Ch9:Exercisel-stat439

Exercise 9.1:
1 0.63 045
Show that covariance matrix S = p =[0.63 1 0.35
0.45 0.35 1

For the p = 3 standardized random variables Z;, Z, and Z; can be generated by them = 1
factor model

Zl = 09F1 + 81
Z, = 0.7F, + &,
Z3 = 05F1 + 83
0.19 0 0
Where var(F;) = 1,cov(e, F;) = 0,and Y = cov(e) =| 0 051 0 [. Thatis, write p
0 0 0.75
in the formp = LLT + .
Solution :
0.9
Since Z is the standardized r.v, and L = | 0.7 |, we have the following:
0.5
0.9 0.19 0 0
LLT +y = |0.7[[09 0.7 05]+]| 0 051 0 |=
0.5 0 0 0.75

[0.81 0.63 0.45
0.63 0.49 0.35
10.45 0.35 0.25

_|_

019 0 0 1 0.63 045
0 051 O |=]063 1 035|=p
0 0.75

0 045 035 1

Hence verified, the value of covariance matrix matches with the one provided.
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Exercise 9.2 : use the information in Exercise 9.1

a) Calculate communalities hiz,i = 1,2,3, and interpret these quantities.
b) Calculate Corr(Z;, F;) for i=1,2,3. Which variable might carry the greatest weight in
“naming” the common factor? Why?
c) The eigenvalues and eigenvectors of the correlation matrix p are
Ay = 196, el =[0.625 0.593 0.507]
A, =0.68, el =[-0.219 —0.491 0.843]
A3 =036, el =[0.749 —0.638 —0.177]
1- Assumingan m = 1 factor model, calculate the loading matrix L and matrix of
specific variances W using the principal component solution method. Compare
the results with those in Exercise 9.1.

2- What proportion of the total population variance is explained by the first
common factor?

Solution of 9.2:

a) Since m =1, then, by Equ.(9-6), the communalities are calculated as the following:
he =12+ 12+ + 1,

h2=13,=092=081 ; h3=1%=072=049 ;h%=13% =0.5%2=0.25
b) Since Corr(Zi,F]-) = cov(Zi ,F]) = [; j . Therefore,
cov(Z,,F;)=1,=09 ; cov(Z,,F,) =L,y =07 ; cov(Z3,F,) =L3z; =05
Because the first variable Z; has the largest correlation with common factor, Z; will carry
greatest weight in term of F;.

c) part 1: By principal component solution methods (9-15, 9-16 and 9-17), we have:

fpl 0- 0
LPXmZ[JZ\l é1§1’j’; éy i 1/ em] =S—LL" = 0 lpz-. 0
0O 0-- lTJp
_ — 0.625 0.875
L= [\//171 él] =/1.96 [0.593| = [0.830
0.507 0.710
_ - 0. 63 0.45 0.875
P=p-LI"= 5:2:2 0. 35 0.830|[0.875 0.830 0.710] =
£ IIIII 0.710
063 0.451 [0.77 0.73 0.62 023 0
22222 0. 35 0.73 0.89 0 59 0
£ IIIII 0.62 0.59 0.5

Each estimation ¥, is different from the results of Exercise 9.1.
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c) part 2: By Equ. (9-20), the proportion of the total estimated population variance due to

. ) .
the first common factor is: ;1 = % = 0.653

Example 9.4 & 9.5 & 9.10: Stock-price data consisting of n = 103 weekly rates of

return on p =5 stocks.
a) Obtain the principal component solution for factor models with m= 2 by using
correlation matrix R.

b) List the estimated communalities, specific variances and proportion of total sample
variance explained by each factor .

c) Whatis the ¥ matrix based on the PC?
d) ShowthatX = LL' + 1.
e) Residual matrix.

f)  Obtain the maximum likelihood solution for m = 2 common factors by use
correlation matrix R.

g) Testadequacy of model ?
h) Dose your analysis should include Factor Rotation ?

i)  Rotate your solutions in Parts (a) and (f). Compare the solutions and comment on
them. Interpret each factor.

j) Determine a reasonable number of factors m, and compare the principal component
and maximum likelihood solutions after rotation. Interpret the factors.

R Code:

rm(list=1s())

#install.packages("psych")
#install.packages("GPArotation")
library("psych")

library("GPArotation")

#### Example 9.4 & 9.5 (based on Example 8.5)
datal <- read.table(choose.files()) #T8-4.DAT
names(datal) <- c("JPMorgan","Citibank","WellsFargo","RoyalDutchShell","Exxon
Mobil™)

# Determine Number of Factors
scree(datal,pc=TRUE,main="Scree plot")
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Scree plot
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factor or component number

From scree plot we probably conclude that there are only two factors in the dataset
depend on PC.

R=cor(datal) #sample correlation matrix (observed).

## part a & b: PC Factor Analysis based upon correlation matrix.
pc <- principal(datail, 2, "none", FALSE)
print.psych(pc, NULL, FALSE)

Principal Components Analysis

Call: principal(r = datal, nfactors = 2, rotate = "none", covar = FALSE)

Standardized loadings (pattern matrix) based upon correlation matrix
PCl PC2 h2 u2 com

JPMorgan 0.73 -0.44 0.73 0.27 1.6 ’ﬁ =l%1+l%2—>Q732+-Q442==Q73
el Bl =octd o/t Hol) ol 73% of variation in that JPMorgan is explained
WellsFargo 0.73 -0.37 0.67 0.33 1.5 by the two factors
RoyalDutchShell ©.60 ©.69 .85 ©.15 2.0 WZ = =1 —h?=1—073 =027
ExxonMobil 0.56 0.72 0.83 0.17 1.9 P ' '

PC1 PC2
SS loadings 2.44 1.41  gym of squared loadings = Eigenvalues
Proportion Var 9.49 0.28 % = 0.49 proportion of total sample variance do to 1-st factor.
Cumulative Var 0.49 0.77

0.28 proportion of total sample variance do to 2-ed factor.

HRal A CLI A C BTl SIaE oe 1y With 2 components, we explain 77% of the variance.

Cumulative Proportion 0.63 1.00

Mean item complexity = 1.6

Test of the hypothesis that 2 components are sufficient.
The root mean square of the residuals (RMSR) is 0.1

with the empirical chi square 19.17 with prob < 1.2e-05
Fit based upon off diagonal values = 0.95
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eige<-eigen(R) #estimated eigenvalue & eigenvectors for R.

lambda<-pc$values #estimated eigenvalue for R.

Lpc<- unclass(pc$loadings)

h.e<-pc$communality

## part c:

Psil<-diag(round(pc$uniquenesses,3),5,5)

## part d: estimated correlation matrix ﬁ::ZZ7+1p. We must change all diagon
al values to be one.

(Rhol <- Lpc %*% t(Lpc) + Psil)

JPMorgan Q.
Citibank 9.
WellsFargo 0.
RoyalDutchShell @.
ExxonMobil Q.

JPMorgan
99984576
73112857
69501067
13991966
09866056

Citibank WellsFargo RoyalDutchShell ExxonMobil

0.7311286
0.9995311
0.7084661
0.3079818
0.2664590

0.6950107
0.7084661
1.0001396
0.1797042
0.1402466

## part e: estimated residual= R— p = R — Rhol
(residual<-round(pc$residual,3)) # R-LL'

0.1399197 0.09866056
0.3079818 0.26645897
0.1797042 0.14024657
1.0002571 0.83921362
0.8392136 ©.99951223

JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil

JPMorgan
Citibank
WellsFargo
RoyalDutchShell
ExxonMobil

0.273
-0.099
-0.185
-0.025

0.056

-0.099 -0.185
0.230 -0.134
-0.134 0.333
0.014 0.003
-0.054 0.006

(residual2<-round(pc$residual,3)-Psil) # R—LL'— y=R—-p

JPMorgan Citibank WellsFargo RoyalDutchShell

JPMorgan
Citibank
WellsFargo
RoyalDutchShell
ExxonMobil

(residual3<-resid.

0.000
-0.099
-0.185
-0.025

0.056

psych(pc)-Psil) #pretty printed.

JPMrg Ctbnk

JPMorgan 0.00

Citibank -0.10 0.00
WellsFargo -0.18 -0.13
RoyalDutchShell -0.03 ©0.01
ExxonMobil 0.06 -0.05

Bayan Almukhlif

-0.099 -0.185
0.000 -0.134
-0.134 0.000
0.014 0.003
-0.054 0.006

W1lsF RylDS ExxnM

0.00
0.00 0.00
0.01 -0.16 0.00

-90.025 0.056
0.014 -0.054
0.003 0.006
0.153 -0.156

-0.156 0.166

ExxonMobil

-90.025 0.056
0.014 -0.054
0.003 0.006
0.000 -0.156

-0.156 0.000
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NOTE:

e In Principal() since we are using R instead of S, the covar =FALSE by default. No
rotation is done for now, so the rotate="none".
e  Principal components analysis using covariance as follow:
» By use data set
pc3<- principal(datal, nfactors=2, rotate="none",covar=TRUE, cor="cov")

» By use covariance matrix
v=cov(datal)
pc3<- principal(v, nfactors=2, rotate="none",covar=TRUE)

e The word “scree” refers to the loose stone that lies around the base of the mountain.

e Inthe scree plot, you may face different number of factors depending on principal
components and a principal axis factor extraction. you might want to look at both of
these factor solutions.

## part f:
## Maximum LiRelihood Factor Analysis with correlation matrix.
#fa<- factanal (covmat= R factors=2,n.obs=103,rotation="none"

fam<- factanal(datal,?2, "none"
print(fam, NULL)
Call:
factanal(x = datal, factors = 2, rotation = "none"
Uniquenesses:
JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil
0.417 0.275 0.542 0.005 0.530
Loadings:
Factorl Factor2
JPMorgan 0.121 0.754
Citibank 0.328 0.786
WellsFargo 0.188 0.650
RoyalDutchShell ©.997 -0.007
ExxonMobil 0.685 0.026

Factorl Factor2
SS loadings 1.622 1.610
Proportion Var 0.324 0.322
Cumulative Var 0.324 0.646

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 1.97 on 1 degree of freedom.
The p-value is 0.16
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#names(fam) #see all the values of "factanal" function

Lml<- fam$loadings
communality<-apply(Lml~2, 1, sum)
Psi2 <- diag(fam$uniquenesses)

(R2 <- fam$correlation) #sample correlation matrix (observed)=R.

JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil
JPMorgan 1.0000000 0.6322878 0©.5104973 0.1146019 0.1544628
Citibank 0.6322878 1.0000000 0©.5741424 0.3222921 0.2126747
WellsFargo 0.5104973 0.5741424 1.0000000 0.1824992 0.1462067
RoyalDutchShell 0.1146019 ©0.3222921 ©0.1824992 1.0000000 ©.6833777
ExxonMobil 0.1544628 0.2126747 0.1462067 0.6833777 1.0000000
(Rho2 <- Lml %*% t(Lml) + Psi2) #estimated correlation matrix. We must change
all diagonal values to be one.

JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil
JPMorgan 0.9999999 0.6322803 0.5130616 0.1149345 0.1024805
Citibank 0.6322803 1.0000000 ©.5725336 0.3220805 0.2457536
WellsFargo 0.5130616 0.5725336 ©0.9999999 0.1825087 0.1456520
RoyalDutchShell 0.1149345 0.3220805 ©.1825087 1.0000016 ©.6832558
ExxonMobil 0.1024805 0.2457536 ©.1456520 0.6832558 ©.9999997
# Residual matrix = R-LL'-Y
(resid<-round(R - Rho2, 4))

JPMorgan Citibank WellsFargo

JPMorgan 0.0000 ©.0000 -0.0026
Citibank 0.0000 0.0000 0.0016
WellsFargo -0.0026 0.0016 0.0000
RoyalDutchShell -0.0003 ©0.0002 0.0000
ExxonMobil 0.0520 -0.0331 0.0006

# plot Factor 1 by Factor 2

RoyalDutchShell ExxonMobil

-3e-04 0.0520
2e-04 -0.0331
0e+00 0.0006
0e+00 0.0001
le-04 0.0000

plot(Lml, "n",xlim=c(0,1.1)) # set up plot
text(Lml, names(datal), .7)
[so]
S | JPMorgan Citibank
© WellsFargo
© -
o
S ¥
Q o
o
w
N —
o
8 g | | F“O"Mom'l RoyaIDultchSheII
0.0 0.2 04 0.6 0.8 1.0
Factor1

Bayan Almukhlif
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#visualize the factor model
psych::fa.diagram(Lml)

Factor Analysis

| RoyalDutchShell

[Boomabi—o - et
,_
[P 8 Eacer?
Welsrargol

## part g: Test for the Number of Common Factors
n=fam. $n.obs

.S=(n-1-((2*p+4*m+5)/6))*log(det(Rho2)/det(R)) )

p
m
(
[1] 2.004672

— - N U

1

qchisq(@.95, (((p-m)~2)-p-m)/2)

[1] 3.841459

Ho: The data fit the model v.s H1: The data does not fit the model
From adequacy test, we can see that the significance level of the y? fit statistic is 0.16 >

0.05,this indicates that the hypothesis of perfect model fit is acceptable.
Bartlett-Corrected Likelihood Ratio Test Statistic:

|LsL 24|

[n—1—(2p+4m+5)/6]in==2 =197:X@ﬂmawﬂp,a=ﬁh%=334

since 1.97 < 3.84, so we accept H,,.

NOTE!

e In factanal No rotation is done for now, so the rotate argument is set to “none”. Use
the covmat= option to enter a correlation or covariance matrix directly.

e To see all the values captured by the object use the names() function.
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Ho: The data fit the model v.s H1: The data does not fit the model 


Rotated ML & PC Factor Analysis by using varimax.
## part 1 & j: Example 9.160

fam.r<- factanal(datal,?2, "varimax"
print(fam.r, NULL)
Call:
factanal(x = datal, factors = 2, rotation = "varimax"
Uniquenesses:
JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil
0.417 0.275 0.542 0.005 0.530
Loadings:
Factorl Factor2
JPMorgan 0.763 0.029
Citibank 0.819 0.232
WellsFargo 0.668 0.108
RoyalDutchShell ©0.113 0.991
ExxonMobil 0.108 0.677

Factorl Factor2

SS loadings 1.725 1.507
Proportion Var 0.345 0.301
Cumulative Var 0.345 0.646

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 1.97 on 1 degree of freedom.
The p-value is 0.16

Lml.r<- fam.r$loadings

communality<-apply(Lml.r”2, 1, sum)

Psi2.r <- diag(fam.r$uniquenesses)

R2 <- fam.r$correlation #sample correlation matrix (observed)

(Rho2.r <- Lml.r %*% t(Lml.r) + Psi2.r) #estimated correlation matrix p.

JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil
JPMorgan 0.9999999 0.6322803 0.5130616 0.1149345 ©0.1024805
Citibank 0.6322803 1.0000000 ©.5725336 0.3220805 ©0.2457536
WellsFargo 0.5130616 0.5725336 0.9999999 0.1825087 ©0.1456520
RoyalDutchShell ©.1149345 ©.3220805 ©.1825087 1.0000016 ©.6832558
ExxonMobil 0.1024805 0.2457536 ©0.1456520 0.6832558 ©0.9999997

# Residual matrix

(resid.r<-round(R2 - Rho2.r, 4))

JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil

JPMorgan 0.0000

Bayan Almukhlif
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-3e-04

0.0520
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Citibank
WellsFargo

RoyalDutchShell

ExxonMobil

0.0000 ©.0000 0.0016
-0.0026 0.0016 0.0000
-0.0003 0.0002 0.0000
0.0520 -0.0331 0.0006

#additional part: visualize the factor model

plot(Lml.r,

"n",xlim=c(0,1)) # set up plot

text(Lml.r, names (datal), .7)
8 — RoyalDutchShell
@ _|
(=]
o~ © ExxonMobil
G o ~
©
© <
L o 7]
N Citibank
o
WellsFargo
o | JPMorgan
o I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
Factor1

psych::fa.diagram(Lml.r)

Factor Analysis

Citibanke-.
U

(g0 s—Eadad

B.
WellsFargo

B.
ExxonMobil

# comparing MLE & PC without rotation

compl <- data.frame(unclass(Lml), unclass(Lpc)
newrow <-c("MLE","MLE", "PC","PC")
dfl<-rbind(newrow, round(compl,4))
row.names(df1)[1]<- "method"

dfl

method

JPMorgan
Citibank
WellsFargo
RoyalDutchShell
ExxonMobil

pbdydil AUTIUKIIUI

Factorl Factor2 PC1 PC2

MLE MLE PC PC
0.1206 0.7543 0.7323 -0.4365
0.3285 ©0.7857 0.8312 -0.2805
0.1876 ©0.6502 0.7262 -0.3739
0.9975 -0.0071 0.6047 0.694
0.6852 0.0263 0.5631 0.7186

2e-04
0e+00
0e+00
le-04

-0.0331
0.0006
0.0001
0.0000
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#*pc with "varimax" rotation
pc.r <- principal(datal,
Lpc.r<-pc.r$loadings

2, "varimax", FALSE)

#*comparing MLE & PC with "varimax" rotation
comp2 <- data.frame( unclass(Lml.r), unclass(Lpc.r) )
newrow2 <-c("MLE.r","MLE.r", "PC.r","PC.r")

df2<-rbind(newrow2, round(comp2,4))
row.names(df2)[1]<- "method"
df2

Factorl Factor2

method MLE.r  MLE.r

JPMorgan 0.7633 0.0292 0
Citibank 0.8195 0.2318 0
WellsFargo 0.668 0.1082 ©
RoyalDutchShell ©.1127 ©.9911 o
ExxonMobil 0.1084 0.6771 ©

#*compare the Residuals
residual2 # from PC method

JPMorgan Citibank

JPMorgan 0.000 -0.099
Citibank -0.099 0.000
WellsFargo -0.185 -0.134
RoyalDutchShell -0.025 0.014
ExxonMobil 0.056 -0.054

resid #from MLE method

JPMorgan Citibank

JPMorgan 0.0000 ©0.0000

Citibank 0.0000 0.0000

WellsFargo -0.0026 0.0016

RoyalDutchShell -0.0003 ©0.0002

ExxonMobil 0.0520 -0.0331
NOTE!

RC1 RC2
PC.r PC.r
.8518 0.0356
.8491 0.2203
.8124 0.0847
.1262 0.9118
.0778 0.9096

WellsFargo RoyalDutchShell ExxonMobil

-0.185 -0.025 0.056
-0.134 0.014 -0.054
0.000 0.003 0.006
0.003 0.000 -0.156
0.006 -0.156 0.000

WellsFargo RoyalDutchShell ExxonMobil

-0.0026 -3e-04 0.0520
0.0016 2e-04 -0.0331
0.0000 0e+00 0.0006
0.0000 0e+00 0.0001
0.0006 le-04 0.0000

- Rotation primarily affects the factor loadings, redistributing the variance among the
factors to make the structure more interpretable. The communality and specific
variance (uniqueness) values remain the same after rotation.

- Interpret the data ....

Bayan Almukhlif
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Example 9.9 page 529: Rotated Loading for the consumer-preference data.

In a consumer-preference study, a random sample of customers were asked to rate several
attributions of a new product. The response, on a 7-point semantic differential scale, were
tabulated and the attribute correlation matrix constructed. The correlation matrix is
presented next:

Attribute (Variable) 1 2 3 4 5

Taste 1[100 .02 42 .0
Good buy formoney 2| .02 100 .13 .71
Flavor 31 9% .13 100 .50 .11
4
5

Suitable for snack 2 71 50 1.0
Pravides lots of energy 01 8 11 79 1.00

a) Do factor analysis by using principal component method.

b) Rotate your solutions in Parts (a). Compare the solutions and comment on
them. Interpret each factor. (by Varimax)

c) Determine a reasonable number of factors m after rotation. Interpret the
factors. (by scree plot)

rm( 1s())
library("psych™)
R<-matrix(c(1,.02,.96,.42,.01,.02,1,0.13
,.71,.85,.96,.13,1,.5,.11,
.42,.71,.5,1,.79, .01, .85,.11,.79,1)
s 5, FALSE)
scree(R, TRUE)

w Scree plot

=

a

[
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factor or component number
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## PC Factor Analysis based upon correlation matrix.
pc <- principal(R, 2, "none", FALSE)
print(pc, NULL, 2)

Principal Components Analysis

Call: principal(r = R, nfactors = 2, rotate = "none", covar = FALSE)

Standardized loadings (pattern matrix) based upon correlation matrix
PC1 PC2 h2 u2 com

10.56 ©0.82 0.98 0.021 1.8
2 0.78 -0.52 0.88 0.121 1.8
3 0.65 0.75 0.98 0.024 2.0
4 0.94 -0.10 0.89 0.107 1.0
5 0.80 -0.54 0.93 0.068 1.8

PC1 PC2
SS loadings 2.85 1.81
Proportion Var 0.57 0.36
Cumulative Var 0.57 0.93

Proportion Explained ©0.61 0.39
Cumulative Proportion 0.61 1.00

Mean item complexity = 1.7
Test of the hypothesis that 2 components are sufficient.

The root mean square of the residuals (RMSR) is 0.03
Fit based upon off diagonal values =1

## Rotated Lloadings by varimax
pc.r <- principal(R, 2, "varimax", FALSE)
print(pc.r)

Principal Components Analysis

Call: principal(r = R, nfactors = 2, rotate = "varimax")

Standardized loadings (pattern matrix) based upon correlation matrix
RC1 RC2 h2 u2 com

10.02 0.99 0.98 0.021 1.0
2 0.94 -0.01 0.88 0.121 1.0
3 0.13 ©0.98 0.98 0.024 1.0
4 0.84 0.43 0.89 0.107 1.5
5 0.97 -0.02 0.93 0.068 1.0

RC1 RC2
SS loadings 2.54 2.12
Proportion Var 0.51 0.42
Cumulative Var 0.51 0.93

Proportion Explained ©.54 0.46
Cumulative Proportion ©.54 1.00

Mean item complexity = 1.1
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Test of the hypothesis that 2 components are sufficient.
The root mean square of the residuals (RMSR) is ©0.03
Fit based upon off diagonal values =1

L.r<-pc.r$loadings

# Two plots on the same graph .

plot(L, as.character(c(1:5)), c(-0.2,1), c(-0.8,1))
points(L.r, letters[c(1:9)], "red")
abline( Q)

abline( 9)

=
_

|
L]

PC2
0.0

05
|
O

| | | | | |
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

PCAH

# split the plot into two columns (2 plots next to each othe)
par( c(1,2))
plot(L, as.character(c(1:5)), c(-90.2,1), c(-0.8,1))
plot(L.r, as.character(c(1:5)), c(-0.2,1), c(-0.8,1), "r
edll)
abline( 9)
abline( 9)

[} L]

— — 1 13

13
Ly _ Ly
4

O O
0- o= | 4 o~ g ]

L L

< 7] Z < 7]

T T T T T 1 T T T T 1
0.2 04 08 0.2 04 08
PCA RCA
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Interpret the data based on the rotation (varimax): It is clear that variables “Good buy
for money, suitable for snack and provides lots of energy” are define factor 1 (high loadings
on factor 1, small loadings on factor 2), while variables “Taste” and “flavor” define factor 2
(high loadings on factor 2, small loadings on factor 1).

We might call factor 1 a nutritional factor and factor 2 a taste factor.

NOTE! The interpretation of (varimax) rotated is much cleaner than that of the
original analysis.

Example 9.12: in lecture page 67

Calculate factor scores by the least squares and Regression methods after rotation for first
observation of Stock-price data use:

a) Maximum likelihood factor analysis.

b) Principal components analysis.

# Example 9.12

datal <- read.table(choose.files()) #T8-4.DAT

names(datal) <- c("JPMorgan","Citibank","WellsFargo","RoyalDutchShell","Exxon
Mobil™)

# part a: Maximum LikRelihood Factor with varimax rotation.

## Factor Scores Obtained by "Bartlett" for first observation.
m.b<-factanal(datal, 2,rotation="varimax",scores = "Bartlett")
#print(m.b, cutoff = NULL)

Sb<-m.b$scores

Sb[1, ]

Factorl Factor2
0.2508994 -1.8536707

#*Explain how to find Bartlett factor Scores for the first observation.
datal.z<- as.data.frame(scale(datal, center = TRUE, scale = TRUE))
z1<-datal.z[1,] #first "standardized" observation.
psi<-diag(m.b$uniquenesses)

L<-m.b$loadings

(f1.b<- solve(t(L)%*%solve(psi)%*%L) %*% t(L)%*%solve(psi)%*% t(z1l))

1
Factorl 0.2508994
Factor2 -1.8536707

## Factor Scores Obtained by "Regression" for first observation.
m.r<- factanal(datal,2,rotation="varimax",scores = "regression" )
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Sr<- m.r$scores
sr[1,]

Factorl Factor2
0.1653586 -1.8342740

#*Explain how to find Regression factor Scores for the first observation.
R<- cor(datal)
(f1l.r<-t(L)%*% solve(R) %*% t(zl))

1
Factorl 0.1653586
Factor2 -1.8342740

# part b: Principal components Factor analysis with varimax rotation

## Bartlett score.

pc.b <- principal(datal, nfactors=2, rotate="varimax",covar=FALSE, scores=TRU
E,method="Bartlett")

#print(pc3, cutoff = NULL)

(sb.p<-pc.b$scores[1,])

RC1 RC2
0.06479191 -1.01648402

## Regression score

pc.r<- principal(datal, nfactors=2, rotate="varimax",covar=FALSE, scores=TRUE
,method="regression")

(sb.p<-pc.r$scores[1,])

RC1 RC2
0.06479191 -1.01648402
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