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Ch9:Exercise1-stat439 

Exercise 9.1 :  

Show that covariance matrix    S = 𝝆 = [
1 0.63 0.45

0.63 1 0.35
0.45 0.35 1

] 

For the 𝑝 = 3 standardized random variables 𝑍1, 𝑍2 𝑎𝑛𝑑 𝑍3 can be generated by the 𝑚 = 1 
factor model 

𝑍1 = 0.9𝐹1 + 𝜀1   

𝑍2 = 0.7𝐹1 + 𝜀2   

𝑍3 = 0.5𝐹1 + 𝜀3   

Where 𝑣𝑎𝑟(𝐹1) = 1, 𝑐𝑜𝑣(𝜀, 𝐹1) = 0, 𝑎𝑛𝑑 𝜓 = 𝑐𝑜𝑣(𝜀) = [
0.19 0 0
0 0.51 0
0 0 0.75

]. That is, write 𝝆 

in the form 𝝆 = 𝑳𝑳𝑻 + 𝝍 . 

Solution : 

Since Z is the standardized r.v, and 𝑳 = [
0.9
0.7
0.5

], we have the following: 

𝑳𝑳𝑻 + 𝝍 = [
0.9
0.7
0.5

] [0.9 0.7 0.5] + [
0.19 0 0
0 0.51 0
0 0 0.75

] = 

                        [
0.81 0.63 0.45
0.63 0.49 0.35
0.45 0.35 0.25

] + [
0.19 0 0
0 0.51 0
0 0 0.75

] = [
1 0.63 0.45

0.63 1 0.35
0.45 0.35 1

] = 𝝆 

Hence verified, the value of covariance matrix matches with the one provided. 
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Exercise 9.2 : use the information in Exercise 9.1 

a) Calculate communalities ℎ𝑖
2, 𝑖 = 1,2,3 ,  and interpret these quantities. 

b) Calculate 𝐶𝑜𝑟𝑟(𝑍𝑖 , 𝐹1) for i=1,2,3. Which variable might carry the greatest weight in 
“naming” the common factor? Why? 

c) The eigenvalues and eigenvectors of the correlation matrix ρ are  
𝜆1 =  1.96 ,     𝑒1

𝑇 = [0.625   0.593   0.507]        

𝜆2 = 0.68 ,    𝑒2
𝑇 = [−0.219  − 0.491    0.843] 

𝜆3 = 0.36 ,    𝑒3
𝑇 = [0.749  − 0.638  − 0.177] 

1- Assuming an 𝑚 = 1 factor model, calculate the loading matrix L and matrix of 
specific variances Ψ using the principal component solution method. Compare 
the results with those in Exercise 9.1. 

2- What proportion of the total population variance is explained by the first 
common factor? 

 
Solution of 9.2: 

a) Since  m =1, then, by Equ.(9‐6), the communalities are calculated as the following: 

ℎ𝑖
2 = 𝑙𝑖 1

2 + 𝑙𝑖 2
2 + ⋯+ 𝑙𝑖 𝑚

2  

ℎ1
2 = 𝑙11

2 = 0.92 = 0.81     ;    ℎ2
2 = 𝑙21

2 = 0.72 = 0.49      ;  ℎ3
2 = 𝑙31

2 = 0.52 = 0.25 

b) Since  𝐶𝑜𝑟𝑟(𝑍𝑖 , 𝐹𝑗) = 𝑐𝑜𝑣(𝑍𝑖  , 𝐹𝑗) = 𝑙𝑖 𝑗  . Therefore, 

𝑐𝑜𝑣(𝑍1 , 𝐹1) = 𝑙11 = 0.9       ;     𝑐𝑜𝑣(𝑍2 , 𝐹1) = 𝐿21 = 0.7        ;        𝑐𝑜𝑣(𝑍3 , 𝐹1) = 𝐿31 = 0.5  

Because the first variable 𝑍1 has the largest correlation with common factor, 𝑍1 will carry 

greatest weight in term of 𝐹1. 

c) part 1: By principal component solution methods (9‐15, 9‐16 and 9‐17), we have: 

   𝐿̃𝑝×𝑚 = [√𝜆1̂   𝑒̂1 ⋮ √𝜆2̂   𝑒̂2 ⋮ ⋯ ⋮ √𝜆𝑚̂  𝑒̂𝑚] ;   Ψ̃ = S − 𝐿̃𝐿̃𝑇 =

[
 
 
 
Ψ̃1 0 ⋯ 0

0 Ψ̃2   0
⋮     ⋱ ⋮

   0 0⋯ Ψ̃𝑝]
 
 
 

  

𝐿 ̃3×1 = [√𝜆1̂  𝑒̂1] = √1.96 [
0.625
0.593
0.507

] = [
0.875
0.830
0.710

] 

Ψ̃ = ρ − 𝐿̃𝐿̃𝑇 = [
1 0.63 0.45
⬚ 1 0.35
⬚ ⬚ 1

] − [
0.875
0.830
0.710

] [0.875     0.830      0.710] = 

[
1 0.63 0.45
⬚ 1 0.35
⬚ ⬚ 1

] − [
0.77 0.73 0.62
0.73 0.89 0.59
0.62 0.59 0.5

] = [
0.23 0 0
0 0.31 0
0 0 0.5

] 

Each estimation Ψ̃𝑖  is different from the results of Exercise 9.1. 
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c) part 2: By Equ. (9‐20), the proportion of the total estimated population variance due to 

 the first common factor is: 
𝜆1̂

𝑝
=

1.96

3
= 0.653   

 

Example 9.4 & 9.5 & 9.10: Stock-price data consisting of n = 103 weekly rates of 
return on p = 5 stocks. 

a) Obtain the principal component solution for factor models with m= 2 by using 
correlation matrix R. 

b) List the estimated communalities, specific variances and proportion of total sample 
variance explained by each factor . 

c) What is the 𝜓 matrix based on the PC ? 

d) Show that 𝛴 = 𝐿̂𝐿′̂ + 𝜓.  

e) Residual matrix. 

f) Obtain the maximum likelihood solution for 𝑚 =  2 common factors by use 
correlation matrix R. 

g) Test adequacy of model ?  

h) Dose  your analysis should include Factor Rotation ?  

i) Rotate your solutions in Parts (a) and (f). Compare the solutions and comment on  
them. Interpret each factor.   

j) Determine a reasonable number of factors m, and compare the principal component 
and maximum likelihood solutions after rotation. Interpret the factors.  

R Code: 
rm(list=ls()) 
#install.packages("psych") 
#install.packages("GPArotation") 
library("psych") 
library("GPArotation") 
#### Example 9.4 & 9.5 (based on Example 8.5) 
data1 <- read.table(choose.files()) #T8-4.DAT 
names(data1) <- c("JPMorgan","Citibank","WellsFargo","RoyalDutchShell","Exxon
Mobil") 
# Determine Number of Factors 
scree(data1,pc=TRUE,main="Scree plot") 
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From scree plot we probably conclude that there are only two factors in the dataset 
depend on PC. 

R=cor(data1) # sample correlation matrix (observed).  
## part a & b: PC Factor Analysis based upon correlation matrix. 
pc <- principal(data1, nfactors=2, rotate="none",covar=FALSE) 
print.psych(pc, cut = NULL, sort = FALSE) 

Principal Components Analysis 
Call: principal(r = data1, nfactors = 2, rotate = "none", covar = FALSE) 
Standardized loadings (pattern matrix) based upon correlation matrix 
                 PC1   PC2   h2   u2 com     
JPMorgan        0.73 -0.44 0.73 0.27 1.6      
Citibank        0.83 -0.28 0.77 0.23 1.2     
WellsFargo      0.73 -0.37 0.67 0.33 1.5      
RoyalDutchShell 0.60  0.69 0.85 0.15 2.0 
ExxonMobil      0.56  0.72 0.83 0.17 1.9 

 
                       PC1  PC2 
SS loadings           2.44 1.41 
Proportion Var        0.49 0.28    
Cumulative Var        0.49 0.77 
Proportion Explained  0.63 0.37 
Cumulative Proportion 0.63 1.00 

 
Mean item complexity =  1.6 
Test of the hypothesis that 2 components are sufficient. 
The root mean square of the residuals (RMSR) is  0.1  
with the empirical chi square  19.17  with prob <  1.2e-05  
Fit based upon off diagonal values = 0.95 

sum of squared loadings = Eigenvalues  
2.44

5
= 0.49 proportion of total sample variance do to 1-st factor. 

0.28 proportion of total sample variance do to 2-ed factor. 

With 2 components, we explain 77% of the variance. 

ℎ1
2 = 𝑙11

2 + 𝑙12
2 → 0.732 + 0.442 = 0.73 

73% of variation in that JPMorgan is explained 

by the two factors. 

𝒖𝟐 = 𝝍 ;  𝜓1 = 1 − ℎ2 = 1 − 0.73 = 0.27 
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eige<-eigen(R) #estimated eigenvalue & eigenvectors for R. 

lambda<-pc$values #estimated eigenvalue for R.  

Lpc<- unclass(pc$loadings ( 

h.e<-pc$communality  

## part c: 
Psi1<-diag(round(pc$uniquenesses,3),5,5)   

## part d: estimated correlation matrix 𝛒̂ = 𝐿̂𝐿′̂ + 𝜓. We must change all diagon
al values to be one. 

(Rho1 <- Lpc %*% t(Lpc) + Psi1)  

                  JPMorgan  Citibank WellsFargo RoyalDutchShell ExxonMobil 
JPMorgan        0.99984576 0.7311286  0.6950107       0.1399197 0.09866056 
Citibank        0.73112857 0.9995311  0.7084661       0.3079818 0.26645897 
WellsFargo      0.69501067 0.7084661  1.0001396       0.1797042 0.14024657 
RoyalDutchShell 0.13991966 0.3079818  0.1797042       1.0002571 0.83921362 
ExxonMobil      0.09866056 0.2664590  0.1402466       0.8392136 0.99951223 

## part e: estimated residual= 𝐑 − 𝛒̂ = 𝐑 − 𝐑𝐡𝐨𝟏  
(residual<-round(pc$residual,3)) # R-LL'  

                JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil 
JPMorgan           0.273   -0.099     -0.185          -0.025      0.056 
Citibank          -0.099    0.230     -0.134           0.014     -0.054 
WellsFargo        -0.185   -0.134      0.333           0.003      0.006 
RoyalDutchShell   -0.025    0.014      0.003           0.153     -0.156 
ExxonMobil         0.056   -0.054      0.006          -0.156      0.166 

(residual2<-round(pc$residual,3)-Psi1) # 𝑅 − 𝐿𝐿′ −  ψ = 𝐑 − 𝛒̂ 

                JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil 
JPMorgan           0.000   -0.099     -0.185          -0.025      0.056 
Citibank          -0.099    0.000     -0.134           0.014     -0.054 
WellsFargo        -0.185   -0.134      0.000           0.003      0.006 
RoyalDutchShell   -0.025    0.014      0.003           0.000     -0.156 
ExxonMobil         0.056   -0.054      0.006          -0.156      0.000 

(residual3<-resid.psych(pc)-Psi1) #pretty printed. 

                JPMrg Ctbnk WllsF RylDS ExxnM 
JPMorgan         0.00                         
Citibank        -0.10  0.00                   
WellsFargo      -0.18 -0.13  0.00             
RoyalDutchShell -0.03  0.01  0.00  0.00       
ExxonMobil       0.06 -0.05  0.01 -0.16  0.00 
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NOTE: 

• In Principal() since we are using R instead of S, the covar =FALSE by default.  No 
rotation is done for now, so the rotate="none". 

• Principal components analysis using covariance as follow: 
➢ By use data set 

   pc3<- principal(data1, nfactors=2, rotate="none",covar=TRUE, cor="cov")  

➢ By use covariance matrix 
   v=cov(data1)  
   pc3<- principal(v, nfactors=2, rotate="none",covar=TRUE) 

 

• The word “scree” refers to the loose stone that lies around the base of the mountain. 

• In the scree plot , you may face different number of factors depending on principal 
components and a principal axis factor extraction. you might want to look at both of 
these factor solutions. 

 
## part f: 
## Maximum Likelihood Factor Analysis with correlation matrix. 

#fa<- factanal(covmat= R ,factors=2,n.obs=103,rotation="none")  
 
fam<- factanal(data1,2,rotation="none") 
print(fam,cutoff = NULL) 
Call: 
factanal(x = data1, factors = 2, rotation = "none") 
 
Uniquenesses: 
   JPMorgan        Citibank      WellsFargo RoyalDutchShell      ExxonMobil  
     0.417           0.275           0.542           0.005           0.530  
 
Loadings: 
                Factor1 Factor2 
JPMorgan         0.121   0.754  
Citibank         0.328   0.786  
WellsFargo       0.188   0.650  
RoyalDutchShell  0.997  -0.007  
ExxonMobil       0.685   0.026  
 
               Factor1 Factor2 
SS loadings      1.622   1.610 
Proportion Var   0.324   0.322 
Cumulative Var   0.324   0.646 
 
Test of the hypothesis that 2 factors are sufficient. 
The chi square statistic is 1.97 on 1 degree of freedom. 
The p-value is 0.16  
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#names(fam) #see all the values of "factanal" function 
Lml<- fam$loadings 
communality<-apply(Lml^2, 1, sum) 
Psi2 <- diag(fam$uniquenesses) 
(R2 <- fam$correlation) #sample correlation matrix (observed)=R. 

                 JPMorgan  Citibank WellsFargo RoyalDutchShell ExxonMobil 
JPMorgan        1.0000000 0.6322878  0.5104973       0.1146019  0.1544628 
Citibank        0.6322878 1.0000000  0.5741424       0.3222921  0.2126747 
WellsFargo      0.5104973 0.5741424  1.0000000       0.1824992  0.1462067 
RoyalDutchShell 0.1146019 0.3222921  0.1824992       1.0000000  0.6833777 
ExxonMobil      0.1544628 0.2126747  0.1462067       0.6833777  1.0000000 

(Rho2 <- Lml %*% t(Lml) + Psi2) #estimated correlation matrix. We must change 
all diagonal values to be one. 

                 JPMorgan  Citibank WellsFargo RoyalDutchShell ExxonMobil 
JPMorgan        0.9999999 0.6322803  0.5130616       0.1149345  0.1024805 
Citibank        0.6322803 1.0000000  0.5725336       0.3220805  0.2457536 
WellsFargo      0.5130616 0.5725336  0.9999999       0.1825087  0.1456520 
RoyalDutchShell 0.1149345 0.3220805  0.1825087       1.0000016  0.6832558 
ExxonMobil      0.1024805 0.2457536  0.1456520       0.6832558  0.9999997 

# Residual matrix = R-LL'- 𝜓  

(resid<-round(R - Rho2, 4))   

                JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil 
JPMorgan          0.0000   0.0000    -0.0026          -3e-04     0.0520 
Citibank          0.0000   0.0000     0.0016           2e-04    -0.0331 
WellsFargo       -0.0026   0.0016     0.0000           0e+00     0.0006 
RoyalDutchShell  -0.0003   0.0002     0.0000           0e+00     0.0001 
ExxonMobil        0.0520  -0.0331     0.0006           1e-04     0.0000 

# plot Factor 1 by Factor 2 
plot(Lml,type="n",xlim=c(0,1.1)) # set up plot 
text(Lml,labels=names(data1),cex=.7) 

 



Bayan Almukhlif        8 | بيان المخلف 

 

#visualize the factor model 
psych::fa.diagram(Lml) 

 

 

## part g: Test for the Number of Common Factors 
n=fam2$n.obs 
p=5 
m=2 
( T.S=(n-1-((2*p+4*m+5)/6))*log(det(Rho2)/det(R)) ) 
[1] 2.004672 

qchisq(0.95,(((p-m)^2)-p-m)/2)  

[1] 3.841459 

From adequacy test, we can see that the significance level of the 𝜒2 fit statistic is 0.16 >
0.05,this indicates that the hypothesis of perfect model fit is acceptable. 

Bartlett-Corrected Likelihood Ratio Test Statistic: 

 [𝑛 − 1 − (2𝑝 + 4𝑚 + 5)/6]𝑙𝑛
|𝐿̂𝑧𝐿′̂

z+𝜓̂𝑧|

|𝑅|
= 1.97  ;    𝜒[(𝑝−𝑚)2−𝑝−𝑚]/2 ,   𝛼

2 = 𝜒1,0.05
2 = 3.84 

since 1.97 < 3.84,  so we accept 𝐻0. 

NOTE! 

• In factanal No rotation is done for now, so the rotate argument is set to “none”. Use 
the covmat= option to enter a correlation or covariance matrix directly. 

• To see all the values captured by the object use the  names() function. 

 

Ho: The data fit the model v.s H1: The data does not fit the model 
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Rotated ML & PC Factor Analysis by using varimax. 

## part i & j: Example 9.10 
fam.r<- factanal(data1,2,rotation="varimax") 
print(fam.r,cutoff = NULL)  

 
Call: 
factanal(x = data1, factors = 2, rotation = "varimax") 
 
Uniquenesses: 
   JPMorgan        Citibank      WellsFargo RoyalDutchShell      ExxonMobil  
    0.417           0.275           0.542           0.005           0.530  
Loadings: 
                Factor1 Factor2 
JPMorgan        0.763   0.029   
Citibank        0.819   0.232   
WellsFargo      0.668   0.108   
RoyalDutchShell 0.113   0.991   
ExxonMobil      0.108   0.677   
 
               Factor1 Factor2 
SS loadings      1.725   1.507 
Proportion Var   0.345   0.301 
Cumulative Var   0.345   0.646 
 
Test of the hypothesis that 2 factors are sufficient. 
The chi square statistic is 1.97 on 1 degree of freedom. 
The p-value is 0.16  

Lml.r<- fam.r$loadings 

communality<-apply(Lml.r^2, 1, sum) 

Psi2.r <- diag(fam.r$uniquenesses) 

R2 <- fam.r$correlation # sample correlation matrix (observed) 

(Rho2.r <- Lml.r %*% t(Lml.r) + Psi2.r) # estimated correlation matrix  𝛒̂ . 

                 JPMorgan  Citibank WellsFargo RoyalDutchShell ExxonMobil 
JPMorgan        0.9999999 0.6322803  0.5130616       0.1149345  0.1024805 
Citibank        0.6322803 1.0000000  0.5725336       0.3220805  0.2457536 
WellsFargo      0.5130616 0.5725336  0.9999999       0.1825087  0.1456520 
RoyalDutchShell 0.1149345 0.3220805  0.1825087       1.0000016  0.6832558 
ExxonMobil      0.1024805 0.2457536  0.1456520       0.6832558  0.9999997 

# Residual matrix 
(resid.r<-round(R2 - Rho2.r, 4)) 

                JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil 
JPMorgan          0.0000   0.0000    -0.0026          -3e-04     0.0520 
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Citibank          0.0000   0.0000     0.0016           2e-04    -0.0331 
WellsFargo       -0.0026   0.0016     0.0000           0e+00     0.0006 
RoyalDutchShell  -0.0003   0.0002     0.0000           0e+00     0.0001 
ExxonMobil        0.0520  -0.0331     0.0006           1e-04     0.0000 

#additional part: visualize the factor model 
plot(Lml.r,type="n",xlim=c(0,1)) # set up plot 
text(Lml.r,labels=names(data1),cex=.7) 

 

psych::fa.diagram(Lml.r) 

 

# comparing  MLE & PC without rotation  
comp1 <- data.frame(unclass(Lml), unclass(Lpc) ) 
newrow <-c("MLE","MLE", "PC","PC") 
df1<-rbind(newrow,round(comp1,4))  
row.names(df1)[1]<- "method" 
df1 

                Factor1 Factor2    PC1     PC2 
method              MLE     MLE     PC      PC 
JPMorgan         0.1206  0.7543 0.7323 -0.4365 
Citibank         0.3285  0.7857 0.8312 -0.2805 
WellsFargo       0.1876  0.6502 0.7262 -0.3739 
RoyalDutchShell  0.9975 -0.0071 0.6047   0.694 
ExxonMobil       0.6852  0.0263 0.5631  0.7186 
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#*pc with "varimax" rotation 
pc.r <- principal(data1, nfactors=2, rotate="varimax",covar=FALSE) 
Lpc.r<-pc.r$loadings 
#*comparing  MLE & PC with "varimax" rotation  
comp2 <- data.frame( unclass(Lml.r), unclass(Lpc.r) ) 
newrow2 <-c("MLE.r","MLE.r", "PC.r","PC.r") 
df2<-rbind(newrow2,round(comp2,4))  
row.names(df2)[1]<- "method" 
df2 

                Factor1 Factor2    RC1    RC2 
method            MLE.r   MLE.r   PC.r   PC.r 
JPMorgan         0.7633  0.0292 0.8518 0.0356 
Citibank         0.8195  0.2318 0.8491 0.2203 
WellsFargo        0.668  0.1082 0.8124 0.0847 
RoyalDutchShell  0.1127  0.9911 0.1262 0.9118 
ExxonMobil       0.1084  0.6771 0.0778 0.9096 
 
#*compare the Residuals 
residual2 # from PC method 

                JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil 
JPMorgan           0.000   -0.099     -0.185          -0.025      0.056 
Citibank          -0.099    0.000     -0.134           0.014     -0.054 
WellsFargo        -0.185   -0.134      0.000           0.003      0.006 
RoyalDutchShell   -0.025    0.014      0.003           0.000     -0.156 
ExxonMobil         0.056   -0.054      0.006          -0.156      0.000 
resid #from MLE method 

                JPMorgan Citibank WellsFargo RoyalDutchShell ExxonMobil 
JPMorgan          0.0000   0.0000    -0.0026          -3e-04     0.0520 
Citibank          0.0000   0.0000     0.0016           2e-04    -0.0331 
WellsFargo       -0.0026   0.0016     0.0000           0e+00     0.0006 
RoyalDutchShell  -0.0003   0.0002     0.0000           0e+00     0.0001 
ExxonMobil        0.0520  -0.0331     0.0006           1e-04     0.0000 

 

NOTE! 

- Rotation primarily affects the factor loadings, redistributing the variance among the 
factors to make the structure more interpretable. The communality and specific 
variance (uniqueness) values remain the same after rotation. 

- Interpret the data … .  
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Example 9.9 page 529: Rotated Loading for the consumer-preference data. 

In a consumer-preference study, a random sample of customers were asked to rate several 
attributions of a new product. The response, on a 7-point semantic differential scale, were 
tabulated and the attribute correlation matrix constructed. The correlation matrix is 
presented next:  

 

a)  Do factor analysis by using principal component method.  

b) Rotate your solutions in Parts (a). Compare the solutions and comment on  
them. Interpret each factor.  (by Varimax) 

c) Determine a reasonable number of factors m after rotation. Interpret the 
factors.  (by scree plot) 

 

rm(list=ls()) 
library("psych") 
R<-matrix(c(1,.02,.96,.42,.01,.02,1,0.13 
            ,.71,.85,.96,.13,1,.5,.11, 
            .42,.71,.5,1,.79,.01,.85,.11,.79,1) 
          ,nrow = 5,byrow=FALSE) 
scree(R,pc=TRUE) 
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## PC Factor Analysis based upon correlation matrix. 
pc <- principal(R, nfactors=2, rotate="none",covar=FALSE) 
print(pc, cut = NULL, digits=2) 

Principal Components Analysis 
Call: principal(r = R, nfactors = 2, rotate = "none", covar = FALSE) 
Standardized loadings (pattern matrix) based upon correlation matrix 
   PC1   PC2   h2    u2 com 
1 0.56  0.82 0.98 0.021 1.8 
2 0.78 -0.52 0.88 0.121 1.8 
3 0.65  0.75 0.98 0.024 2.0 
4 0.94 -0.10 0.89 0.107 1.0 
5 0.80 -0.54 0.93 0.068 1.8 
 
                       PC1  PC2 
SS loadings           2.85 1.81 
Proportion Var        0.57 0.36 
Cumulative Var        0.57 0.93 
Proportion Explained  0.61 0.39 
Cumulative Proportion 0.61 1.00 
 
Mean item complexity =  1.7 
Test of the hypothesis that 2 components are sufficient. 
 
The root mean square of the residuals (RMSR) is  0.03  
Fit based upon off diagonal values = 1 
 

## Rotated loadings by varimax  
pc.r <- principal(R, nfactors=2, rotate="varimax",covar=FALSE) 
print(pc.r) 

Principal Components Analysis 
Call: principal(r = R, nfactors = 2, rotate = "varimax") 
Standardized loadings (pattern matrix) based upon correlation matrix 
   RC1   RC2   h2    u2 com 
1 0.02  0.99 0.98 0.021 1.0 
2 0.94 -0.01 0.88 0.121 1.0 
3 0.13  0.98 0.98 0.024 1.0 
4 0.84  0.43 0.89 0.107 1.5 
5 0.97 -0.02 0.93 0.068 1.0 
 
                       RC1  RC2 
SS loadings           2.54 2.12 
Proportion Var        0.51 0.42 
Cumulative Var        0.51 0.93 
Proportion Explained  0.54 0.46 
Cumulative Proportion 0.54 1.00 
 
Mean item complexity =  1.1 
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Test of the hypothesis that 2 components are sufficient. 
The root mean square of the residuals (RMSR) is  0.03  
Fit based upon off diagonal values = 1 

L.r<-pc.r$loadings 

 
# Two plots on the same graph . 
plot(L,pch = as.character(c(1:5)),xlim = c(-0.2,1), ylim = c(-0.8,1)) 
 points(L.r,pch = letters[c(1:9)], col = "red") 
 abline(h = 0) 
abline(v = 0) 

 

# split the plot into two columns (2 plots next to each othe) 
par(mfrow=c(1,2)) 
plot(L,pch = as.character(c(1:5)),xlim = c(-0.2,1), ylim = c(-0.8,1)) 
plot(L.r,pch = as.character(c(1:5)),xlim = c(-0.2,1), ylim = c(-0.8,1),col="r
ed") 
 abline(h = 0) 
abline(v = 0) 
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Interpret the data based on the rotation (varimax): It is clear that variables “Good buy 
for money, suitable for snack and provides lots of energy” are define factor 1 (high loadings 
on factor 1, small loadings on factor 2), while variables “Taste” and “flavor” define factor 2 
(high loadings on factor 2, small loadings on factor 1). 

We might call factor 1 a nutritional factor and factor 2 a taste factor. 

NOTE!  The interpretation of (varimax) rotated is much cleaner than that of the 
original analysis.    

Example 9.12: in lecture page 67  

Calculate factor scores by the least squares and Regression methods after rotation for first 
observation of Stock-price data use:  

a) Maximum likelihood factor analysis. 

b) Principal components analysis. 

 

# Example 9.12  
data1 <- read.table(choose.files()) #T8-4.DAT 
names(data1) <- c("JPMorgan","Citibank","WellsFargo","RoyalDutchShell","Exxon
Mobil") 
 
# part a: Maximum Likelihood Factor with varimax rotation. 
## Factor Scores Obtained by "Bartlett" for first observation. 
m.b<-factanal(data1,2,rotation="varimax",scores = "Bartlett")  
#print(m.b,cutoff = NULL) 
Sb<-m.b$scores  
Sb[1,] 

   Factor1    Factor2  
 0.2508994 -1.8536707  

#*Explain how to find Bartlett factor Scores for the first observation. 
data1.z<- as.data.frame(scale(data1, center = TRUE, scale = TRUE)) 
z1<-data1.z[1,]  #first "standardized" observation. 
psi<-diag(m.b$uniquenesses) 
L<-m.b$loadings 
(f1.b<- solve(t(L)%*%solve(psi)%*%L) %*% t(L)%*%solve(psi)%*% t(z1)) 

                 1 
Factor1  0.2508994 
Factor2 -1.8536707 

## Factor Scores Obtained by "Regression" for first observation. 
m.r<- factanal(data1,2,rotation="varimax",scores = "regression" ) 
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Sr<- m.r$scores 
Sr[1,] 

   Factor1    Factor2  
 0.1653586 -1.8342740  

#*Explain how to find Regression factor Scores for the first observation. 
R<- cor(data1) 
(f1.r<-t(L)%*% solve(R) %*% t(z1)) 

                 1 
Factor1  0.1653586 
Factor2 -1.8342740 

# part b: Principal components Factor analysis with varimax rotation 
## Bartlett score. 
pc.b <- principal(data1, nfactors=2, rotate="varimax",covar=FALSE, scores=TRU
E,method="Bartlett") 
#print(pc3,cutoff = NULL)  
(sb.p<-pc.b$scores[1,]) 

        RC1         RC2  
 0.06479191 -1.01648402  

## Regression score 
pc.r<- principal(data1, nfactors=2, rotate="varimax",covar=FALSE, scores=TRUE
,method="regression") 
(sb.p<-pc.r$scores[1,]) 

        RC1         RC2  
 0.06479191 -1.01648402  

 


