

CSC 220: Computer Organization

Unit 1 Number Systems

Prepared by:

Md Saiful Islam, PhD

Updated by:

Isra Al-Turaiki, PhD

**Department of Computer Science
College of Computer and Information Sciences**

Overview

- Common Number Systems
- Conversion Among Bases
- Binary Coded Decimal (BCD)

Chapter-1

M. Morris Mano, Charles R. Kime and Tom Martin, **Logic and Computer Design Fundamentals**, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Number Systems – Representation

A number with *radix* (or *base*) r

1. contains r digits: $0, 1, 2, \dots, r-1$
2. is represented by a string of digits:

$$A_{n-1}A_{n-2} \dots A_1A_0 \cdot A_{-1}A_{-2} \dots A_{-m+1}A_{-m}$$

in which $0 \leq A_i < r$ and \cdot is the *radix point*.

3. The string of digits represents the power series:

$$(\text{Number})_r = \left(\sum_{i=0}^{i=n-1} A_i \cdot r^i \right) + \left(\sum_{j=-m}^{j=-1} A_j \cdot r^j \right)$$

Diagram illustrating the components of the power series:

- digit**: The individual components A_i and A_j .
- position**: The indices i and j representing the position of each digit relative to the radix point.
- base**: The radix r used as the base of the powers.
- (Integer Portion)**: The part of the number to the left of the radix point.
- (Fraction Portion)**: The part of the number to the right of the radix point.

Number Systems – Examples

	General	Decimal	Binary
Radix (Base)	r	10	2
Digits	$0 \Rightarrow r - 1$	$0 \Rightarrow 9$	$0 \Rightarrow 1$
Powers of Radix	r^0	1	1
	r^1	10	2
	r^2	100	4
	r^3	1000	8
	r^4	$10,000$	16
	r^5	$100,000$	32
	r^{-1}	0.1	0.5
	r^{-2}	0.01	0.25
	r^{-3}	0.001	0.125
	r^{-4}	0.0001	0.0625
	r^{-5}	0.00001	0.03125

Commonly Occurring Bases

Name	Radix	Digits
Binary	2	0,1
Octal	8	0,1,2,3,4,5,6,7
Decimal	10	0,1,2,3,4,5,6,7,8,9
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Common Number Systems

□ TABLE 1-3
Numbers with Different Bases

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

System	Used by humans?	Used in computers?
Decimal	Yes	No
Binary	No	Yes
Octal	No	No
Hexadecimal	No	No

Positional number systems: decimal

- Numbers consist of a bunch of digits, each with a **weight**:

A_i	1	6	2	.	3	7	5	Digits
r^i	100	10	1		1/10	1/100	1/1000	Weights

- The weights are all powers of the base, which is 10. We can rewrite the weights like this:

1	6	2	.	3	7	5	Digits
10^2	10^1	10^0		10^{-1}	10^{-2}	10^{-3}	Weights

- To find the decimal value of a number, multiply each digit by its weight and sum the products.

$$(1 \times 10^2) + (6 \times 10^1) + (2 \times 10^0) + (3 \times 10^{-1}) + (7 \times 10^{-2}) + (5 \times 10^{-3}) = 162.375$$

Weighted Multiplication

Positional number systems: binary

- We can use the same trick for **binary**, or base 2, numbers. The only difference is that the weights are powers of **2**.
- For example, here is **1101.01** in binary:

1	1	0	1	.	0	1	Binary digits, or bits
2^3	2^2	2^1	2^0		2^{-1}	2^{-2}	Weights (in base 2)

- The decimal value is:

$$(1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) + (0 \times 2^{-1}) + (1 \times 2^{-2}) = \\ 8 + 4 + 0 + 1 + 0 + 0.25 = 13.25$$

Powers of 2:

$2^0 = 1$	$2^4 = 16$	$2^8 = 256$
$2^1 = 2$	$2^5 = 32$	$2^9 = 512$
$2^2 = 4$	$2^6 = 64$	$2^{10} = 1024$
$2^3 = 8$	$2^7 = 128$	

Special Powers of 2

2^{10} (1024) is Kilo
 2^{20} (1,048,576) is Mega
 2^{30} (1,073,741,824) is Giga

Base 8 - Octal

- The **octal** system uses 8 digits:

0 1 2 3 4 5 6 7

- Earlier in this history of computing, octal was used as a shorthand for binary numbers. (Now hexadecimal is more common.)
- Since $8 = 2^3$, one octal digit is equivalent to 3 binary digits.
 - Numbers like **67** are easier to work with than **110111**.
- Still shows up in some places. For instance, file access permissions in Unix file systems.

Decimal	Binary	Octal
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

Base 16 is useful too

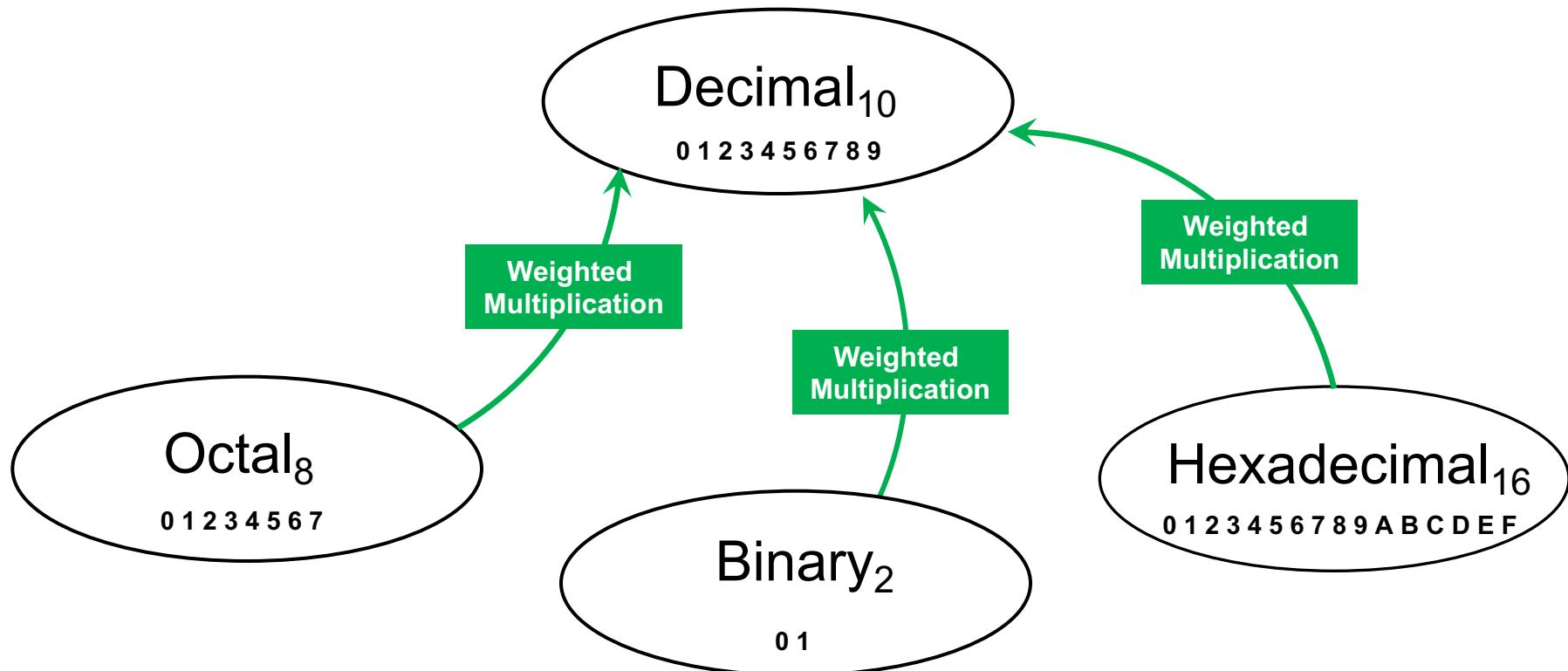
- The **hexadecimal** system uses 16 digits:

0 1 2 3 4 5 6 7 8 9 A B C D E F

- For our purposes, base 16 is most useful as a "shorthand" notation for binary numbers.
 - Since $16 = 2^4$, one hexadecimal digit is equivalent to 4 binary digits.
 - It's often easier to work with a number like **B4** instead of **10110100**.
- Hex is frequently used to specify things like:
 - IP addresses such as: 80.AE.05.27
 - RGB colors: COCOFF

<u>Decimal</u>	<u>Binary</u>	<u>Hex</u>
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Conversion Among Bases



Converting to Decimal- 1

Binary to Decimal

- Technique: **Weighted Multiplication**
 - **Multiply** each bit by 2^n , where 2^n is the “weight” of the bit
 - n is the position of the bit, starting from 0 on the right
 - Add the results
- Example:

$$\begin{array}{r} 101011_2 \Rightarrow \begin{array}{rcccl} \text{digit} & & \text{power of 2} & & \\ \hline 1 & \times & 2^0 & = & 1 \\ 1 & \times & 2^1 & = & 2 \\ 0 & \times & 2^2 & = & 0 \\ 1 & \times & 2^3 & = & 8 \\ 0 & \times & 2^4 & = & 0 \\ 1 & \times & 2^5 & = & 32 \\ \hline & & & & 43_{10} \end{array} \end{array}$$

Converting to Decimal- 2

Binary Fractions to Decimal

- Technique: Weighted Multiplication

- Example:

$10.1011 \Rightarrow$

digit	power of 2	=	decimal value
1	$\times 2^{-4}$	=	0.0625
1	$\times 2^{-3}$	=	0.125
0	$\times 2^{-2}$	=	0.0
1	$\times 2^{-1}$	=	0.5
0	$\times 2^0$	=	0.0
1	$\times 2^1$	=	<u>2.0</u>
			2.6875

Converting to Decimal-3

Octal to Decimal

- Technique: **Weighted Multiplication**
 - **Multiply** each bit by 8^n , where 8^n is the “weight” of the bit
 - n is the position of the bit, starting from 0 on the right
 - Add the results
- Example:

$$\begin{array}{r} 724_8 \Rightarrow \\ 4 \times 8^0 = 4 \\ 2 \times 8^1 = 16 \\ 7 \times 8^2 = 448 \\ \hline 468_{10} \end{array}$$

Converting to Decimal-4

Hexadecimal to Decimal

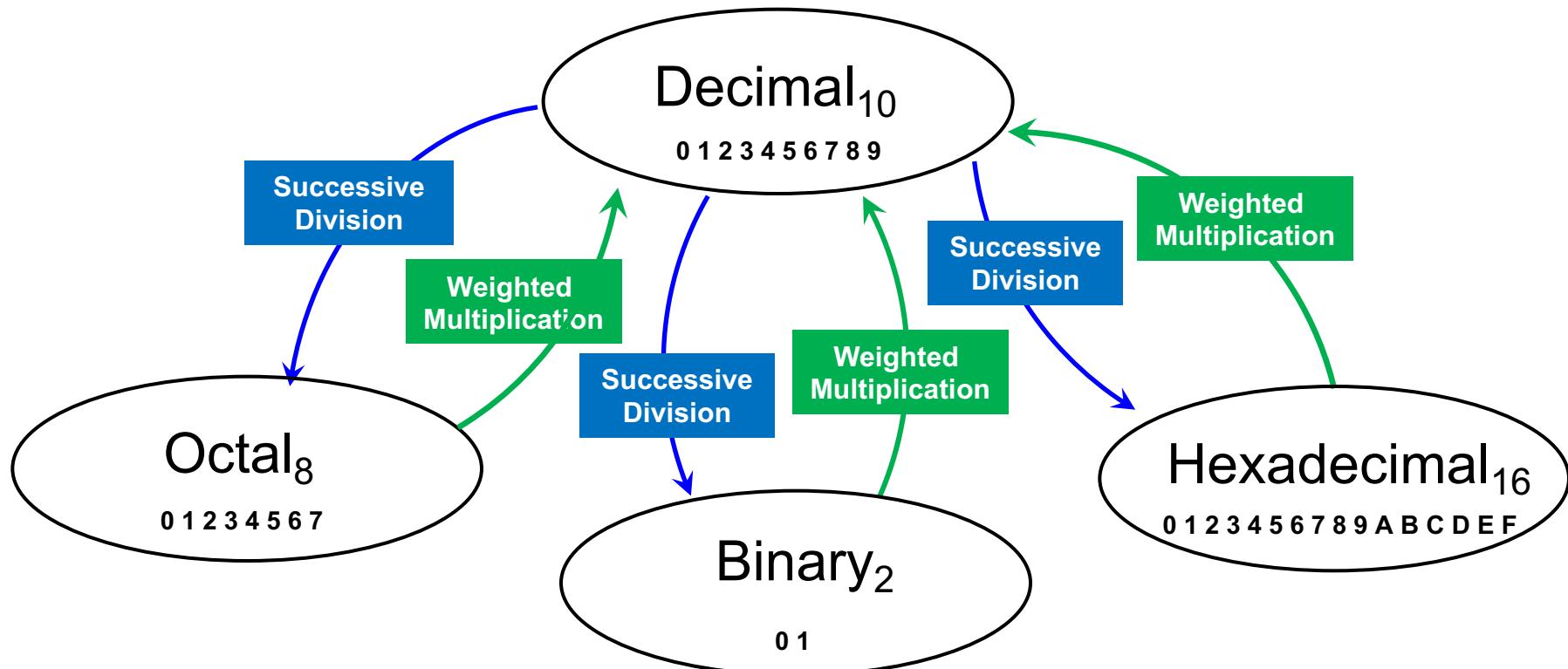
- Technique: Weighted Multiplication
 - Multiply each bit by 16^n , where 16^n is the “weight” of the bit
 - n is the position of the bit, starting from 0 on the right
 - Add the results
- Example:

$$\begin{array}{rcl} ABC_{16} & \Rightarrow & C \times 16^0 = 12 \times 1 = 12 \\ & & B \times 16^1 = 11 \times 16 = 176 \\ & & A \times 16^2 = 10 \times 256 = \underline{2560} \\ & & \qquad \qquad \qquad 2748_{10} \end{array}$$

Summary: Converting to Decimal

- Technique: Weighted Multiplication
 - **Multiply** each bit by b^n , where b is the “base”
 - n is the position of the bit, starting from 0 on the right
 - Add the results

Conversion Among Bases



Converting from Decimal-1

Decimal to Binary

- Technique: Successive Division
 - Divide by two, keep track of the remainder.
 - Repeat until quotient is zero

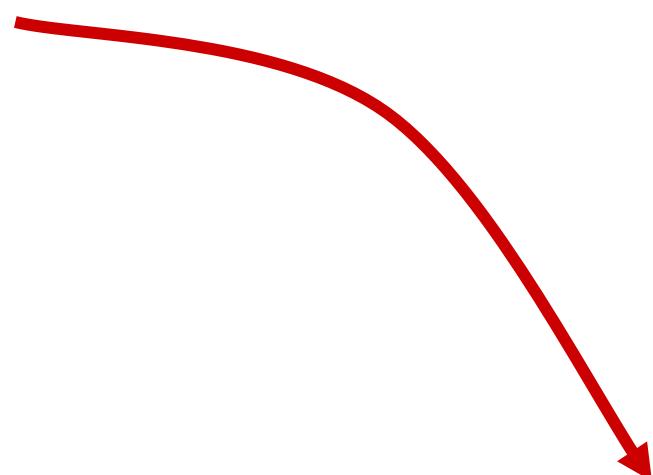
- Example:

$$125_{10} = ?_2$$

2	125	
2	62	1
2	31	0
2	15	1
2	7	1
2	3	1
2	1	1
	0	1

MSB LSB

$125_{10} = 1111101_2$



Converting from Decimal-1

Decimal to Octal

- Technique: Successive Division
 - Divide by 8 and keep track of the remainder
 - Repeat until quotient is zero

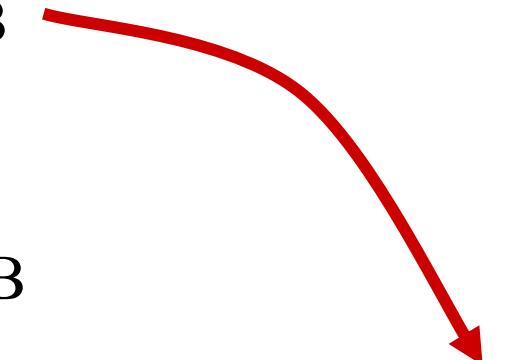
- Example:

$$1234_{10} = ?_8$$

$$\begin{array}{r} 8 \quad | \quad 1234 \\ 8 \quad | \quad 154 \quad 2 \\ 8 \quad | \quad 19 \quad 2 \\ 8 \quad | \quad 2 \quad 3 \\ \hline & 0 \quad 2 \end{array}$$

LSB

MSB


$$1234_{10} = 2322_8$$

Converting from Decimal-3

Decimal to Hexadecimal

- Technique: Successive Division
 - Divide by 16 and keep track of the remainder.
 - Repeat until quotient is zero
- Example:

$$1234_{10} = ?_{16}$$

$$\begin{array}{r} 16 \quad | \quad 1234 \\ 16 \quad | \quad 77 \\ 16 \quad | \quad 4 \\ \hline 0 \end{array}$$

$$\begin{array}{r} 2 \\ 13 = D \\ 4 \end{array}$$

$$1234_{10} = 4D2_{16}$$

Summary: Converting from Decimal

- Technique: Successive Division
 - **Divide** by the **base**, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit 1..Etc.
 - Repeat until quotient is zero

Conversion of Decimal Fractions to Binary

Technique:

- multiplication by 2 is used instead of division.
- integers are accumulated instead of remainders.
- repeat until fraction is 0 or sufficient accuracy reached.

• Example:

$$0.6875 \times 2 = 1\textcolor{blue}{3}750$$

$$0.3750 \times 2 = 0.7500$$

$$0.7500 \times 2 = 1.5000$$

$$0.5000 \times 2 = 1.0000$$

$$(0.6875)_{10} = (0.\textcolor{blue}{1}011)_2$$

Integer = 1

= 0

= 1

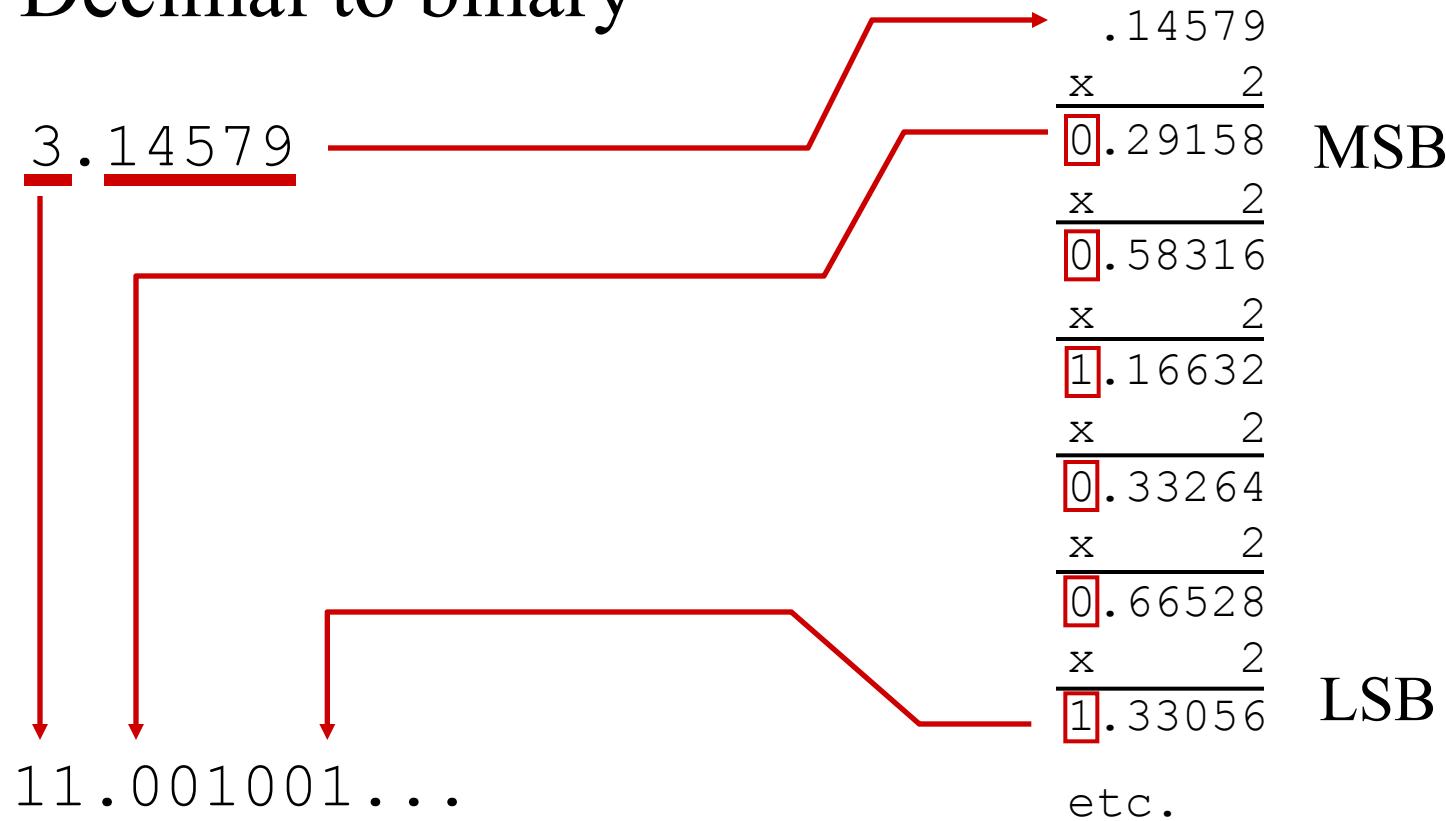
= 1

Most significant digit

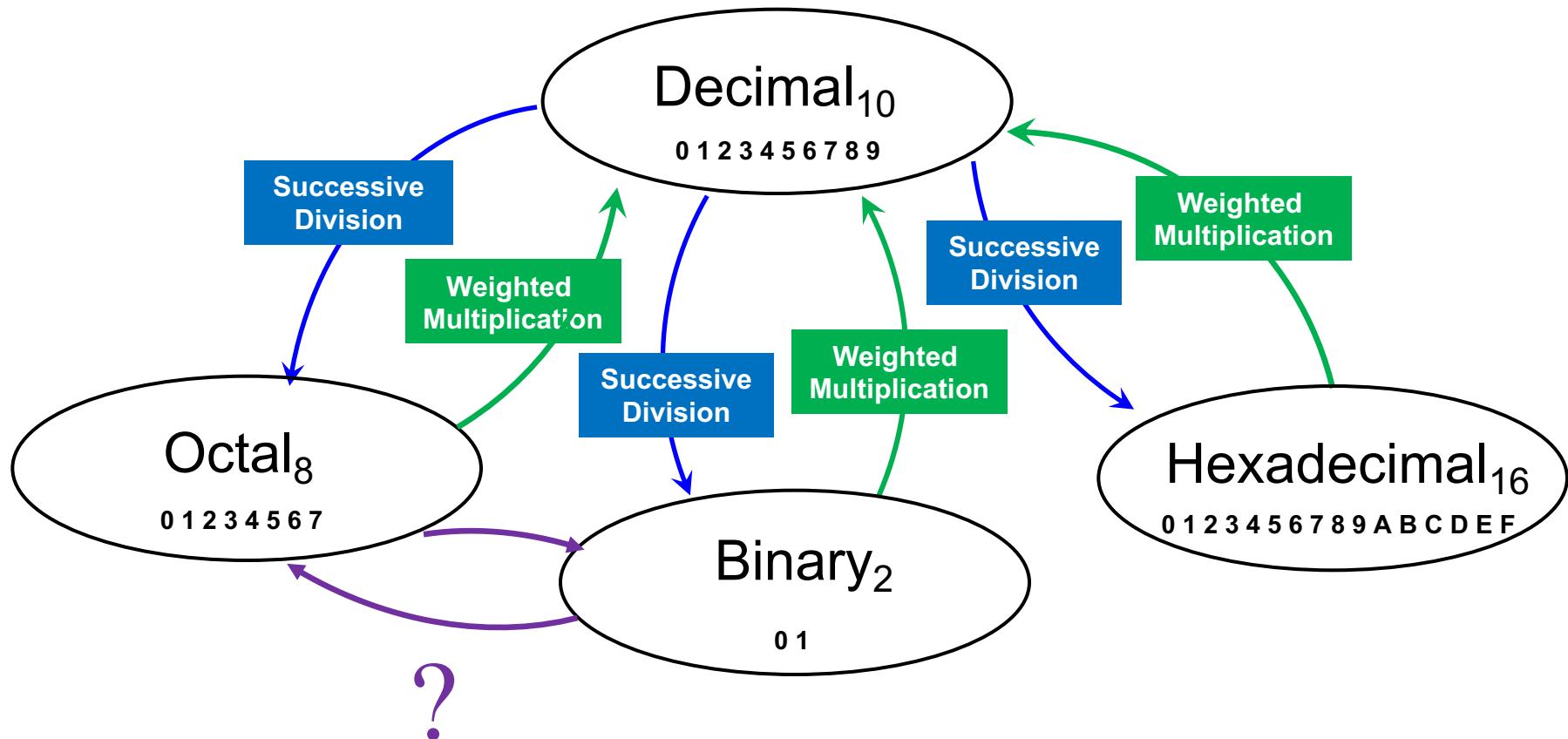
Least significant digit

Conversion of Decimal Fractions to Binary

- Decimal to binary



Conversion Among Bases



Converting between Octal and Binary-1

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

□ TABLE 1-3
Numbers with Different Bases

- Example: $705_8 = ?_2$

7 0 5
↓ ↓ ↓
111 000 101

$$705_8 = 111000101_2$$

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Converting between Octal and Binary-2

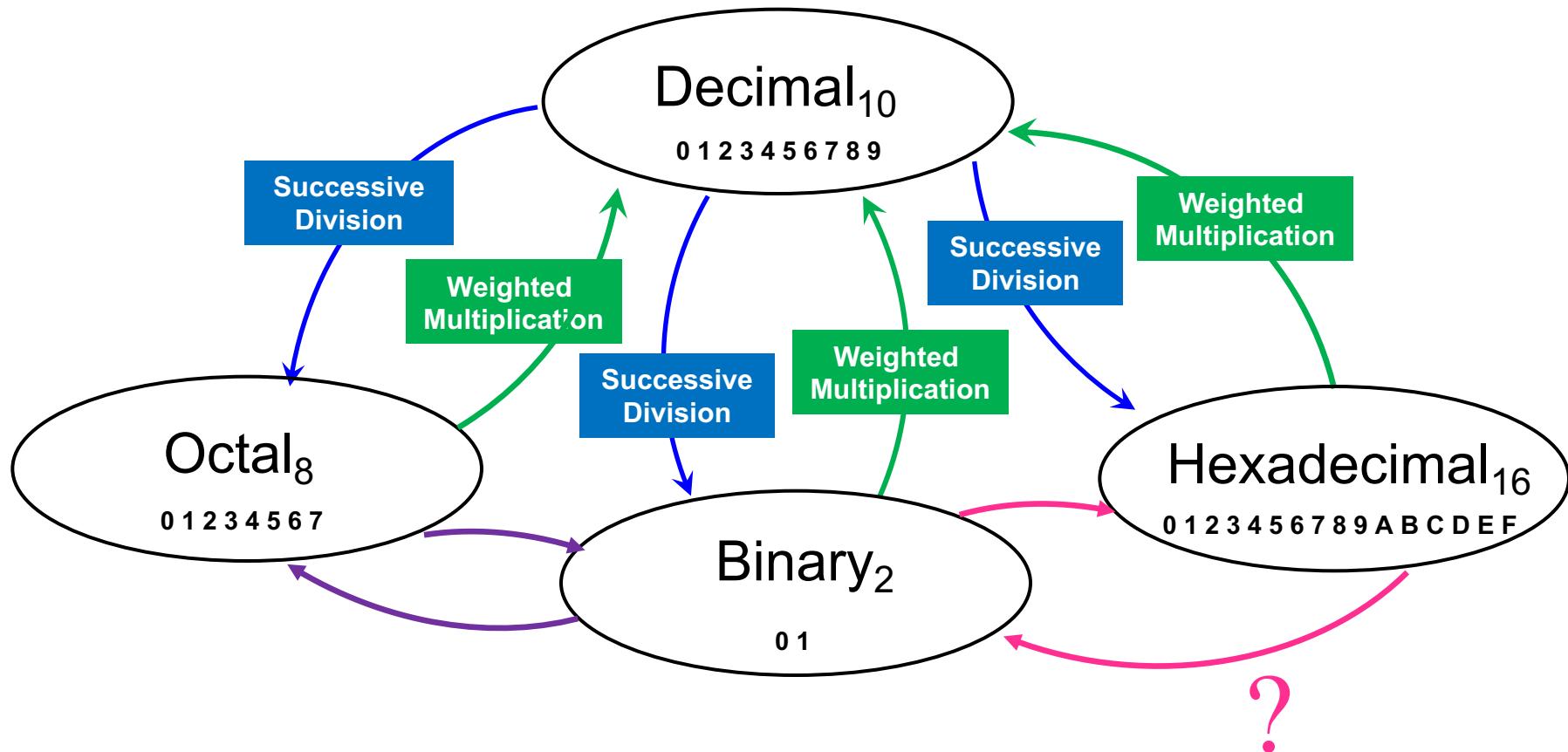
Binary to Octal Technique

- Group bits in threes, starting on right
- Convert to octal digits
- Example: $1011010111_2 = ?_8$

1 011 010 111
↓ ↓ ↓ ↓
1 3 2 7

$$1011010111_2 = 1327_8$$

Conversion Among Bases



Converting between Hexadecimal and Binary-1

Hexadecimal to Binary

- Technique

- Convert each hexadecimal digit to a 4-bit equivalent binary representation

- Example: $10AF_{16} = ?_2$

1 0 A F
↓ ↓ ↓ ↓
0001 0000 1010 1111

□ TABLE 1-3
Numbers with Different Bases

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

$$10AF_{16} = 0001000010101111_2$$

Converting between Hexadecimal and Binary-2

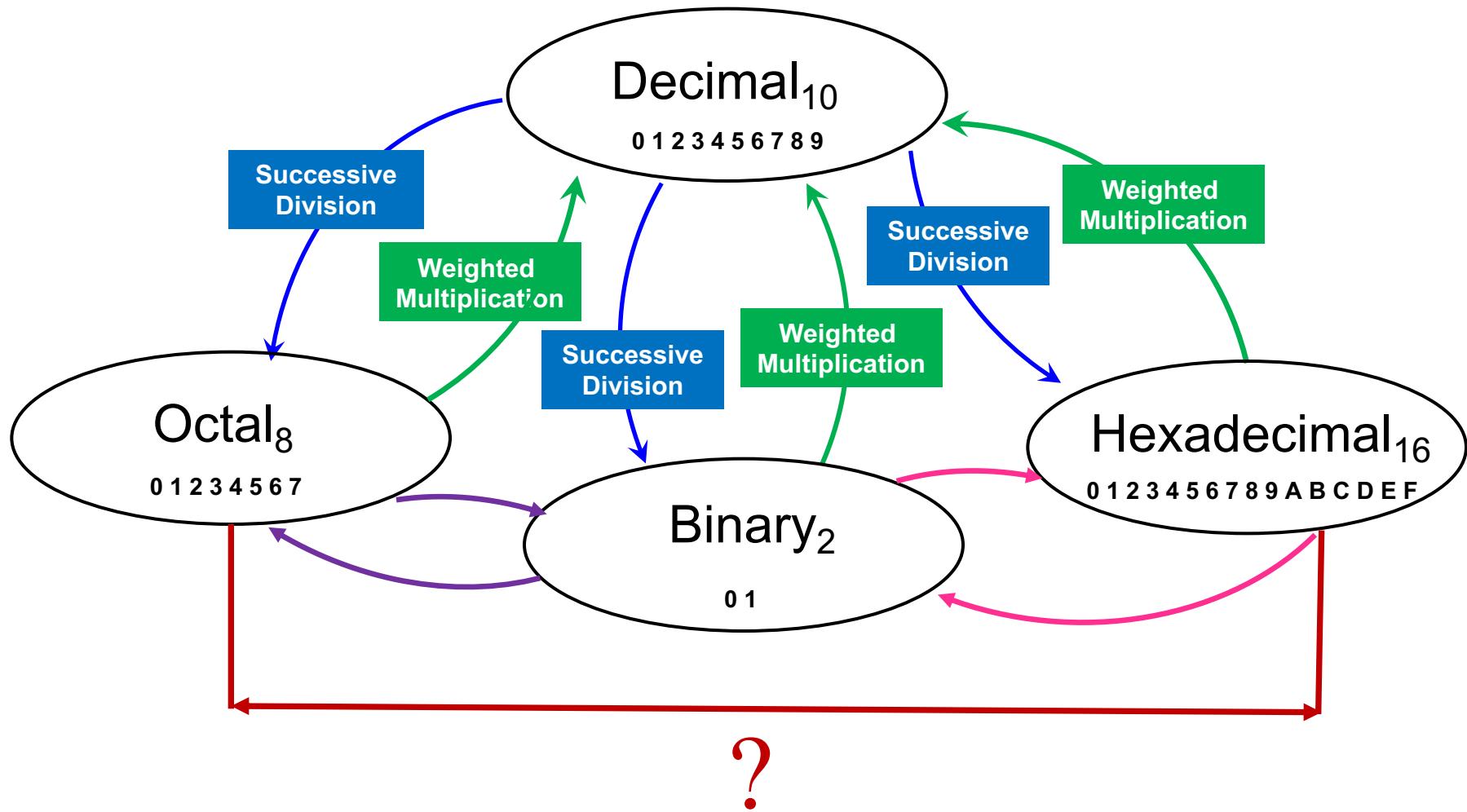
Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits
- Example: $1010111011_2 = ?_{16}$

10 1011 1011
↓ ↓ ↓
2 B B

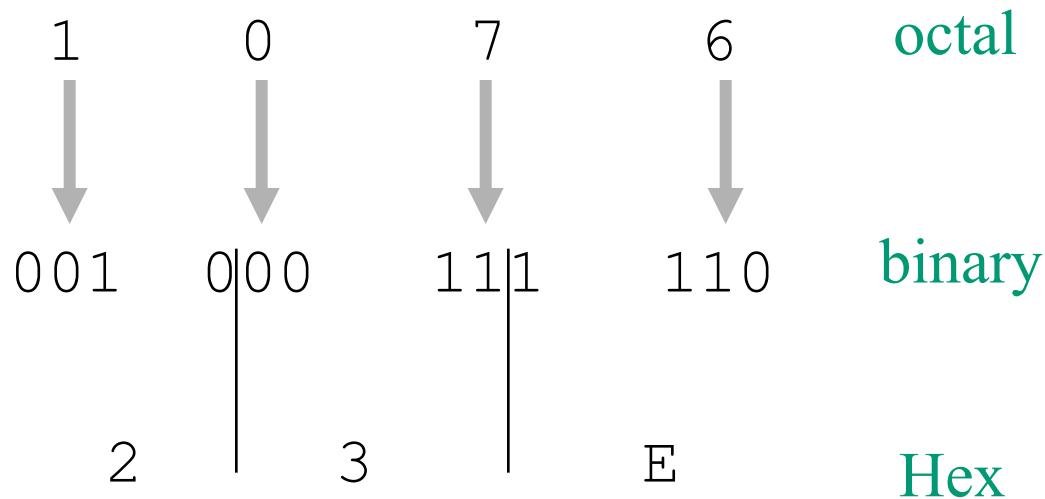
$$1010111011_2 = 2BB_{16}$$

Conversion Among Bases



Converting between Hexadecimal and Octal-1

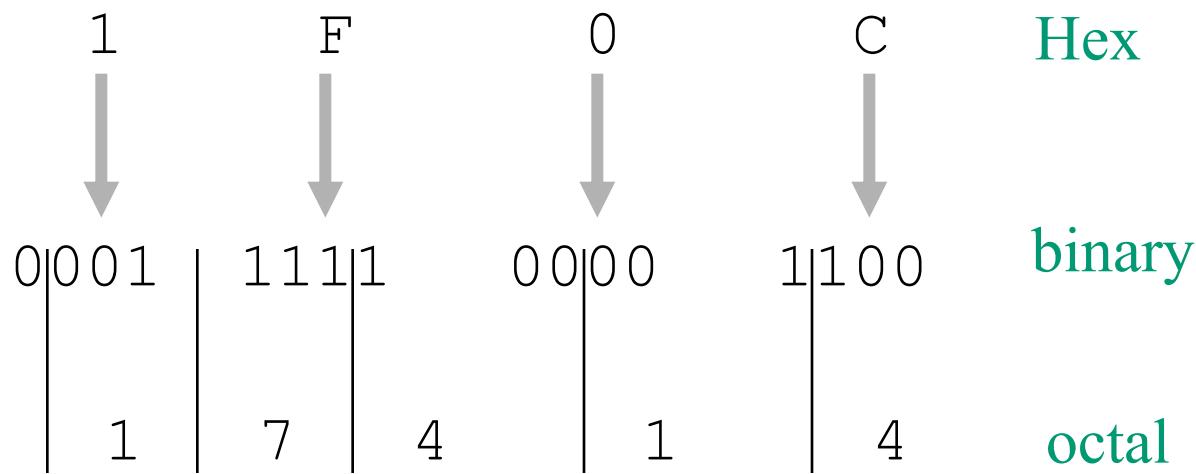
- Technique
 - Use binary as an intermediary
- Example: $1076_8 = ?_{16}$



$$1076_8 = 23E_{16}$$

Converting between Hexadecimal and Octal-2

- Example: $1F0C_{16} = ?_8$



$$1F0C_{16} = 17414_8$$

4-Bit Binary Coded Decimal (BCD) Systems

- The 4-bit BCD system is usually employed by the computer systems to represent and process numerical data only.
- In the 4-bit BCD system, each digit of the decimal number is encoded to its corresponding 4-bit binary sequence.

Decimal digits	Weighted 4-bit BCD code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

4-Bit BCD Code

- Represent the decimal number 5327 in BCD code.

4-bit BCD representation of decimal digit 5 is 0101

4-bit BCD representation of decimal digit 3 is 0011

4-bit BCD representation of decimal digit 2 is 0010

4-bit BCD representation of decimal digit 7 is 0111

Therefore, the BCD representation of decimal number 5327 is 0101001100100111.

Warning: Conversion or Coding?

- Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a BINARY CODE.
- $13_{10} = 1101_2$ (This is conversion)
- $13 \Leftrightarrow 0001|0011$ (This is coding)

Exercise: Converting Binary to Decimal

What is the decimal equivalent of the binary number 1101110?

$$\begin{aligned}1 \times 2^6 &= 1 \times 64 = 64 \\+ 1 \times 2^5 &= 1 \times 32 = 32 \\+ 0 \times 2^4 &= 0 \times 16 = 0 \\+ 1 \times 2^3 &= 1 \times 8 = 8 \\+ 1 \times 2^2 &= 1 \times 4 = 4 \\+ 1 \times 2^1 &= 1 \times 2 = 2 \\+ 0 \times 2^0 &= 0 \times 1 = 0 \\&= 110 \text{ in base 10}\end{aligned}$$

Quick Example

$$25_{10} = 11001_2 = 31_8 = 19_{16}$$

Base

Exercise – Convert ...

Decimal	Binary	Octal	Hexa-decimal
29.8			
	101.1101		
		3.07	
			C.82

Exercise – Convert ...

Answer

Decimal	Binary	Octal	Hexa-decimal
29.8	11101.110011...	35.63...	1D.CC...
5.8125	101.1101	5.64	5.D
3.109375	11.000111	3.07	3.1C
12.5078125	1100.10000010	14.404	C.82

Exercise – Convert ...

Decimal	Binary	Octal	Hexa-decimal
33			
	1110101		
		703	
			1AF

Exercise – Convert ...

Answer

Decimal	Binary	Octal	Hexa-decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

