storing information.
– Instruction formats: determine the meaning of the 

bits used to encode each instruction.
– Instruction specifications: describe each of the 

distinct instructions that can be executed by a 
processor.



• Resources available for 
storing information
– Register file

– Program counter 
(PC)

– Instruction memory 
(program memory)

– Data memory
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ISA: Storage Resources 

Instruction
memory
215x 16

Data
memory
215x16

Register file
8x16

Program counter
(PC)

FIGURE 8-13 Storage Resource Diagram for a Simple Computer



• An instruction consists of a bit vector.
• The fields of an instruction are subvectors representing 

specific functions and having specific binary codes 
defined.

• An ISA usually contains multiple formats.
• The SC ISA contains the three formats presented on 

the next slide.
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ISA: Instruction Format
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Instruction Format

• The three formats are: Register, Immediate, and Jump and 
Branch.

• All formats contain an Opcode field in bits 9 through 15.

• The Opcode specifies the operation to be performed.

• More details on each format are provided on the next three 
slides.

(c) Jump and Branch

(a) Register

Opcode Destination
register (DR)

Source reg-
ister A (SA)

Source reg-
ister B (SB)

15 9 8 6 5 3 2 0

(b) Immediate

Opcode Destination
register (DR)

Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

Opcode Source reg-
ister A (SA)

15 9 8 6 5 3 2 0
Address (AD)

(Right)
Address (AD)

(Left)
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Instruction Format (Register)

• This format supports instructions represented by:
– R1 ← R2 + R3
– R1 ← sl R2

• There are three 3-bit register fields:
– DR - specifies destination register (R1 in the examples)
– SA - specifies the A source register (R2 in the first example)
– SB - specifies the B source register (R3 in the first example and R2 in the 

second example)

• R1 ← R2 + R3: 0000010 001 010 011
• R1 ← sl R2: 0001110 001 XXX 010

• Why is R2 in the second example SB instead of SA?
– The source for the shifter in our datapath to be used in implementation 

is Bus B rather than Bus A. 

(a) Register

Opcode
Destination

register (DR)

Source

register A (SA)

15 9 8 6 5 3 2 0

Source

register B (SB)
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Instruction Format (Immediate)

(b) Immediate

Opcode
Destination

register (DR)
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

• This format supports instructions described by:
– R1 ← R2 + 3

• The B Source Register field is replaced by an Operand 
field OP which specifies a constant. 

• The Operand:
– 3-bit constant.
– Values from 0 to 7.

• The constant:
– Zero-fill (on the left of) the Operand to form 16-bit 

constant.
– 16-bit representation for values 0 through 7.

• R1 ← R2 + 3: 0000010  001 010 011
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Instruction Format (Jump and Branch)

• This instruction supports changes in the sequence of 
instruction execution 

• by adding an extended, 6 bit, signed 2’s complement 
address offset to the PC value.

• sign extension is applied to the 6-bit address to form a 
16-bit offset before the addition 

(c) Jump and Branch

Opcode
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)
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Example 1: suppose that PC = 4510 (0…0101101)2

Instruction Format (Jump and Branch)

(c) Jump and Branch

Opcode
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)

If R6 contains 0 Then 
PC = 0…0101101 + (1…110100) = 
(45 + (– 12) = 33).   

Else 
PC = 45+1 = 46

branch-on-zero (BRZ)

110

15 9 8 6 5 3 2 0

1001101100000 

Instruction Description
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Instruction Format (Jump and Branch)

(c) Jump and Branch

Opcode
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)
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Example 2: suppose that PC = 35 10

If R1 contains 0 Then 
PC = 35 + 20 = 55Else 

PC = 36

branch-on-zero (BRZ)
001

15 9 8 6 5 3 2 0

1000101100000 

Instruction Description



After the instruction is executed: PC=70
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Instruction Format (Jump and Branch)

(c) Jump and Branch

Opcode
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)

jump target. 

Example 3: R2= 70

JMP
010

15 9 8 6 5 3 2 0

xxxxxx1110000

Instruction Description



Summary: 

1. Affects the PC.
2. Can load the PC from source SA.

3. Can add the sign-extended 6-bit offset (AD) to the PC.
4. Can be either unconditional, or conditional based on 

some flag value (i.e. Z, N, C, V).
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Instruction Format (Jump and Branch)
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ISA: Instruction Specifications

§ The instruction specifications describe in detail each 
instruction the system can execute.

§ A mnemonic is written (instead of binary opcode) by 
the programmer to represent the opcode in text.

§ This representation is converted to the binary 
representation by a program called an assembler. 

§ Example assemblers for Intel x86 processor: 
NASM, YASM, MASM

§ Not every instruction sets every flag
• Refer to Table 8-8



Instruction Specifications for SC -1



Instruction Specifications for SC -2
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ISA: Instruction Specifications

• The specifications provide:
– The name of the instruction.

– The instruction's opcode.

– A shorthand name for the opcode called a mnemonic.

– A specification for the instruction format.

– A register transfer description of the instruction.

– Status bits important to this operation.
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ISA: Instruction Specifications

Example:
Suppose R4 = 70, R5= 80, and memory location 70=192 

M[70]ß80
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Single-cycle hardwired control Unit

Single-cycle computer: has a hardwired
control unit and that fetches and
executes an instruction in a single clock
cycle.

m = 3 and n = 16 control unit 

Data Memory
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Single-cycle hardwired control Unit
PC is used to select a word from 

the instruction memory

Selected instruction goes to 
instruction decoder
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Single-cycle hardwired control Unit
provide the address offset to the PC 

Provide constant input 
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Instruction Decoder

• The combinational instruction decoder
converts the instruction into the signals 
necessary to control all parts of the 
computer during the single cycle execution.

• The input is the 16-bit Instruction.

• The outputs are control signals:
– Register file addresses DA, AA, and BA.

– Function Unit Select FS.
– Multiplexer Select Controls MB and MD. 

– Register file and Data Memory Write Controls 
RW and MW.

– PC Controls PL, JB, and BC.

Instruction

Control Word

16

20

Instruction 
Decoder
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PC Function
• Branch Control determines the PC transfers based on five of 

its inputs defined as follows:
– N,Z – negative and zero status bits
– PL – load enable for the PC

– JB – Jump/Branch select: If JB = 1, Jump, else Branch

– BC – Branch Condition select: If BC = 1, branch for N = 1, else 
branch for Z = 1. 

• The above is summarized by the following table:

PC Operation PL JB BC
Count Up 0 X X

Jump 1 1 X

Branch on Negative (else Count Up) 1 0 1

Branch on Zero (else Count Up) 1 0 0
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Instruction Decoder
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Instruction Decoder

DA, AA, and BA are equal to the instruction fields DR, SA, and SB, respectively. 
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Instruction Decoder

FS(7:9) = I(10:12)
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§ The remaining control-word fields: MB, MD, RW, and MW
• MB = I(15), MD = I(13)
• RW = I(14)¢, MW = I(14).I(15)¢

§ There are two added bits for the control of the PC: PL and JB
• PL = I(14).I(15)
• JB = I(13), BC = I(9)

Instruction Decoder



32

Assembly Language Programming
Data 

memoryaddress
……
2248
83249

250
……
……

Example Program: 

• Write an assembly language program to evaluate the 
equation z = y - (x + 3)

• Assume that:

• x is located at the address 248 

• y is located at the address 249 

• z is located at the address 250

• R3 = 248

Solution:

z = y - (x + 3)

M[248]M[250] 
M[249] 
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Assembly Language Programming

LD R1, R3 Load R1 with contents of location 248 in memory (R1 = 2)
ADI R1, R1, 3     Add 3 to R1 (R1=5)
INC R3, R3 Increment the contents of R3 (R3= 249) 
LD R2, R3  Load R2 with contents of location 249 in memory (R2 = 83)
SUB R2, R2, R1 Subtract contents of R1 from contents of R2 (R2 = 78)
INC R3, R3 Increment the contents of R3 (R3 = 250)
ST R3, R2 Store R2 in memory location 250 (M[250] = 78)

Data 
memoryaddress

……
2248
83249

250
……
……

Example Program: 

• Write an assembly language program to evaluate the 
equation z = y - (x + 3)

• Assume that:

• x is located at the address 248 

• y is located at the address 249. 

• z is located at the address 250

• R3 = 248

Solution:
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Control Unit Design
Single-cycle hardwired control Unit
§ the PC is updated on each clock cycle. Each 

instruction is completed in a single cycle.

§ The PC is used to select a word from the 
instruction memory:

• load the instruction to Instruction Register (IR)
• which is driven to the instruction decoder

§ The instruction decoder then provides:
• the control word to the datapath to activate the 

desired functionality, 
• determines how the PC is updated.

Control Unit

IR



Programming and CPUs

• Programs written in a high-level 
language like C++ must be compiled
to produce an executable program.

• The result is a CPU-specific machine 
language program. This can be loaded 
into memory and executed by the 
processor.

• CSC 220 focuses on stuff below the 
dotted blue line, but machine language 
serves as the interface between 
hardware and software.

• Machine language instructions are 
sequences of bits in a specific order. 

Datapath

High-level program

Executable file

Control words

Compiler

Control Unit
Hardware

Software


