المقرر: 436 إحص: تحليل السلاسل الزمنية

Tutorial set #3

Question 1:

Write the Yule-Walker equations for every model of the following, where $\varepsilon_{t\sim}i.i.d(0,\sigma_{\varepsilon}^2)$:

1-
$$y_t = 0.5y_{t-1} + \varepsilon_t$$

2-
$$y_t = 1.2 y_{t-1} - 0.7 y_{t-2} + \varepsilon_t$$

3- find ρ_1 , ρ_2 , ϕ_{kk} for the models in (1) and (2).

Question 2:

Assume $\varepsilon_{t\sim}i.i.d(0,\sigma_{\varepsilon}^2)$, and let the observed series be defined as $y_t = \varepsilon_t - \theta \varepsilon_{t-1}$. Where the parameter θ can take either the value $\theta = 3$ or $\theta = \frac{1}{3}$.

- 1- Find the autocorrelation function of the series $\{Y_t\}$ for both cases, compare them.
- 2- Is the process $\{Y_t\}$ stationary in both cases?
- 3- For simplification, assume that the mean of the process $\{Y_t\}$ equal zero, and the variance is equal to one, and that you obtained the observed series $\{Y_t\}$ for t=1,2,...,n, and that you have obtained a credible estimates for the coefficients of the ACF ρ_k , can you tell which process generated the data (i.e. which value $\theta=3$ or $\theta=\frac{1}{3}$ to be used in the model to model the data?)

Question 3: Write the following models using the backshift operator B:

1-
$$y_t - 0.5 y_{t-1} = \varepsilon_t$$
:

2-
$$y_t = \varepsilon_t - 1.3 \varepsilon_{t-1} + 0.4 \varepsilon_{t-2}$$

3-
$$y_t - 0.5 y_{t-1} = \varepsilon_t - 1.3 \varepsilon_{t-1} + 0.4 \varepsilon_{t-2}$$

المقرر: 436 إحص: تحليل السلاسل الزمنية

Question 4:

Express the following models in terms of the process $\{y_t\}$ and $\{\varepsilon_t\}$:

1-
$$\nabla^3 \mathbf{y_t} = \nabla \mathbf{\varepsilon_t}$$

2-
$$\nabla^2 y_t = \nabla^3 \varepsilon_t$$

Question 5:

Open the MINITAB program, and get acquainted with following icons:

- 1- The icon for "Time series Plot".
- 2- The icon for "Differences".
- 3- The icon for "lag".
- 4- The icon for "Autocorrelation function".
- 5- The icon for "Partial Autocorrelation function".