King Saud University

CSC 220: Computer Organization

Unit 11
Datapath Design

Department of Computer Science

College of Computer and Information Sciences

Overview

Register file

Datapath Representation
Accessing RAM

The Control Word

Chapter-8
M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design
Fundamentals, Global (51") Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Introduction

Computer Specification

— Instruction Set Architecture (ISA) - the specification
of a computer's appearance to a programmer at its
lowest level.

— Computer Architecture - a high-level description of
the hardware implementing the computer derived

from the ISA

Introduction

The architecture, for a simple computer; is typically divided
Into:

* Datapath for performing operations.

* Control unit for controlling datapath operations.

Memory
1 :
CPU C%r;tirt(’l i Datapath
—
i v

Input/Output

Datapath Design

A datapath is specified by:

* A set of registers with common access resources
called a register file.

* One or more shared resources for implementing
microoperations:

* Buses - shared transfer paths.
* Arithmetic-Logic Unit (ALU)
* Shifter
* A control interface: signals coming into datapath.

* The datapath completes a single microoperation
each clock cycle.

Register File

Modern processors contain an array
of fast registers grouped together in a
register file.

D
The register file appears like a El/
memory based on clocked flip-flops
(the clock is not shown) D data
WR——>| Write
Much like words stored in a RAM, 5A —KZ | b address
individual registers are identified by an .
Register File
address.
Here is a block symbol for a an —K/ 5] A address B address
2“x n register file. A data B data

ko . :
— There are 2" registers, so register
addresses are k bits long.

— Each register holds an n-bit word, so
the data inputs and outputs are n bits

wide.

4{

t

Accessing the Register File

* You can read two registers at
once by supplying the AA and BA

inputs. The data appears on the A
and B outputs.

* You can write to a register by
using the DA and D inputs, and
setting WR = |.

* These are registers so there
must be a clock signal, even

though we usually don’t show it
in diagrams.

D

T

WR ——

DAﬁkL»
AAﬁkL.

Write
D address

D data

Register File

A address

A data

B address

B data

4:

ﬂ!

Datapath Example

Four parallel-load registers.

Two mux-based register
selectors.

Register destination
decoder.

Mux B for external
constant input.

Buses A and B with external
address and data outputs.

ALU and Shifter with
Mux F for output select.

Mux D for external data input.

Logic for generating status bits
V,C, N, Z
8

Load enable A select B select
Write A address B address
D data n
Y
’iLoad > RO 2 2
n | n
’7Load > R1 Y
>0
| n >|1
MUX [
Y >|2
n
—D 1 mux [
Load | R2 > |2
”|3
ﬁnﬁ | n
Load R3
I:: n n
01 2 3
Decod L Register file
ecoder
D address A data B data
2 Constant in —2 * + n
Destination select n 1 0
MB select
MUX B
Bus A N (A)d(tlress
Bus B n u
> Data
4 A B h Out
/ Y
FS7L G select H select
Lslslic Pl L E
2:0 in
V <————— Arithmetic/logic 0—>Iz Shifter I |[<—0
C < unit (ALU)
G H
N -
2 n |
VA Zero Detect \ *
MF select —> g’[UX Fl Function unit
F
‘tn Data In
MD select —| I\QIUXDI
n Bus D T

Datapath Example

Microoperation: RO <— RI + R2

Apply Ol to A select to place
contents of Rl onto Bus A
Apply 10 to B select to place
contents of R2 onto B data
Apply 0 to MB select to place
B data on Bus B

Apply 0010 to FS select to perform
addition G = BusA + Bus B

Apply 0 to MD select to place the
value of G onto BUS D

Apply 00 to Destination select
to enable the Load input to RO

Apply | to Load Enable to force the
Load input to RO to | so that RO is
loaded on the clock pulse (not
shown)

The overall microoperation requires

| clock cycle

Load enable I A select B select
Write A address B address
D data n
1
Load
) ~ RO
J 2 2
n | n
ﬂ_\ Load
) > R1
0
||'*n > mux
5 L
n
—I—\ 1! mux [
Load
> R2 > 2
|_/
”|3
ﬁnﬁ l n
Load R3
I:: n n
01 2 3 m
Decod Register file
ecoder
D address A data B data
2 Constant in —2 + { n
Destination select n 1 0
MB select
Bus A MUX B n N Address
Bus B n Out
> Data
4 A B 4 Out
A /
G select H select
0010 Fs—~ 4 [A 2, ¢ B
Sz I Cia
V <————— Arithmetic/logic 0—>Iz Shifter I |[<—0
C < unit (éLU) "

N s T
7 <—|{Zero Detect oy

MF select —>

0

MUXF

1

i

Function unit

MD select D—>

Bus D

0 1
MUX D
]

Data In

Datapath Example: Key Control Actions for Microoperation Alternatives

* Perform a shift microoperation —
apply | to MF select

* Use a constant in a micro-
operation using Bus B — apply |
to MB select

* Provide an address and data for a
memory or output write
microoperation — apply 0 to Load
enable to prevent register loading

* Provide an address and obtain
data for a memory or output

read microoperation — apply | to
MD select

* For some of the above, other
control signals become don't
cares

Load enable

Write
D data

01 2 3

Decoder

D address

2 Constant in

Destination select

4
FS7L Gsezect A'

A select

A address

‘1) Load . RO

B select

B address

<1) Load L, R1

—1) Load | R2

Y YVYY
W N =D

MUX

MUX [

\
DN =S

) Load R3

A data B data

n n

Register file

n

n
MB select

Y v

1 0

Bus A

MUX B

Address

A

Bus

B

> Qut

B

> Data

Y

S2:0 ” Cin

V <—— Arithmetic/logic
C< unit (ALU)

N4

Z Zero Detect ‘fn

H select

n Out

2

0—>

S
Ir

B

Shifter I [«—0

H

MF select —> MUX F

Function unit

MD select —
n Bus D

Data In

10

Simplifying the Data Path Representation

Load enable A select B select
Write A address B address
D data n
Y
Load
| } RO 2 2
n | n
Load
|) R1 Y
{ 0
I n 1
P MUX
J_l Lo 3
Load mux []
[) led Ll mo 2
>3
Jj I n
Load R3
n n
0123 L Reister £
e e
Decoder gaser
EETEss A data B data
Constant in —2 } D 1
Destination select n 1 0
MB select
Bus A MUX B gﬂdrcss
Bus B s Data
4 A L B ,;n out
G select H select
FS—*— Gielectmp 53 B
S [l S
V <———1 Arithmetic/logic 0—>|Ig Shifter I [<—0
C= unit (ALU)
G H
N A n |
Z Zero Detect *
MF select "&JX }1: | Function unit
F .
h m Data in
0 1
MD select
n Bus D MUX D
[0 FIGURE 8-1

Block Diagram of a Generic Datapath

[J FIGURE 8-10

n
\
D data
—>| Write
#’ D address
2™ X n
Register file
m m
—4>| A address B address [«—“—
A data B data
Constant in " n
n Y Y
1 0
MB select > MUX B
Bus A
o 2 » Address out
Bus B n
Data out
Y Y
4 A B
FS —4>
V <—
C < Function
unit
N <—
7 <——
F
n
n Data in
Y Y
0 1
MD select —> MUX D

Block Diagram of Datapath Using the Register File and Function Unit

Definition of Function Unit Select (FS) Codes

FS I\Slltl:lect gelect gelectq Microoperation Boolean EquatlonS:
0000 0 0000 XX F«—A

0001 0 0001 XX FeAstl MF = FS; FS,
0010 0 0010 XX F—A+B

0011 0 0011 XX F—A+B+1 G. = FS
0100 0 0100 XX F«A+ B 37773
0101 0 0101 XX F—A+B+1 G, = FS,
0110 0 0110 XX Fe—A-1 G. = FS
0111 0 0111 XX FeA 1 1
1000 0 1X00 XX F— AAB Gy = FS
1001 0 1X01 XX F«—AvB

1010 0 1X10 XX F—A®B -

1011 0 1X11 XX F—A Hi=F5;
1100 1 XXXX 00 F «B H, = FS,
1101 1 XXXX 01 F«srB

1110 1 XXXX 10 F «sl B

12

nj
Y

D data
Write

D address
2"X n

Register file
m
—7“>|A address

A data B data

B address

Constant in

MB select

Access RAM

Here’s a way to connect RAM into our existing
datapath.

Write to RAM: we must give an address and a data
value.

These will come from the register file.

We connect A data to the memory’s ADRS input,
and B data to the memory’s DATA input.

Set MW = | to write to the RAM. (It’s called MW
to distinguish it from the WR write signal on the
register file.)

> Address out

FSﬁL’
A\
C~

N~

Function
unit

MD select —>

> Data out 1\/&W
A 4 1 \4

Data inl Address

Data memory

Data out

-

=<
=)

13

Data in

Access RAM

* Read from RAM: A data must supply the address.
* Set MW = 0 for reading, RAM output should be sent to

n) register file for storage.
Y
W D data * This means that the register file’s D data input could
— | Write .
M 5 1 address come from either the ALU output or the RAM.
plXD * A mux D selects the source for the register file.
egister file
M\ address B address <2— *If MD=0, the ALU output is stored in the register
A data B data file.
Constant in n | *If MD=1, the RAM outputis sent to the registers
Y —— instead.
MB select > MUX B
Bus A x > Address out
BusB 1 >
Data out W
Y Y y 1‘:/& v
4 A B .
FS—> Datain Address
Ve
-~ Function
;: o Data memory
2~ Data out
n,{ 2 Data in
)
MD select —> OU lD

141

The Control Word

* The datapath has many control inputs

* The signals driving these inputs can be defined and
organized into a control word

* To execute a microinstruction, we apply control word
values for a clock cycle.

— Addresses for the data read from register file.
— Function performed.

— Addresses for the data written to register file.
— External data.

15

The Control Word Fields

151413121110 98 7 6 5 4 3 2 1 0
—>-| Write D data
. DA | Aa | BA |M FS MR
—»|D address B D W
—> 8x n
R Register file 3 Control word
:Aaddress B address|< 2 BA
> A data B data < !
Conctantn n e The Control Words Fields
— — DA — D Address (destination)
v o Bue p L1OX B e — AA—A Address
BusB 2 > Data out — BA — B Address
y Y
A B — MB — Mux B (constant/source)
Ve : — FS = Function Select
ﬁ<_ Fuﬂﬁﬂon ‘ HFS — MD —=Mux D
2= L — RW — Register Write
”‘ * 0 Data in
0 1
MD—> MUX D

Bus D

17

The Control Word

151413121110 98 7 6 5 4 3 2 1 0
DA AA BA | M FS MR
B D|W

Control word

* Fields
— DA — D Address)
— AA — A Address >
— BA — B Address

3 bits each. Means we have
up to 8 registers.

— MB - Mux B 2" parameter to function from
register (0) or a constant ().

— FS — Function Select

— MD = Mux D | Load to register external data or

result of function.
— RWV — Register Write

Encoding The Control Word

[TABLE 8-5

Encoding of Control Word for the Datapath

DA, AA, BA MB FS MD RW
Function Code Function Code Function Code Function Code Function Code
RO 000 Register 0 F=A 0000 Function 0 No Write 0
R1 001 Constant 1 F=A+1 0001 Datain 1 Write 1
R2 010 F=A+B 0010
R3 011 F=A+ B+ 1 0011
R4 100 F=A+B 0100
R5 101 F=A+ B+ 1 0101
R6 110 F=A-1 0110
R7 111 F=A 0111

F=AAB 1000
F=AVB 1001
F=AQ®B 1010

F=A 1011
F=RH 1100
F=srB 1101
F=slB 1110 18

Example Microoperations for the Datapath

Symbolic & Binary Representation

Micro-

operation DA AA BA MB FS MD RW
R1<R2_R3 RI R2 R3 Register F=A+B+1 Function Write
001 010 o011 0 0101 0 1
R4 — R6 Register F=glB Function = Write
R4<slR6 100 xxx 110 0 1110 0 |
R7 R7 — — F=4+1 Function @ Write
R7T<RT7+1 111 111 xxx x 0001 0 1
R1 RO — Constant f=4+B Function Write
+
R1<RO+2 001 000 xxx 1 0010 0 1
Data out <R3 R3 Register — — No Write
xxx xxx 011 0 XXXX X 0
. R4 — Data in Write
R4« Datain 100 xxx xxx X XXXX 1 1
R5< 0 R5 RO RO Register F=A®B Function Write
101 000 000 0 1010 0 1

19

Simulation of the Microoperation Sequence

Clock"1 |21 J31L Ja41L sl Jel _JT7L1L T8
DA {1 [4 [7 [1 [0 14 15 —
AA {2 (0 [7 [0 S
BA {3 |6 [0 I3 [0 }—
FS {5 (14 [1 2 0 (10 —
Constant_in X 12 1X
MB 4 [] —
Address_out {2 10 17 10 —
Data_out {3 16 10 12 13 10 —
Data_in ——(18 ~ }——18 —
MD 4 L —
RWJ | I | I
reg0 0
regl 1 1255 12
reg2 2
the value of the status regd 3
bits are relevant when regd % 18
the Function unit is regS 3 0
used. reg6 6
reg7 7 18
(V,C,N, Z) Status_bits{ 2 10 10 [1 1X

] FIGURE 8-12
Simulation of the Microoperation Sequence in Table 8-7

