Chapter 1: Introduction

Q: What is a time series?

A time series is a collection of observations of some phenomenon
collected sequentially over a period of time. For example, volume of

rain over months of the year, number of daily accidents in Saudi Arabia,

value of quarterly foreign remittances, etc.. . This means that data have

chronological order.




There are many examples of time series in many fields of knowledge
it can be found in Agriculture - Medicine - Economics - Engineering -
Education and others. Therefore, the methods used in time series

analysis play an important role in the science of statistics.




Example 1: Figure 1.1 illustrates the profit gain of a company over a

period of 50 years.
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Figure 1.1 The profit gain of a company over a period of 50 years




Example 2: Figure 1.2 illustrates the average monthly temperatures
in a city during a period of 6 years.
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Figure (1.2): average monthly temperatures in a city during a period of 6 years




Example 3: Figure 1.3 illustrates the monthly sales for some
industrial piece during a period of 15 years

600

500

400 -

300

200 -

100 ~

1 14 28 4 56 70 84 9 112 126 140
Index

Figure (1.3): monthly sales for some industrial piece during a period of 15 years




1.2 Some used terminology

A time series is said to be continuous, when observations are taken in a
continuous manner over time, and to be discrete when observations are
taken at specific times (usually at equal intervals). In this course we will
be interested in discrete time series.

As we know, most of the statistical theory, which we have already

studied is interested in studying random samples that in which




observations are independent. But as we have seen from the above
examples, the nature of time series indicate that the observations
are not independent. Therefore, statistical analysis to be used for the
analysis must take into consideration the chronological (or spatial) order
of the observations.

When observations are not independent of each other, then it is possible
to predict future values of the series using the previous values. If it is

possible to predict the future with complete accuracy, then the series is




called deterministic. However, mostof thetime series are
stochasticand therefore completely accurate predictions are not

possible.

Goals of time series analysis
There are several goals for the analysis of time series, some of which are:
1- Description

Time series analysis is used to describe and portray the available

information that shows how the studied phenomenon evolve over time.




That is, describe the main features of the time series, which will help in
determining the best mathematical model that can be appropriate to
achieve the other goals of the analysis, and get to know the upward and
downward movements in the time series, and to identify the major
components such as trend and seasonal changes. So when analyzing any
time series, the first step must be carried out is to plot the time series as
we have seen in the previous examples and get some descriptive

characteristics.




For example, in Figure (1.3),
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we notice the existence of strong seasonal effects, as sales increase in

the middle of the year, and decreases at the ends. Italso seems
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that annual sales increase from year to year (i.e. thereis a growing
trend, so for some series, description of the observations can be
achieved through a simple model that includes trend component and
seasonal component. However, some series may need a more
complicated models.

2- Interpretation
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Interpretation means explaining the changes occurring in the
phenomenon using other time series that are related to it, or by using
environmental factors affecting the phenomenon, for example,

one can study how the sea level is affected by temperature, or how sales
are affected by advertising.

3- Control

In production lines (in the factories), one may get time series that

designate the product quality in the manufacturing process, and the goal
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here might be to control product quality so that it does not exceed a

specified level.

4- Forecasting
Forecasting is considered one of the most important goals of time series

analysis. As one might want to know or expect the future values of a time

series.

13



Analysis of time series usually starts by identifying an appropriate model
that explains the evolution pattern of the series, and then uses the
model to extrapolate this pattern into the future.

The main assumption here is that this pattern will continue in the near
future. It should be noted that any forecasting method will not give good
forecasting results if the pattern did not continue in the future, so it is
always advisable to restrict forecasting to the near future, and update

the forecasts as new observations become available.
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Measuring forecasting errors

Usually a time series is studied for the purpose of finding out the
evolution pattern of the historical values of the phenomenon and then
use this pattern to forecast the future values. However, any future
forecast will contain a certain amount of uncertainty, this could be

reflected by adding an error component in the forecasting model.
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Error component is one representing factors that cannot be explained

by the typical or regular components in the model. Of course, whenever

the error component is small, this will increase our ability to forecast

accurately, and vice versa.

If we assume that the value of the phenomenon at time ¢ is y; , and that

our forecast at time t is V; , then forecast error at time ¢ is defined as:
E=Ve—y: . t=12.....1n

Where 7 is the length of the series (i.e. no. of observations in the series).
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Examining successive forecasting errors &, reveals how good is the
forecasting model. As we know from regression analysis, a good model
must produce errors that are random, i.e. errors that are free of any

systematic changes, as shown in the following figure:
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If these errors are acceptable, so that the forecasting method is
considered appropriate then we should measure the size of these errors.
There are some measures of error size, the most important are:

a. Mean absolute deviation (MAD):

It is defined as,
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MAD measures the deviations in the same units as the original data.

b. Mean Absolute Percentage Error (MAPE):

This measure finds out how accurate is the model fitted to the data, it is

given as,
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It gives the forecasting errors as a percentage, this provide us with a tool

to compare different models, and their forecasting ability.

c. Mean Squared Deviation (MSD):

MSD = kZ(et)z
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k
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This measure is similar to the usual measure MSE (mean squared error),
but it is better in comparing the different models, because the MSE uses
in the denominator (n — 1) degrees of freedom, where 7 represent the
number of estimated parameters in the models, which change with the
used model, whereas, MSD uses in the denominator (k) degrees of
freedom (i.e. the number of obtained forecasts), which does not change
with the model. Also note that MSD gives more weight for large errors

as it squares them.
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In all the measures above, we choose the model that produce the lowest

values for MAD, MSD, MAPE.

Choosing the appropriate method for forecasting

Choosing the appropriate method of forecasting is one of the most
important steps in the analysis of time series, which is not an easy task,

and requires experience, skills, and employing the appropriate statistical
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methods for the data, but generally it depends on many factors
including:

A) Minimizing forecasting errors, which is the first criteria analyst

should pay attention to, these are measured through the three

criteria mentioned above.

B) Quality of required forecast. If a point forecast is required, then
using simple traditional methods will be enough to achieve the

goal. Whereas, if we require to estimate interval forecast and
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to evaluate it through test of hypothesis, then more sophisticated
methods should be employed, such as BOX-Jenkins methods.
C) Cost of used statistical methodology and availability of relevant
statistical software.
D) Extent to which theoretical assumptions upon which forecasting
model rely are satisfied. This is a very important consideration and
should be checked.

Forecasting methods
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It is possible to identify two main forecasting methods:

1- Regression approach

This approach is based on identifying the variable(s) that may have a
causal relationship with the variable under study that we want to
predict, this variable is called the dependent variable, then determine

the appropriate statistical model or appropriate functional relationship
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which explains how the dependent variable is associated to the
independent or explanatory variables. Using this model, we can predict
the dependent variable under study. The main disadvantages of this
approach are:
a- Difficulty of identifying all the explanatory variables that are

related to the dependent variable.
b- Requires the availability of detailed historical information

about all the explanatory variables, and the ability of knowing
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these variables or predicting them.

c- Time series approach

This approach relies on analyzing historical data of the variable under
study in order to determine the pattern it follows. Assuming that this
pattern will continue in the future, we use it to predict future values of
the variable. Time series models are divided into three major types:

a) deterministic models
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b) ad hoc methods

c) stochastic time series models

e Deterministic models:

As we know from our study in statistics that the mean model can be

expressed in the following general form:

ye = E(ye) + &
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Where ¢; are uncorrelated random variables with mean equal to zero
and a constant variance, this model is called deterministic if we are able
to express E(y;) as a direct function of time ¢t , and let it be f(t.[),
where the vector [f denote the parameters of this function. In this case

it is possible to express the observations of the time series y; in the form:

ye=f(t.B)+ . t=12....n

Which means that future values of the series can be expressed in the

form:
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yh=f(h,8) h=t+1.t+ 2...

This indicate that future values of the series takes on a deterministic
form, i.e. a non-random form f(h.[). These models are based on two
main assumptions:

1) The function f(t. ) is a deterministic nonrandom function.
2) & are uncorrelated random variables with mean zero and a

constant variance.

These assumptions indicate that the variables y,.v,. ...y, are

uncorrelated. Examples of mathematical functions used in these

31



models are the polynomials, exponential functions, and trigonometric

functions.

The deterministic models have some disadvantages:

1) These methods focus on mathematical logic in trying to find a
suitable mathematical function that can be used to fit the data more
than trying to discover the important statistical features of the series,
and the most important feature is their correlation structure. So they

are just models to regenerate the observations y;.y,. .... V.
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2) These models assume that the long-term evolution of the series is

systematic and regular so that it can be predicted very accurately.

3) These models also assume that the observations are not
correlated, which is rarely true in different application areas.
Because of all these disadvantages, the deterministic models usually

produce statistically less accurate forecasts.
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e Ad hoc methods

These methods rely on expressing the forecast of the series at time ¢
in terms of the current value y;, and its past values y;.v,.....y;_1. S0
if we assume that t represent a certain origin point, and that we want
to predict the value of the series after k time intervals, then this

approach indicate using the following functional relationship:

Verk = fV1- Y2 o Ye—1-Vt)
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Many ways exist to carry out such predictions, such as moving

averages method, and exponential smoothing methods.
a) Simple Moving Average

This method uses the most recent k values of the series to

predict next value :

1

yt+1 = E [yt + V-1 + ...+ yt—(k—Z) + yt—(k—l)]' t=k.k+1....n

this means that:
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Vit = %[yt+1 + Ye+ ot yt—(k—Z)]
That is, to find a simple moving average ;.. we use the same values
used in finding the previous mean ;. after replacing the older value
Vi—(k—1) With the most recent one y;,; , and it this that gave this
procedure its name, moving average, because always the mean is

updated by dropping the oldest observation and adding a new one.
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For example for k = 3, we can form a simple moving average as

follows:

N\

1
3’4=§[3’3+ v, + 4]
1

Vs =§[}’4+Y3+ V2l

N\

1
Ve :g[)’s+ Vs + y3l

~ 1
Yn = 3 [yn—l + Yp_2 T yn—S]
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Choosing the right value for k& depends on the experience of the
researcher. Indeed, it is one of the difficulties of using simple moving

average method.

Another problem is in assigning equal weights for all observations, for
example for k = 8 , the weight given to the most recent value v; is
equal to the oldest value y;_-, which contradicts with properties of
time series, as it is more logical to assign larger weights to the most

recent observations, that’s why it is preferred to use simple moving
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averages in forecasting when the observed time series is random in

nature.

Example: For the following data, calculate a moving average of

order k = 3:

355, 451, 435, 558, 556, 573, 565, 608

solution:

+ v, + 435 + 451 + 355
ma, (3) = 2 y32 1 _ > = 419.68
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+ vy + 558 + 435 + 451
ma,(3) = 2 y,af Y2 _ - = 481.33

In the same manner, we get,
ma3(3) = 516.33.ma,(3) = 562.33. ma<(3) = 582.
ma(3) = 626.33

Example: In MINTAB program, open data file “EMPLOY.MTB”, Use

data Variable (Metals):

44 .2 44 .3 44.4 43.4 42.3 44.3 44.4
44 .38 44.4 43.1 42.0 42.4 42.2 41.8
40.1 42.0 42.4 43.1 42.4 43.1 43.2
42 .8 43.0 42.8 42.5 42.0 42.3 42.9
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43.0 44.7 44.
45.2 45.0 45.
48.3 49.1 43.
49.9 49.0 50.
50.7

Plotting the data, we get:

~J
Ul
O

50.3

7

44 .3 44.
46.3 47.
50.0 50.
50.9 50.

49.2 48.1

o1 O Ol

41

45.72
48.3
49.06
51.2



Time Series Plot of Metals
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And we can apply the moving average with order k = 3 as Follows:
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And get the following:

Moving Average Plot for Metals

Metals

Variable
—@&— Actual
—mB— Fits

Forecasts
—& - 95,0% PI

Moving Average
Length 3

Accuracy Measures
MAPE  1.55036
MAD 0.70292
MSD 0.76433
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e single exponential smoothing

As we have seen, simple moving average assigns the same weight to all
observations, that s, it gives both old and recent observations the same
importance in smoothing, but real life applications dictate that most
recent observations should have more influence on the smoothing than

older ones.

AS previously seen, for the time series y;.v,. .... V¢, the simple moving

average (SMA) of order k has the form:
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1
Yt = E()’t + Vi1t Veeks1) -

Or,

11 1
Ve = EYt + Eyt—l + et E%—kﬂ

Or,
Ve = ays +aye_ 1+ + aye_g41

This means that SMA gives all observations the same weight a.

46



This problem can be avoided by giving the old observations
weights that decrease exponentially, which is called the simple
exponential smoothing (SES),

Sc=ay, +a(l —a)y,_; +a(l —a)?y;_, ...
t=1..n. 0<a<l1

the value 5; is a weighted average that decreases exponentially, it

can be written in an recursive manner as follows:
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Example: Open data file "EMPLOY.MTB", use data variable

(Metals), smooth the data using single exponential smoothing.
Solution:

From Minitab, we have:
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Stat Graph Editor Tools Window Help

Basic Statistics
Regression
ANOVA

DOE

Control Charts
Quality Tools
Reliability/ Survival

Multivariate

Time Series b

Tables
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|~ Time Series Plot...
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= Moving Average...
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A- Differences...
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we get the following window:

Single Exponential Smoothing

Help

Variable: |Hetals

“Weight to Use in Smoothing
+ Optimal ARIMA

" Usge: 0.2

[ Generate forecasts

—
——
Time... | Options... Storage...
Graphs... Hesults. ..
oK Cancel

And the result is:
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Single Exponential Smoothing Plot for Metals

Variable
—&— Actual
—B— Fits
Forecasts
—a& - 95.0% PI

Smoothing Constant
Alpha 0.7

Accuracy Measures
MAPE  1.25572
MAD 0.56762
MSD 0.49660

Metals

Where we note that the smoothing is better than that obtained

from SMA. .
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Note also the difference between giving a small value for a and
larger values. If the value is large then we give recent values larger
effect, while older values has little effect in forecasting. For small
values for a, the resulting series will be smoother, and vice versa for
large values of «. This means that in case the series has lots of
fluctuations then we use a small value for «. Usually, we try several
values for o and choose the value that gives the best value of the

accuracy measures we have seen before.
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Note: SES does not provide good forecasts if the series contains
trend component (see forecasts in the above figure), and therefore
there are other ways of exponential smoothing that provide better
forecasts in this case. For example, the so-called double
exponential smoothing method, which is a generalization to SES,
where in a first step the original data is smoothed by single

exponential smoothing, and in the second step the smoothed data is
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smoothed again. Note that in this case we have two smoothing
parameters, one for the level of the series, and the other for
trend. The following figure shows the result of using this method to

data from the previous example:
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Stat Graph Editor Tools Window Help
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we get the following:

Double Exponential Smoothing Plot for Metals

54

Metals

Variable
—@&— Actual
—B— Fits
Forecasts
—& - 95.0% PI

Smoothing Constants
Alpha (level) 1.03840
Gamma (trend) 0.02997

Accuracy Measures

MAPE  1.19684
MAD 0.54058
MSD 0.46794
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1.6.2.3 Stochastic time series models

The techniques discussed in the previous lecture are simple and
traditional, and none of them can be considered to be statistically
structured methodology for the analysis of time series. The Stochastic
time series analysis provide more sophisticated methods of
forecasting. The random model always assumes the existence of a
theoretical stochastic process able to generate the time series at our

hands. If it is assumed theoretically that such a process is used to
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produce large group of series on the same time interval under study,
then every series will be different from the others, however, all group
of series will follow same probability rules. This is exactly the same
case as the population and the sample, where we can select many

different samples from the same population, however these samples

will follow same probability rules as the population.

Therefore, the proposed method suggested here, assumes that the

observations of the time series (v;.v,.....V,,) that are observed in the
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time interval (1.2.....n) is a_realization drawn from multivariate

random vector (V;.V,.....Y,) that have cumulative distribution
function F(v4.v,.....V,) which is used to make inferences about the
future of the stochastic process. It is well known in statistical science,
that knowing or determining such a cumulative distribution function is
a very difficult task, but it is the norm to create a model to describe
the behavior of the series efficiently, this efficiency depend on how

such model can reflect properties of the true probability distribution.
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We will present in this course a modern statistical methodology
for the analysis of time series called Box-Jenkins methodology

denoted shortly as ARIMA models.

1.7 Types of change in time series

Traditional methods of time series analysis rely on dismantling the

change in a time series into four different components:

e trend component
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e seasonal component
e cyclical component

e random component

1.7.1 trend component

If there exist a long term increase (or decrease) in the level of the

series, then we say there exist a trend component in the series, see

figure 1.3 for an example.
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So when examining the time series plot, often we notice the

presence of a slow and gradual changes in the short term (increase or

decrease), and a general tendency to increase in the long term, as it

happens, for example, in time series of the number of births, or
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the number of pilgrims, or prices of goods annually. On the other
hand, we may find a general tendency to decrease in the long term, as
for example, in the series of the number of deaths, or oil stocks, or

for a particular disease.

1.7.2 seasonal component

Many time series in practice can be affected by what is called

seasonal pattern changes, by which we mean the series repeats its
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behavior at certain periods of the year, for example, the electric power
consumption reaches its peak in summer and fall in winter, see figure

(1.2) for the time series of daily temperature as an example.
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Seasonal changes occur at specific periods less than a year, such as

hour, day, week, month, quarter, etc.

1.7.3 cyclical variation

These changes are similar to seasonal variation, but they appear

in long periods of time (more than one year), and to discover the

cyclical variation one need a very long annual series, for example,

climate changes needs data of thirty years or more to discover its
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cycle. Also, economic cycles need a long periods of time, for

example five or ten Years, to appear.

1.7.4 Random variation

After getting rid of seasonal, trend, or cyclical components from the

data, we are left with a residual series, which represent the irregular

changes. These changes differ from the other components, as they
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can’t be predicted, and they do not occur according to any law or

system.

Chapter 2: Basic Concepts

As we mentioned earlier, the modern time series analysis presented by
Box and Jenkins in the year (1971), is based on examining the random
nature of the time series. This methodology assumes that

there is always a theoretical random process (Stochastic process)
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capable of generating infinite number of time series of a certain
length n, and that the observed series we are studying (called
sometimes a sample) is just one of them. We study this sample for the
purpose of understanding and describing the nature of the random

stochastic process that generated it.

Box-Jenkins methodology is popularly used in the scientific
community of theoretical and applied sciences. It has proven to be

highly efficient in modeling and forecasting time series that arise in
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various fields of knowledge such as economics, business
administration, environment, chemistry and engineering,
among others. The method of Box-Jenkins has several advantages

including:

1- Itis a comprehensive approach, in the sense that it offers good
solutions for all stages of analysis in the form of a more scientific

and rational scheme than other methods through building models,
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diagnosis and estimating the parameters and forecasting future
values.

2 - Richness of the stochastic models that this methodology is
capable of dealing with, enables Box-Jenkins methodology to reflect
the probabilistic mechanism for a lot of stochastic processes that
appear in various areas of application. These models are known as

Autoregressive Moving Average models or ARMA models in short.
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3 - It does not assume independence between the observations of the
time Series but, in fact, it takes advantage of the dependence
structure between the observations in the modeling and forecasting
process, which usually lead to a more accurate and credible
forecasts than the ones we get through the conventional methods.
4- It gives more credible confidence intervals for future values

when compared to other conventional methods such as

exponential smoothing.
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However, the method of Box-Jenkins hassome disadvantage,
the most important one is that it requires availability of alarge
number of observations (at least 50 observations), to be able to get a

good model.

2.1 Stationarity

Modern time series analysis assumes that any observation y; at

certain point of time ¢, is just a single observation randomly chosen
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from arandom variable Y; (which represents all observations that can
be observed at time t;) and has a cumulative distribution function
F(Y:,).

Similarly, it assumes that any two observations (y; .y;,) atany two

different time points (t;.t,) represents a single point drawn from

bivariate random variable (V; . Y. ) (which represents all
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observations that can be observed at the two time points (t;.t,)

and has a cumulative distribution function F(Y; .V; ).

In general modern time series analysis assumes the existence of a
(theoretical) stochastic process capable of generating an infinite
number of time series, and that the observed time series at hand is
just one of them, and that there is a probabilistic distribution for the

random variables (Y;.Y,.....Y,) .
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2.1.1 Strict Stationarity

We say that a time series is strictly stationary if the joint cumulative
probability distribution of any subset of the variables that make up

the series is not affected by displacing the time forward or backward

any number of time units. So, if (t;.%,.....t,,) is any subset of time
units, wherem = 1.2.3....and k = +1.+2. ..., then we say the series
is strictly stationary if the joint cumulative probability distribution for

the variables (V; .V ....V; ) is the same as the joint cumulative
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probability distribution for the variables (Vi yr. Vi yg- ... Ve i) for

any time point ¢ and any time shift k . Mathematically we can write

the condition of strict stationarity as:

F(Ytl' Ytz' s th) —_ F(Yt1+k. Yt2+k' R th+k)
= P(Y;, =c1. Y, <oV < cpy)

= P(Yt1+k < Cl'Yt2+k < CH. '"'th+k < C‘m)
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Strict stationarity simply means that the mechanism of generating the
observations for the stochastic process under consideration is constant
through time, so that the shape of the model and the parameter estimates

do not change with time shift.
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Stochastic processes and realized time series.

From this definition we can see that strict stationarity necessarily leads
to the fact that the mean and the variance of the stochastic process are

constant (of course provided they exist). Also the covariance between

78



any two variables Y; and Y. depend only on time lag (i.e. the time

distance between them).
So strict stationarity leads to the following:
) u,=EX,)=pu. t=0+1.12...
i) of =Var(Y,) = ¢?. t=0.+1.42...

i) y(s.t) = Cov(Ys. V) = E[(Ys — ) (Y — )] =y(s — t)
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that is the covariance between (vy.. y;) will be a function in the time lag

(s —t) only, so:
y(t.t —k) = Cov(Y;.Yi_y) = y(k)

As we know, the variance could be considered as a special case of the

covariance function y(s.t) if s =t i.e.
Var(Y;) = y(t.t)

and iIf the series is stationary then,
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Var(Y;) = y(t.t) =y(0). t=0.+1.%2...

2.1.2 Weak Stationarity

We say that a series is weakly stationary if the moments up to second

order exist, and:

1- The expected value or the mean of the process u; does not

depend ontimet, i.e.:
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2- The variance o/ does not depend on timet, i.e.
of =Var(Y,) = %.t =0.+1.42....
3- Covariance between any two variables depend only on the time

lag between them, i.e.,

Cov(Yy_p.Y) =y(k). t=0.41.42. ..;k = +1.42. ..
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From the above we can see that strict stationarity always leads to weak
stationarity, the vice versa is only correct in the case that the joint

cumulative distribution of the variables (Y .Y ....Y. ) Is the

multivariate normal distribution since this distribution is completely
defined by its first two moments, in this case only if the stochastic

process iIs weakly stationary then it is strictly stationary.

From now on, if we mention stationarity from now on, then we mean

weak stationarity.
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2.1.3 The importance of stationarity

If the statistical characteristics of the stochastic process that generated
the time series Is not stationarity, we will face many difficulties. The
most important Is the large number of parameters, such as expectations,
variances and covariance’s and the difficulty of interpreting these

parameters.

e Reducing the number of parameters:
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If we assume that the process y; Is stationary and that one
observation is available at every time point, which is the case in most
real life time series, so that we have the following observed series

(V1 .V5..... V), then the major parameters of the theoretical process

are .

E(Y)=[E(Y) E(Y2) . E(VR)]® = [p1 Hz - ]
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y(1.1) y(1.2) .. y(1.n)]
Var(Y) = y(s.t) = (2 1) y(2. 2) V(Z:- n)

Y1) y(n2) . ynn).

Where we interpret the mean of the stochastic process at time ¢ , 1.e
1 as the mean for all values that this process can generate at time ¢,
also, we interpret the variance of the stochastic process attime ¢ , I.e

y(t.t) as the variance for all these values. Whereas, the covariance
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v (s.t) measures the linear dependence between all values that this

process can generate at time s and time ¢.

Now notice that number of expectations is n, and the number of

parameters of the variance and covariance matrix Is
n(n + 1)/2 . Thus, the total number of main parameters to be

estimated if the process is not stationary are n(n+ 1)/2 +n =

n(n + 3)/2 which is a large number especially if the number of
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observations n is large. However, in the case of stationarity, number

of parameters will be (n + 2) which are:

w.y(0).y(1).....y(n)

Where In case of stationarity, u represent level of the series. Also the
variance y(0) measures variability of the process around . In the
same manner we can interpret the auto-covariance at time lag k (i.e.

v(k)), so y(1) represent the auto-covariance between variables one
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period of time apart, y(2) represent the auto-covariance between

variables two period of times apart, etc.

Preliminary Stationarity tests

There are several ways to test the stationarity of the series, some
of these methods are accurate others are approximate. If the series
follows a known theoretical model then we can test its stationarity by
calculating its expectation, variance and covariance functions. If both

the expectation and variance does not depend on time, and the auto-
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covariance function depend only on time lag between any two

variables, then stationarity of the series can be decided.

Example: If the series follow the following model:

yt:,80+€t- t=1.2.....n

Where 5, I1s a fixed constant, and the variables¢;.¢,.... are
uncorrelated random variables with mean zero and contrast variance

o 2. Is the series stationary?
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solution:
Calculate the expectation, variance and covariance of the process:
E(Y)=P8,. t=0.+1.42....

V(Yy) = V(By + &) =V(e) =02
Cov(Ye.Yi—y) = Cov(Bo + €.+ €—) =0. k=+1.1£2...

Therefore, we note that all the weak stationarity conditions are fulfilled

here.

Example: If the series follow the following model:
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Where (,. 5, are fixed constants, and the variables ¢,.¢,.... are
uncorrelated random variables with mean zero and contrast variance

o 2. Is the series stationary?
solution:

We calculate the expectation of the process:

E(y;) =Lo+ Bt . t=1.2...
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This means that the expected value of the series is not constant but
Increasing (decreasing) by a constant value if 5; > 0, (f; < 0) I.e.
the series has a trend component in case [, # 0, and hence It Is not

stationary.

Example: If the series {y,} follow the following model:

where {&;} is a random process as defined in the previous example. Is

the process stationary?
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solution:

E(y:) =E(y—1) +E(e) =E—1) + 0 =E(y;—q). t=12...1n
Which means that the mean of the series i1s constant, and does not

depend on time t. Now we look at the variance,

Var(y,) = Var(y;—1) + 0% + 2Cov(y;_q. &)

= Var(y¢_1) + o?
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So that Var(y,) # Var(y,_,), i.e. the variance is not constant , and

hence the process Is not stationary.

Previous examples have shown how to check stationarity of a time

series If the mathematical model that explains the behavior of the
random process generated it is known. But In practical applications
often this is not the case, and we will mention later some methods
for investigating stationarity of the series. But as a general guideline is

to ~and 1f we notice the observations to
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oscillate around a constant line that pass through the middle of the

series, then we might be able to believe that the series is stationary.

However, and/or that
then we find this an indication

of non-stationarity of the series, see figure bellow:
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not Stationary in variance Stationary series

D e

not Stationary in mean not Stationary in mean
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If the series is not stationary, then sometimes some mathematical
transformations might be able to transform it to stationarity, we will

see this in section 2.5.

2.2 Auto-Correlation function (ACF)

For any stationary process {Y; }, the auto-covariance function between

Y; and Y;_,, is defined as:

Yk = Cov(Ye. Yiyr) = E[(Ve — ) (Vs — )]
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This  function  measure the degree oflinear  association
between any two variables of thesame time series, for
example, y(1.2) measures linear association between all values that
could be generated by the stochastic process at time point 1, and

those at time point 2.

Notes:
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1-1If y(s.t) = 0, this means that the two variables Y; and Y. are
linearly uncorrelated, however, they might still be nonlinearly
correlated.

2 —If y(s.t) = 0, and the two variables Y; , Y, have bivariate normal
distribution then this lead to the fact that they are independent.

3 - Sample variance can be regarded as a special case of auto-

covariance function y(s.t), by letting s = t, this means that

var(Yy) = y(t.t).
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4 - If the series is stationary, then auto-covariance function y(s.t) is

a function of the time lag k = |s — t| only, and usually we denote

itasy(|s —t]), ory(k).

2.2.1 what Is Autocorrelation
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It is known that the use of covariance function to measure the degree
of linear dependence between two variables raises some practical

problems.

The first: being the lack of reference boundaries (low, high) that can
be referenced to determine the strength or weakness of the linear
relationship. Secondly: the covariance depends on the measurement

units of the data, so it is always preferable to calibrate the covariance
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by dividing by the product of standard deviation of the variables Y,

and Y, to get what is known as auto-correlation function.

Definition:
The correlation coefficient p(s.t) is defined as the correlation

coefficient between the variables Y; and Y, and is given by the form:

y(s.t)
\/ Var(Ys) Var(Y;)
_ E[(Ys — ps) (Y — ue)] _
VEWs = p)? E(Y — p)?

p(s.t) =
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Where s.t = 0.+1.+2. ...

Since it measures the linear correlation between the same random

variable data but at different time points, so usually the term

"autocorrelation function" is used, and in short written as ACF.

2.2.2 Characteristics of the autocorrelation function

1 - Autocorrelation between the variable Y; and itself equal

one, thatis p(t.t) = 1.
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2-p(t.s) = p(s.t) because y(t.s) = y(s.t).

3 - Value of p(t.s) always lies in the interval [—1 .1].

4- If y(s.t) = 0, then this indicate that the variables Y; and Y are
linearly uncorrelated, however, they might still be nonlinearly

correlated.

If the stochastic process that generated the time series is

stationary, then we redefine the auto-correlation coefficient as:
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E[(Yy — ) (Y — 1))

(k) =

" JE; — )2
_vk)
= 0) k=0.+1.%2..

Where y(0) denote the variance of the stationary process, and y (k)
denote its auto-covariance at time lag k. For example, p(1)
measures degree of linear correlation between any two variables

that are one time period apart, i.e. between Y; and Y,, or Y59 and
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Y100, in general between Y; and Y;_;. In the same manner, p(3)
measures degree of linear correlation between any two variables
that are 3 time periods apart, i.e. between ¥; and Y, or ¥,y and Y, 5,

in general between Y; and V;_;.

2.2.3 The importance of the autocorrelation function

When analyzing timeseries, we mightface many forms

of autocorrelation functions, for example:
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e we might find it decaying slowly.

Slowly decaying Autocorrelation Function
(with 5% signi ts for the aut lations)

ficance limits for the autocorrelati

1.0

0.8

0.6 e
c 0.4
]
3 ] I
[
£ 00
]

\~
—
-
—

e or, decaying very quickly in an exponential form.
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Exponental Decay Autocorrelation Function
(with 5% significance limits for the autocorrelations)

1.0+
0.8
0.6
0.4
0.2

0.0

Autocorrelation

-0.44
0.6+
-0.84
-1.04

-0.24 ™

e or, decaying in sine function form.

Autocorrelation

Autocorrelation Function: sine-wave decay
(with 5% significance limits for the autocorrelations)

1.0
0.8
0.6

0.4
0.24 lj ————————————————————————— —
|

0.0 LB R I B R B B B LA L

N -
0.4
-0.64
-0.84
-1.04
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e Sometimes it cut off suddenly (i.e. equal zero) after a certain

number of time lags.

Autocorrelation function p(k), plays an important and essential
role when using Box - Jenkins methodology for analyzing time
series. As the form of the ACF can determine the initial appropriate
model for the data. It is also one of the important tools in diagnostic

tests of the residuals of the initial model in order to improve it.
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Example: Letthe random process {<;} be uncorrelated random
variables with mean zero and constant variance o2, find

autocorrelation function of the process {&;} .

Note: {¢, } is called the “white noise process” , and it will be used

frequently in this course.
solution:

According to the definition of the process, then:
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E(e)=0. t=0.4+1.42. ..
Var(e,) = 0% t=0.+1.42....

v(k) = Cov(er.g6_3) = 0. k+0; t=0.11.12....

p(k)=@=0. k+0

y(0)

This means that:
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1. k=0

p(k):{o. k+0

Example:

If the series y; have the following model:

Where {¢; } is the white noise process as defined in the previous

example. Find autocorrelation function of the series y;.

solution:
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Var(y,) = Var(B, + pit + &) = Var(s,) = o2

This is because (S, + [1t) is not a random variable, but it is a

deterministic function.

and,
y(s.t) = Cov(By + B1S +&. Lo+ Pit+e)=0.5s*t
= Cov(e;. &) = 0. S+t

So that,
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1. k=0

p(k):{o. k+0

Example:
If the process {y;} have the following model:
yt —_ gt — Qgt—l' t = 12 )

Where {¢; } is the white noise process as defined in the previous

example. Find the autocorrelation function of the process {v;}.

solution:
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E(y)=0. t=12....n
Var(Y;) = Var(e; — Oei_1)

=Var(e) + 0%Var(g,_,) — 2Cov(g;. g4—1)

=0?>+0%*—-0=0%(1+6%);t=1.2...
Now, we find the auto-covariance function for observations that are

one time lag aparti.e. y(1):

y(t.t +1) = Cov(Ve. Vis1)
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—_ COU(Et — Hgt—l' €t+1 — Hgt) —_ _60-2

In the same manner, we find the auto-covariance function for

observations that are two time lags aparti.e. y(2):

y(t.t +2) = Cov(y;. Vi)

= Cov(e, — 0&;_q. €42 —0641) =0

in the same manner, it can also be shown that y(3) = y(4) = -

So the auto-covariance function has the form:
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d?(1+0%) k=0
y(k) = —fg*? k =
0. k> 2

thus the auto-correlation function for this process is:

p(k) =+
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2.2.4 Estimating the Autocorrelation Function

As stated previously the importance ofimposing stationarity
conditions on the stochastic process that generated the observed time
series. The most important was, reduction of the number of major
parameters of the process (first and second moments), and easiness
of their interpretation, and the possibility of estimating these

parameters using the available observations y;.y,..... v, of the time
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series. Based on these estimates, we can estimate the sample auto-

correlation function for the stationary process as follows:

Z?=_1k(3’t — V)Wt —Y)
Yi=1(Ve — ¥)?

re = pk) =

It can be shown that if the random process {vy;} is stationary and

linear, and the fourth moment £ (y{) is bounded, then the estimate
13, of the auto-correlation function follow asymptotically a normal

distribution with mean p; and a known variance that also depend
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on p,. Then it is possible to perform testing of hypothesis for the
significance of various auto-correlation coefficients at different

time lags.

e Bartlett 1946, has proven that if observations g time lags apart
are not correlated, that is,
pr=0. k>q
then the sample variance of the statistic 5, can be

approximated by:
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q
1
V(r,) = - (1+2 2,0]2). k> q
j=1

Then one can get approximate estimates of standard errors (SE)
of the estimators 7, by replacing p, by r;, and taking the square

root in the previous form:

S|

q
SE(r,) = (1+zzrk2) k>q
=1

122



¢ In the special case when all observations are uncorrelated,

thatis p, = 0. for kK > 0 then this equation simplifies to:

1
N

So if we assume that the process {y;} is completely random, that
is a white noise process then, for large sample size the

distribution of the estimator 7, (according to central limit

theorem) is normal distribution with mean p; and variance ~ e,
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1
T~ N (Pk-;)

This means that if the series at hand is completely random, then

we can find a 95% Confidence interval for p;, which is:

., — 1.96 \/var(rk) < pp <1+ 1.96 \/var(rk)

That is:

r —1.96 /1/n < pp <1+ 196 /1/n
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e Anderson in 1942 have shown that for a sample of moderate
size and assuming that the estimator p, = 0. then the
sample estimator 715, follows approximately the normal

distribution, and thus the statistic:

B T'k — O
- SE(1y,)

Z

follows approximately standard normal distribution under the
hypothesis p,, = 0, thus it can be used to test the hypothesis:

Hy:p, =0 vs Hy:p, #0 fork > q
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We reject the null hypothesis, at significance level « if |z| >
ZCZ/Z'

Note:

It has been the norm in practical applications to reject the null

hypothesis:

pr = 0,if |z| > 2 assuming that o = 0.05,
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but it should be noted that it is not always preferable to fix o at

a certain value to test the significance of the autocorrelation
coefficients for all time lags. Some recent studies have concluded that
it is preferable to use larger values for a at lower time lags, and then
use smaller values for « at larger time lags. Choosing the right value of
«, depends actually more on the expertize of the researcher, and how

he reads the different graphs of the data.

Example:
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The following data represents the number of sold units

(percentage) yearly at a large department stores:

Year 1992 | 1993 |1994 (1995 |1996 |1997 |1998 1999

Y, 1 3 2 4 3 2 3 2

Calculate the autocorrelation coefficients, and draw the estimated

autocorrelation function.

solution:
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One can easily calculate:

20 :
y=—=25 ; z (ye — 2.5 =6
8 t=1

Also we can find the pairs (y; — 2.5) :

Year 1992 1993 [ 1994 [ 1995 | 1996 | 1997 |1998 | 1999

(y¢ —2.5) [-15 05 |[-05 |15 (0.5 -0.5 0.5 -0.5

According to the definition of autocorrelation function 7, then:
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ZZ=1(Yt — 2.5)(Yr41 — 2.5)
6

rn=p1)=

r, = %[( 1.5)(0.5) + (0.5)(=0.5) + (—0.5)(1.5) + (1.5)(0.5)
+ (0.5)(—0.5) + (—0.5)(0.5) + (0.5)(—0.5)] = —0.29

Also,

6_ — 2.5 — 2.5
r, = p(2) = t=1(Vt 6)()’t+2 ) —0.17

Similarly, the rest of the values are calculated:
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rs = —021. r, = —0.33. 7z = 0.21. 1, = —0.17. r, = 0.13

The auto-correlation function can be drawn such that, on
the horizontal axis the time lags, k, and on the vertical axis auto-

correlation coefficients, this figure is called the correlogram.

rK) o3
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2.3 Partial autocorrelation function

The idea of this correlation arise as follows:

If two variables, say, Y; and Y5 are found to be correlated, then

this might be because of correlation between them and a third

X

variable, Y, , so if we can calculate correlation between Y; and Y5,
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and correlation between Y5 and Y,, and remove or control this

correlation, then the resulting correlation is called partial auto-

correlation .

The autocorrelation between Y; and Y; where the effect of Y, has

been removed or controlled is called the partial auto-

correlation between Y; and Y5 .
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This idea can be applied to any number of variables, such that the
correlation between any two variables with the removal of the

effect of variables that falls between them.

One can calculate the auto-correlation between the two variables
Y; and Y;_,, and removing or controlling the effect of all the
variables that fall between them, i.e. (Y;_5,1.....Y;_;), this is called

the partial auto-correlation between Y; and Y;_,.
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The basic idea behind the partial auto-correlation is calculating

the linear correlation coefficient between [Y; —

E(Yi|Yeq. ... Yt—k+1)] and [Yt—k — E(Ye | Yeoq. .. Yt—k+1)]
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Where E(V|Y;_q1.....Yi_piqy) and E(Y,_p |Yi_q. ... Yi_; 1) are
calculated from the corresponding conditional probability

distributions.
2.3.1 Yule-Walker system of equations

Assuming that we have a stationary process with mean equal
to zero, we can write a multiple regression model of order

p as Follows:
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Yi = P11Yio1 + PV p + -+ Ppi Yy + &
Where &; Is the white noise process, multiplying both sides by
Y:_1, and taking expectations, we find:
E(YeYi—k)
= P11 E(Yeo1Yeop) + G E(YeoVi ) + o +p E(YViepYVii)

+ E(&Ye—k)

l.e,
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Yk = Q11Yk-1 + P22Vk—2 + = +PkiVi—p

And dividing both sides by y, , we find:

Pr = P11Pk-1 + P22Pk—2 + - +DpiPr—p k=1

This is called the Yule-Walker system of equations, and consists of
a k linear equation in the unknowns ¢4, 5>, ..., ¢rx. We

can solve this system by the determinants to get ¢, ( The
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mathematical derivation details for this is not the concern of this

course) :
( 1 k=0 Y
P1 k=1
1 py Pk-2  P1
p1 1 Prk-3 P2
Pree = 1 Prk-1 Pr—2 = P1 Pk k=23 |
1 pg " Prk-2 Pk-1
p1 1 Pr-3 Pk-2
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Where | | denote the determinant.

We note that for large values of k, the above solution is difficult to
find, thus another approach that uses recurrence relations is

proposed in the literature, as follow:

¢hoo =1

$11 = pq
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k—1
Pk — Lj=1 Pk—-1,jPk—j

1— 3521 i1 jp;

brr =

Where,
¢kj — ¢k—1.j - (l5kk(l5k—1.k—j Jj=1.2...k—-1
2.3.2 Properties of partial autocorrelation function (PACF)

This function has several properties, including:
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1-  partial autocorrelation coefficient at time lag zero is equal
to one, thatis, ¢,y = 1.

2-  The value of ¢, always fall in the closed interval [—1,1].

3- ¢.; = p;,thisis because there are no observations fall
between Y;_; and Y; .

4-  If ¢, = 0, then this means there is no linear partial
autocorrelation between Y;_, and Y; , however, there might be

a nonlinear partial autocorrelation between them.
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2.3.3 Estimating the partial autocorrelation function

One can get the sample partial autocorrelation function from

the previous equations by replacing ¢, by 7 , and p,, by 7.

The statistic 7, is an estimator for ¢, i.e.:
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$kk = Tkk k=0.1...
To function 7, has the following properties:

1- Anderson and Quenouille (1949) have found that if the
partial correlation coefficient ¢, = 0, and for a large sample
size, then the estimated sample partial autocorrelation
coefficients 7y, follow the normal distribution with estimated

standard error:
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se(Tir) EE, k>0

2-  For large sample size n, we can carry out the following test:
Ho: g =0
Hll ¢kk #* 0

Where we use the statistic:

.| — 0
, |7k | -
ﬁ
n
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and reject H, at significance level o, if |Z] > 2, /,
Example:

The following data represent the daily demand of a particular

product:
158 222 248, 216 226 239, 206 178 169

Calculate the autocorrelation function and partial

autocorrelation function and draw them.
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solution:

1- Finding the autocorrelation function 7y:

First we calculate the mean of the series:

z Z; = 5[158 + - + 169] = 206.89

<
I
Ol =

sample autocorrelation function has the form:
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?=k+1(37t — V)V — )
?=1(3’t —y)?

1, =

We need to find the quantities:

1= (V=) Ve—1—V)
?zl(yt_y)z

7"1 —

’ ........................ ’

t=o (V=3 (Ve—g—¥)
?zl(yt_.)_])z

T'8=
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Which means that if we have n observations, then we need to
calculate (n — 1) coefficients of 7. To simplify calculations, we
will find first the following pairs, (y; — V) = (y; — 206.89) as

follow:
(158 — 206.89).(222 — 206.89). .... (169 — 206.89)

= (—48.89).(15.11).(41.11).(9.11) ....(—37.89)

Then we get the required 7;, coefficients as follow:
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_ (—48.89 x 15.11) + (15.11 X 41.11) + - + (—28.89 x —37.88)

B = 0.2651
. (—48.89)2 + (15.11)% + -+ + (—37.89)2

 (—48.89 x 41.11) + (15.11 X 9.11) + -+ + (~0.89 x —37.88)

= —0.212
(—48.89)% + (15.11)%? + -+ + (—37.89)2

r

And the same for other coefficients,
r3 = —0.076. r, = —0.183. r; = —0.387.
Ty, = —0.242,
r, = 0.104. rg = 0.230

Drawing the correlogram, we have:
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The following table shows the result of calculations in the Minitab

Autocorrelation Function: C2

Autocorrelation

1.0
0.84
0.64
0.44
0.24

0.0

-0.2-
-0.4-
-0.6-
-0.8-
-1.0 i

Autocorrelation Function for C2
(with 5% significance limits for the autocorrelations)

Lag ACF T
0.265116 0.80
.211557 .59
.076111 .21
.182772 .49
.386675 .01
.242061 .57

U dWNR
I
o
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7 0.104208 0.24
8 0.229851 0.52

We can also estimate the variance of 7, from relationship:

Q

~ 1
V(TR)E;(1+2 7"]-2). q<k
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~y

O |-

(1+2r2) = %(1 +2(0)2) = % =0.11
1
V() = (1 +2 ) 1)

~

1 5 1 2
6(1 + 2r{) = 5(1 +2(0.2651)%) = 0.12

and the same for the rest of the values we get:

. 1
V(rs) = 5(1 + 2r¢ + 2r%) = 0.1367

153



V(ry) =0.138, V(rs) = 0.1454, V(rg) = 0.1787.
V(r)) = 0.1931.V(rg) = 0.2013.

We note that the as time lag between the variables increase, then

the variance of the estimated correlation coefficients increases.

2- Finding the partial autocorrelation 7y:

TOO — 1
rll —_ T'l —_ 0265
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And the rest of the coefficients are found through the

recurrence relation:

k-1
T T Lj=1 Tk-1Tk—) =23
Tk =70 Tkt T
j=1"k-=1."]

Where,
rkj = rk—l.j — T'kkrk_l_k_j ] =12.....k—1

So,
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1
_ T A= e T T

T22 =
1 Z] 1T1] 1—7”117”1

_ (-0.212)—(-0.265)(0.265)

1—(—0.265)(0.265)

2
r3 — ] 172, T3—j r3_ry11y + 15514 ]

1- j=1 T2 Tj 1= [ 4 1]

33
So we need the value of 7,
er — rll — T227”11 — 0345

Thus,
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_ 20076 — [(0.345)(=0.212) + (Z0.304)(0.265)] _ ' ',
"33 T 1 (0.345)(0.265) + (—0.304)(—0.212)]

The same calculations for the other values:

Tas = —0.298
ree = —0.294
ree = —0.207
1y = 0.013

T88 — 004‘2
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The variance of these coefficients is estimated by:

" 1 1
V) = - =3

The following table shows the result of calculations in

the Minitab:
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Partial Autocorrelation Function: C2

Lag ACF T

1 0.265116 0.80
2 -0.303151 -0.91
3 0.091617 0.27
4 -0.298000 -0.89
5 -0.294454 -0.88
6 -0.206605 -0.62
7 0.013411 0.04
8 0.042363 0.13
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Partial Autocorrelation Function for C2
(with 5% significance limits for the partial autocorrelations)

1.0
084 -
0.6
0.4
0.2—|
0.0
ol ] B
-0.4-
_0.6_
_0.8_ -_ - - - - - - - - = —— - — = —
-1.0-

Partial Autocorrelation

2.4 Time series operators
Proper understanding of Box-Jenkins methodology (which will be

discussed later) depends on understanding how some important
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operators work, such as difference operator, and backshift

operator.

2.4.1 Backshift operator
If the value of the series at time t is y;, and at time 7 is y,., then the

backshift operator 5, is defined as follow:
By:=y:-1
BZ)’t:BYt—1 = Vt-2

B"y,=y,_,.. r=1.2...

161



For example, for the model:
Yt = Yt-1 T €

[t can be rewritten using the backshift operator as follows:

Ve —Vi-1 =€ >y — By, =e. (1 —B)y: = ¢

The backshift operator plays an important role in the algebraic
manipulations when working with Box-Jenkins methodology,
where it is used in polynomial forms, such as:

1-  Autoregressive operator

This is defined as:

¢(B) =1— 1B — ¢232 - ¢po
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Where ¢(B) is a polynomial of order p in the operator B, and

¢1.¢5. ... ¢, are constants.

The polynomial ¢ (B) is used with values of the time series y; as

follows:
dB)Ye = Ve — P1Ye—1 — P2V —  — ¢p)’t—p
2-  Moving Averages operator
This is defined as:
6(B) =1—6,B —0,B* —---— 60,B9
Where 6(B) is a polynomial of order g in the operator B, and

6,.0,.....0, are constants.
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The polynomial 6(B) is used with values of the white noise
process &; as follows:

H(B)gt — gt - ngt—l - Hgt_z — e Hqgt—q

2.4.2 Difference operator
This operator is denoted as V, an is defined as follows:
If we have a time series y,, then the difference operator is defined
as:
VYe=Yt — V-1
V2ye=VVy: = V(¥ — Ye-1)
=t — Ye—1) — We-1 — Vi-2)
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=YVt — 2Yt-1 T YVi—2
The relationship between the backshift and difference operators
can be noted from the following relation:
V= (1 — B)

and in general,

Viye = (1 -B)y,
For example if we applied this relation to find V?y,, we get:

Vy, = (1 -B)%y,

= (1 - 2B+ B?)y,
=Y — 2YVt-1 T Vi

which is the same result that we found previously.
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2.5 Transformations for non-stationary time series

Time series in many applications are often not stationary in
the mean, where we find the level of the series is either increasing
or decreasing with time. It is also possible to find some series that
have variance changing with time, and it is possible to have both
forms of non-stationarity to exist in a time series. However, luckily,
in many situations it is possible to transform the time series into a
stationary series through simple transformations. In this case we

call the time series as homogeneous stationary time series.
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In what follows we will cast some light on some of the most
important mathematical transformations used to transform the

nonstationary stochastic models into stationary ones.

2.5.1 Differences of the series

[f the observed time series y; shows some trend component —either
deterministic or stochastic- then taking the first differences of vy,
usually succeeds in transforming the series into a stationary series,

so if we denote the resulting series as z;, then:

Zt — Vyt :yt _yt—l T = 2371

167



Where n denote the number of observations available, or what is
called the length of the series. So, if the observations of the
nonstationary series are y,.7y,. .... V,, then the first differences are

found as follows:

Ve | Vi-1Zt = VY =YV — Vi1

Yi| - -
Y2 V1 Zp = Y2 — W1
V3| Y2 Z3 = Y3 — Y2

Yn|YVn-1 Zn = Yn — Yn-1
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And as we note that taking differences of first order, we lose one
observation, and taking difference of order two, we lose two
observations, etc.
Example:
If the series y; follow the following model:

Ye =Bo+ pit+ W, t=1.2...1n
Where {I/,} is a stationary process having a mean p, variance o7,
and covariance function Yy, prove that the series y;is not

stationary. How would you transform it to a stationary series?

Solution:
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E(y) =Bo+ b1t +u
It is clear that the mean changes with time, Therefore the series

is not stationary in the mean. Now we find the following:

Vi—1 = Bo+ Bt —1) + Wiy

From which we can find the first differences:

And we could create the first series of the differences Vy;,:
Zy = VY = Ve — Vi1
= |Bo + L1t + W] = [Bo + 1 (t — 1) + W;_4]
— ﬁl + Wt — Wt—l .t = 23 1)
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Now we can see the effect of taking the first differences
transformation on the series:

E(zz) =p1+u—u=p;
This means that the series z; is stationary in the mean.

Also, its variance is:

Var(zy) = var(fy + Wy = W1 ) = Var(Wy — Wy_4)
— Var(W,) + Var(W,_,) — 2Cov(W,. W,_;)
— 20-2 — 2]/1
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Which is free of time t, so z; is stationary in the variance. We can
also, see the effect of difference operator on the auto-covariance
function, lets denote the auto-covariance function for transformed

series z; as y,(k), then:

V.(1) = Cov(z;.2_1)
= Cov( |1+ We = Wi ] [B1 + Wieqg = W2])
= Cov(W;. We_1) — Cov(W;. Wi_y) — Cov(We_1. We_1)
+Cov(Wi_1. Wr_5)

=y, — Y, —0°+y, =2y — Y, —0°
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Which means that y, (1) does not depend on time t.
Similarly, we can find y,(2):
V2(2) = Cov(z;.2;_,)
= Cov([By + Wy = Wiy ] |B1 + Wi — Wi3])
= Cov(W,. Wi_,) — Cov(We Wi_3) — Cov(We_1. We_y) +
Cov(Wy_1. Wi_3)
=Y2—= V3= V1t V2=2Y2—V3— "1
Which means that y,(2) does not depend on time t. Generally, we

can show that:

Yz(k) = 2Yk — V41 — V-1
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Hence, since the auto-covariance function depend on time lag k,

and not on time ¢, so the series z; is stationary.

Example:
If the series y; can be modeled as:
Ve = Vet & .t =12.....n
Where ¢; is the white noise process. Show that the series y; is not
stationary. How can you transform it to a stationary process?

Solution:

E(yt) =E(yt-1) + 0
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So the series is stationary in the mean, since the mean function
does not depend on time ¢.
And for the variance:
Var(yy) = Var(ye—1) + Var(g) + 2Cov(ys. &)
=Var(y,_1) + 6%+ 0
Which indicate that Var(y;) # Var(y;_,), so the series is not
stationary in the variance. Now, we can try to apply the first
differences operator to try to stabilize it:
Subtracting y;_, from both sides of the model equation, we get
Ve = Yt-1 = Ye-1 T & — Ye-1

l.e.
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Vy, = &
so the first difference operator transformed the series into white
noise series, which is stationary series by definition.
But this is not always the case, as sometimes the variance might
increase or decrease with time, in this case we might need a
different tool for stabilizing the series. Some of common
transformations for stabilizing the variance are mentioned in the

following section.

2.5.2 Variance stabilizing transformations

e Logarithmic
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e Square root
e Reciprocal

The logarithmic transformation is used if the variance of the series
is increasing or decreasing with time, and the mean is almost
constant. It is assumed that the values of the observations are all
positive (since the logarithm is only defined for positive numbers).
It is also possible to use the square root or reciprocal
transformation or any other transformation from the Box-Cox
family of transformations. However, the logarithmic

transformation is the most commonly used one in such cases.
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The most important case of non-stationarity, is the one in which
lack of stationarity happens in both mean and variance together.
Many examples in economic, social and demographic fields can
have their values at time ¢ are greater than their value at time ¢ —
1 with a constant rate, plus a component of random errors. In such
cases we can represent the series approximately in the form:

yt=6¥yt_1+yt_1.0< a<l1

This kind of series features a growing trend in both mean and
variance, and almost constant growing rate of the phenomenon. To

use the logarithmic transformation, we rewrite the model as:
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Ve =1+ a)yi-4
Taking logarithm of both sides, we find,

In(y;) = In(1+ a) + In(yi—1)

Subtracting [n( y;_,) from both sides, we find,
In(y;) —In(ye—1) =n(l+a)=46
Where 6 is a constant quantity, this means that:
ze = Vin(yy = In(yy) — In(y;—1) =6

so the first differences of the logarithm of the data turned it into a
stationary process.
Notes: Itis recommended not to use this type of transformation

before the use of the normal differences of the data, and if the
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normal differences failed to stabilize the variance, then we resort
to logarithmic transformation.

e You must make sure that all the values of the series are
positive before using this transformation. In case there
were negative values in the data, then you can, for example,
address this problem by adding a certain constant term for
each value so that all values become positive.

Note that the addition of a constant term to a variable does not
affect the variance and the autocorrelation function of this

variable, and therefore this process will not affect the
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autocorrelation structure of the series while helping to ensure
stationary.
The transformed series can be studied and analyzed, and after
the completion of the analysis, researcher should reverse the
transformation process so that the results be consistent with
the data he wanted to analyze in the first place.

e In some cases, the first difference transformation may still be
not stationary, and therefore we may need to take the second

differences of logarithms to stabilize the series.

2.5.3 Box-Cox transformations
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This family of transformations are common in the field of design
of experiments, it takes the following form:
(x* — 1

gx) =4 n
In(x) . A=0

Note: Subtracting 1, and dividing by A, makes the function g(x)

change smoothly as A approach zero. As we know from

. oxMa1
calculus that lim

lim —— = In(x). Also, note that choosing A = 0.5,

impose a square root transformation, this is useful if the data are
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count data that follows Poisson distribution, and A = —1 is the

reciprocal of the data.
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Chapter 3: Random Time Series Models

3.1 Meaning of linearity in regression models and in time series
models

As we know in regular regression models of the form:

y = f(xl.xp. o Xp + Bo- B ...,Bp) + &
We mean by linearity, the linearity in coefficients, or main
parameters ff = (.. ...ﬁp)T regardless of the shape of the

explanatory variables x = (x;.x,,. ... xp)T. For instance, the simple

linear regression y = [, + [1x; + ¢ is linear regression model
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because it is linear in the parameters, the same is true for the

models v = B, + Byx{ + ¢, and v = B, + B,In(x) + ¢ they are all
linear in the parameters, note we can redefine the explanatory
variables as w = x12 for the first model, then it takes the form of a
liner model, and the estimating equations for the parameters are

the same and will not be affected,

B = (wTw) 'wTy. Whereas, the model y = 3, + {x; + ¢ is not
linear, because it is not linear in the parameter [; and thus general

regression rules can’t be applied here.
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On the other hand, in time series context there exist many form of
functions that relate the values of the variable under study y; with
its previous values v;_;.v;_-.... and the values of a completely
random variables we called them white noise ¢;.5,_;.¢,_,..... We
will only study the linear time series models in this course.

Linearity in the time series context is completely different than

linearity in regression context, as it mean here linearity in the
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explanatory variables vy;_4.y;_>.... but not in the model
parameters. It is interesting to know that most of the time series
models are not linear in the parameters! and this is one of the

difficulties in studying time series.

3.2 Static and dynamic models

Traditional regression models of the form:
Vi = f(xl.xp. e Xp. Bo. Py ...,Bp) + £; applied to time series data

is considered static models, that is they are not dynamic. Since the
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model vy, = [, + [1x; + & depend on the variable & which
represent the disturbance that affect the system at time ¢, but its
effect does not extend to time period (¢ + 1) because the system at
time (¢t + 1) is affected by ¢, only , and this variable is not
correlated with &; (this result from the definition of the white noise
process), so such systems have no memory, in the sense that it
completely “forget” disturbances that occurred in the past, so such

systems are called “static systems”.
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Time series random models, on the other hand, depend on the
history of the series y;_4.y;_».... or on the disturbances occurred
inthe paste;_4.&;_,....,,oronboth of them as explanatory variables.
Thus, these models consist of three main groups of models. The
first is known as the autoregressive models, and it is such a models
where the variables y;_;.y;_-.... plays the role of explanatory
variables that affect the dependent variable vy;.

The simplest of these models is the autoregressive model of order

one, which takes the form:

yt — ,80 —+ ﬁlyt—l —+ gt ,t - 12 e 1
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It might be thought at first glance of the model that the system at
time ¢ depends on the variable ¢; only, and not on previous
disturbance ¢;_, but checking the model carefully, then we would
notice that the model depend on &;_; through vy, ;, since this

variable (according to the model formula) can be written as:
Vi1 = Bo + b1YVt—2 + €1

Thus the system actually does not forget the random variable ¢;_,
in fact it does not forget all the disturbances ¢;_;.&;_5....(by
continue substituting in the model). Thus the autoregressive model

belongs to the dynamic systems.
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The second group of the random time series models is called the
moving average models, and it is a more complicated models than
the autoregressive models, where the system at time ¢ is related
directly to the disturbances ¢;_;.&;_,. ... that occurred in the past.

Hence these models have memory, and belong to the dynamic

systems.

The simplest of these models is the moving average model of order
one, which takes the form:

V¢ = IBO + Et + Blgt—l = 1.2.....n
The third group of random time series models contains both

autoregressive and moving average parts, where the system at time
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t depends on disturbances ¢;_;.¢;_,.... and on the history of the
phenomenon y;_;.y;_-. .., the simplest example of those models is
the autoregressive-moving average model of order 1, denoted

shortly as ARMA(1,1) :

Ve = Po + b1Ye-1+ & + foge—1 st =12....1n

3.3 Linear Stochastic Processes

Dynamic models assume presence of a particular form of
autocorrelation between the observations of the time series that

belong to the processes that follow the behavior of such
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models. This might cause some difficulties when dealing with
these time series, especially if the autocorrelation coefficients are
large. This led the scientists to explore the possibility of studying

such processes through a simpler process.
Wold (1938 ) has published his theory indicating that:

“Every stationary process can be expressed as a linear

combination of uncorrelated random variables with mean zero

and constant variance o2”
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3.3.1 Definition of the general linear process

The random process {y; } is called general linear process if it is

possible to express it in the form:

Ve =Ut &+ P&+t t =021 22,

Ve = U T z i€t
j=0
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Where {¢; } is the white noise process, /i is a constant, and {1/, } is a

sequence of fixed vales. The process {y; }is stationary if one of the

following conditions is satisfied:

1- The constants 1/;.1),. ... are finite.

2- The constants 1;.1,.... are not finite, but they are
asymptotic and fulfill the condition Y ;> 17 < o, this ensures
the variance to be finite. If the process {y; } is stationary then u
is considered the mean of the process, otherwise it is just
considered a reference point. In most of the course we will

assume o = 0, this will not affect our discussions of the
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different models we will consider), and in case yu # 0 we will
assume that y; represent the original series after subtracting

the constant /.

3.4 Invertibility formula

Under certain conditions, we can express the general linear
process as a weighted sum of the history of the process y; 1. v;_-. ...
and the current disturbance value ¢;. This formula is known as the

T — weights formula, it takes the following form:
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Ve = & T M Ye—q1 T Y2 T .
And in short as:
(1 —mB—mB? —m,B% — )y, = ¢
Or,

m(B)y: = & (1)

Where,
n(B)=(1-mnB—-m,B?—m,B? —--")

t(B) =1— Z ;B!
=1

The constants ;. 7,. ... represent the weights or importance of the

variables representing history of the process y;_;.v;_,..... If the
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number of the weights that is not equal to zero is limited then we
get what we call the autoregressive models of certain order, such
as AR (1), and AR (2), these models can be stationary or not, we

will discuss this later.

3.5 White noise formula

In the same manner, we can express the general linear process as a

weighted sum of the current and past values of the disturbances
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E¢.E—1.Et—9. ... . This formula is known as -weights formula, it

takes the following form:

Ve =& TV, &1+ P& _p + .
and in short as:
Ve = (14 Y1B+ Y,B* + Y,B? + -+ )¢,
Or,

Ve = Y(B)g; (2)

Where,

Y(B) = zizowiBi Yo =1
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The constants y_ ., ... represent the weights or importance of the

variables representing the past disturbances &;_4.&;_,..... If the
number of the weights that is not equal to zero is limited then we
get what we call the moving average models of certain order, such
as MA (1), and MA (2). The polynomial /(B) is called the transfer
function, or the linear filter that associates the random process {y; }

with the white noise process {¢; }. The function /(B) is considered

200



as a generating function for the constants 1;, because the

coefficient of B' in the expansion of /(B) represent the weights ;.

Also, the relation between the two polynomials W(B) and 7 (B)

can be found by substituting ¢; from (1) into (2):

v = YU(B) m(B)y;

Which means,

1 =y(B) n(B)
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And thus,

n(B) =y~ (B)

Example:

For the model y; = ¢, + 0.5 y;_4, find the first three m — weights

and first three v — weights.

solution:

Using the formula y, = ¢, + myy;_1 + 1, y:_» + -+, we find:
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my =05 ;m,=m3 =0

And for U — weights, we find:

Yt == Et + 05 Yt—l (1)
Also,
Vi1 = &-1+ 0.5y, (ii)
And, Ve—z = E—p + 0.5 yp_3 (iii)

Vi—z = &-3 +0.5Y_4 (iv)

Substitute from (ii) into (i), we find:
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Ve =6 +05[e 1 +05y;_; |
Ve =& +05&_1+ 05y
In the same manner, substitute from (iii) into (v), we get:
Ve =& +05&_1+(05)% g5 +(05)°yi3 i
Also,

yt — gt + 05 gt—l + (05)2 Et_z + (05)3 81:—3 + (05)4 yt—4
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And comparing the last equation with the ) — weights formula,

we find:
v, = 0.5. Y, = (0.5)% = 0.25. Vv, = (0.5)3 = 0.125

Example:

For the model vy, = ¢, — 0.3 ¢;_4, find the first three m — weights

and first three v — weights.

solution:

Comparing with the |y — weights formula:
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Ve =& TV &1 TP + -
We find that:

Py =-03 ;¢ = Y3 =0
To find the m — weights, we rewrite the model as:
& =y +0.3 &4 (i)
So that,
-1 =Yt-1 03 &2 i
Et—2 = Yt—2 + 0.3 &3 (i)
€3 = Y3+ 0.3 &_4 (iv)
Substituting from (ii) into (i), we get:

gt — yt + 03 [yt—l + 03 gt—Z ]
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&=y 03y, 1+(03) &, (v
In the same manner, substituting from (iii) into (v), we find:
& =Y +03y:1 +(03)°y_p +(03)° &3 (i
And,
& =Y +03yi1+(03)° yip +(03)° y_3 + (0.3)* &y
Thus,

Ve =& — 03 y,1 — (0-3)2 Yt—2 — (0-3)3 Yt-3 — (0-3)4 Et—4
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And comparing the last equation with the m weights formula, we

find:

7, =-03, m,=-—(03)2=-0.09 my=—(03)3=-0.027

3.6 Autoregressive Processes

We mentioned earlier that any invertible linear process can be

expressed as:

Yt = & T T1Yi—q T T2V T -
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In fact, many of the demographic, economic, environmental,
engineering and other applications can be represented in this form

using a limited number of constants 7 as follows :
Ve = & +MYeq T MY+ TpYep 5 t=0.£1.£2. ...

We call any process that can be represented in this form as the
Auto-regressive process of order p, and in the literature it is written

in the following format:
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Ve =&+ P1Vi—1 + P2Yeat o+ PpYep 5 t=0.£1.£2. ...

[tis denoted as AR(p), the constants ¢, ¢, ... ¢, are the main
parameters of the model, and they fulfill the invertibility
conditions, that is because the number of non-zero ; weights are

limited.

These models might be stationary or not stationary, depending on

the values of the parameters ¢,. ¢,. ... ¢,,. The order of the models
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in most of the applications does not exceed 2, however in some
applications we might need to have larger orders, especially in
those where we use the AR models as approximations of other
models such as MA models. Thus in this course we will concentrate
on autoregressive models of order one and two (AR(1), AR(2)),

and just mention some general remarks on the model AR(P).

3.6.1 Auto-regressive model of order one AR (1)
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This model takes the form of regressing the value of the series at
time ¢ (i.e y; ), on both the value of the series at time ¢t — 1 (i.e
V-1 ) and the current value of the disturbance ¢;, the AR(1)
model takes the form:

Yt = &t + ¢1yt_1 ct=0.4+1.+2. ...

Where ¢; is the white noise process, ¢ is a constant value

representing the main parameter of the model, and usually we
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assume {¢; | to follow normal distribution with mean zero, and
constant variance, thatis &, _ iid N(0.0%). The AR(1) process
always fulfill the invertibility condition no matter what the value
of ¢4, this is because:

Ty =¢1. m; =0.1>1
i.e. the number of non-zero m; terms is limited. The AR (1) model

can be written in the form:

d(B)y: = &
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Where ¢(B) = 1 — ¢, B is called the autoregressive operator, or

the model characteristic function.

3.6.1.1 stationarity condition

We mean by the stationarity conditions, the conditions that the

model must satisfy in order to be able to write the model in the
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white noise formula. We will denote the past values of the series

as:
Vi1 = Q1 V-2 + E¢—1

Viea = O1 V-3 + E¢—2

Yek = O1 Ve—k—-1+ Et—k

and substituting y;_; in the AR(1) formula, we get:
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Ve =&+ O1lP1Ve-2 4+ Ec-1] = & + P1E_1 + PTVe_,

substituting y;_, in this form, we get:

Ve = & + P16_1 + OF €c_0 + DIYi_3

and continue this process k times we get:

_ K— k
Ve =6+ P16 1+ PT e g+ O g1 + OTVe_k

or,

k—1
_ J k
Ve = Z D1 E—j T P1 Y-k
j=0
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Form the previous formula, we notice that if |¢,| < 1, and k — oo,
then the term ¢%vy,_, will tend to zero, thus it will be possible to

write the AR(1) model in the white noise formula:

k—1
_ j
YVt = z b5 Et—j
j=0

And comparing this formula with the white noise formula, we

notice that the coefficients in this formula takes the form

Y = qbf , with the condition that |¢;| < 1. Notice that if
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|¢p1| > 1, then it is not possible to write the AR(1) model in the
white noise formula, so we conclude that the stationarity

condition for the AR(1) model is that |¢,| < 1.

e Equivalent stationarity condition of AR (1) model

Stationarity condition for AR(1) model can be checked in a more
general way by inspecting the characteristic equation of the model

¢(B) =1 —¢,B,andif |¢p;| < 1 then the root of the characteristic
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equation ¢(B) = 0 must lie outside the unit circle, i.e. root must

satisfy |B| > 1.

3.6.1.3 Autocorrelation function of AR (1) model

We will assume that the model satisfies the stationarity condition,

|| < 1, the model has the form:

Vi = P1Ye—1t &
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Where ¢, _iid N(0.c%?), the white noise process.
taking expectations for both sides:

E(y)) = p1E(ye—1) + 0

since the process is stationary, then E(y;) = E(y;_), thus:

E(yv))(1—¢;)=0=>E(y,) =0

also, the variance of y; is:

var(y,) = ¢pivar(ye—,)+ var(e,)
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and since the process is stationary, then var(y,) = var(y;_1) =

v(0), so:
y(0)(1 — ¢7) = 0°

or,

2

1-¢D)

y(0) = Pl < 1

the auto-covariance at lag one is:
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y(1) = cov (y¢. yi—1) = cov(P1Ye—1+ & . Vi—1)
= ¢p1c0V(Y¢—1 - Ye—1) + cOV( . V1)

= ¢1y(0) +0

and the auto-covariance at lag 2 is:

Y(2) = cov (Y. yi—2) = cov(P1YVe—1+ € - Yi—2)

= ¢p1cov (Vi1 - Vi-2) + 0= 1y (1)

in general, at lag k, it has the form:
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vk) =¢pv(k—1). k=1.2...

Dividing both sides by y(0), we get the auto-correlation function

of the AR(1) model:

p(k)=¢pk—1). k=1.2...

And by continually substituting we get:

p(k) = pp(k —2) = p3p(k —3) = - = pkp(0) = P¥
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Which indicate that this model remembers everything happened in
the past, or we say that it has an infinite memory, however we
notice that this memory decrease in an exponential manner as the
time lag between current observation y, and observation y;_;

Increases.

To show the behavior of the auto-correlation function for the AR(1)

model, we plot this function for some values of ¢;.
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Autocorrelation
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-0.4
-0.64
-0.84
-1.04

Autocorrelation Function for AR(1), phi=-0.5
(with 5% significance limits for the autocorrelations)
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0.84
0.6
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0.2
0.0

Autocorrelation
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-0.64
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Autocorrelation Function for AR(1), phi=0.5
(with 5% significance limits for the autocorrelations)
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0.6
0.4
0.2
0.0

(a) ACF for AR(1) model with

—0.5

P1

(b) ACF for AR(1) model with

¢1 — 05
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We notice from figure (a) that the auto-correlation takes the form
of a declining sine-wave form because the parameter value is
negative, and from figure (b) the auto-correlation takes the form of
a declining exponential form because the parameter value is
positive. Also, we note that this decline will be slow at the non-
stationarity boundaries ¢; = +1, for example at ¢; = +0.9, the

ACF will take the form:
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Autocorrelation Function for AR(1), phi=-0.9 Autocorrelation Function for AR(1), phi=0.9

(with 5% significance limits for the autocorrelations) (with 5% significance limits for the autocorrelations)
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(a) ACF for AR(1) model with  (b) ACF for AR(1) model with

¢1 = —0.9 (:bl = 0.9

Note: The general form of the AR(1) model when the model mean

is not equal to zero, i.e. when E(y;) = u is:
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Ve—U=P1(Ve—1 — 1) + &

or,

Ve =0+ Py + &

where 6 = (1 — ¢4).

The AR(1) model could be interpreted for example, if we assume y,
represent the number of population of a certain country at a certain

year, then this number is a fraction ¢, (fraction of those who are
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still alive) multiplied by the population number in the previous
year y;_q1,added to them a random component &; (representing the
new citizens of the country). Another example, y; might represent
number of unemployed people at a certain month, January for
example, then this number is a fraction ¢, (fraction of those who
are still unemployed) multiplied by the number of unemployed in
the previous month y;_;, added to them a random component &;

(representing the new unemployed looking for job).
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3.6.1.4 Partial autocorrelation function for AR (1) model

To find the partial autocorrelation function for the AR(1) model,

boo = 1.
¢11:P1:¢1:¢-
1 pq ‘1 ¢
5, =01 P2l 1o 921 _67—97
22 1 D1 ‘1 qb 1_¢2
pp 1 ¢ 1

Thus for any time lag k , we can find the partial autocorrelation

function (PACF) as:
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Prk =

1 P1 - P1
P1 1.. p2
Pk-1_ Pk-2 - Pk
1 P1 - Pk-1
P1 1. pk—2
Pk-1 Pr-2 - 1

231




1 ¢ .. ¢
AR
¢,é_1 q;k:'z ;,)k 0

1 b ... Pk 1 b ... Pk
b 1.. o1 |o 1.. ¢kt

- ¢;_2 ! sh-1 pk-2 1

The determinant of the numerator equals zero because the

columns are not independent, where we notice that the last
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column equals ¢ multiplied by the first column. So, the PACF for

the AR(1) model have the form:

1. k=20
bk =1¢. k=1
0. k> 2

The behavior of the PACF for the AR(1) model is as follow:
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Partial Autocorrelation

Partial Autocorrelation Function for AR(1), phi=-0.5
(with 5% significance limits for the partial autocorrelations)
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PACF for AR(1) model when
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Partial Autocorrelation

Partial Autocorrelation Function for AR(1), phi=0.5
(with 5% significance limits for the partial autocorrelations)
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PACF for AR(1) model when

b > 0
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3.6.2 AR (2) Model
This model takes the form:

Ve =0+ Q1Y 1+ P2y + &

Where ¢, is the white noise process, i.e. ,~WN(0.0%), and ¢,

, ¢, are constant values representing the model parameters.

Now applying the backshift operator, we can rewrite the model in

form:
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(1—¢1B—¢,B)y, =6+ ¢
Vi=01—=¢1B—¢,B>) 16+ (1—¢1B—p,B*) g (1)

Returning to the general linear process:

Ye = Uy T zlpj Et—j
=0

Ve =ty + (1 + 1B +Y,B* +¢Y3B> + )¢,

Ve = Uy + P(B)g; (2)
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So, from (1) and (2) the /(B) function for AR(2) model is:
Y(B) = (1—¢1B — ¢p,B*)™!
Multiplying both sides by (1 — ¢, B — ¢»,B?), we get:
Y(B)(1 — ¢1B — ¢p,B%) =1
That is,

(1+Y1B + 9B + ) (1 — 1B — ¢,B%) =1
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And for this equality to hold, the B’ coefficients for j = 0, must be

equal, as follow:

B, — ¢y =0 = 1 = ¢

B, —p1h1 — 2 =0 =Yy = P11 + by = 1" + ¢
B3: 3 — p1ihy — poths = 0 = b3 = d13h, + hathy

B*: 1y — P13 — o0, = 0 = Py = P13 + 2,
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Thus, in general the general form of the 1); weights for the AR(2)

model has the form:

Yj = d1Yj1+ $opjp .j =2

And for the AR(2) to be stationary, the 1); weights must converge,

thus we must put some conditions on ¢, and ¢, to satisfy this:

As we remember, the stationarity condition for AR(1) was that

|| < 1 or equivalently, the solution of the characteristic equation
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(1 —¢B) = 0,whichis B = %‘ should be greater than one.

However, for AR(2), we have a quadratic equation:
(1—-¢1B - szBz) =0

So we must look at two solutions G; ' and G, %, and are usually

called the solutions of the characteristic equation, now:

(1—¢1B — ¢232) =(1-6,B)(1-G;B) =0
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G; ' and G, ' can be real or complex numbers. So, the stationarity

conditions for the AR(2) process is that |G;*| > 1 and |G| > 1.

Note: note that |x| means the absolute value for x ifitis a real

number, but it means Va? + b2 ifitis a complex number, i.e. one

that can be written in the form x = a + ib.

Examples:
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Suppose that we have an AR(2) model with parameters ¢; = 0.8

and ¢, = —0.15, so the characteristic equation has the form:
(1-0.8B+0.15B%) = (1-0.5B)(1—-0.3B) =0

So, the solution is G; ' = 0—2 =2and G, ! = % = 3.33, and both

are greater than one in absolute value, so this model is stationary.

Suppose that we have an AR(2) model with parameters ¢, = 1.5

and ¢, = —0.5, so the characteristic equation has the form:
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(1-1.5B + 0.5B2) = (1 —B)(1 - 0.5B) = 0

So, one rootis G; ' = 1, which is not greater than one, so this

model is not stationary.

Suppose that we have an AR(2) model with parameters ¢; = 1

and ¢, = —0.5, so the characteristic equation has the form:

(1—B + 0.582) =0
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Which means thata = 1 and b = 1, in this case the solutions are:

67t =65 = V12 +12 =2

and both are greater than in one, so this model is stationary.

An equivalent method of checking stationarity of AR(2) model is

by looking directly to the parameters ¢, and ¢,:
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We say that the AR(2) process is stationary if the following

conditions are satisfied:

—1< ¢, <1

b1+, <1

¢, — P <1

And if any of them is not satisfied, then the process is not

stationary.
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3.6.2.1 Autocorrelation function of AR (2) model

For simplicity, we will assume that © = 0, so the general form of

the model is:
Ve = O1Ve-1 T P2Ye—2 + &
Multiply both sides by Y;_; and taking expectations:
Vi = Elyeye—i]l = G1Eye—1YVe—i] + G2Eye—2Ye—i] + Eletye—i]

And since Y;_;, dependsonlyon &;_;.5;_;,_4. ..., then we have:
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Eleeyioi] = {002, k i 1:,2(,)3
So that,
Yo = $1V-1 + P2y_; + 07
= 171 + d2¥2 + 0%,
and,

Yk = P1Vk-1 + P2Vk—2- k>0
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From which we can get the auto-correlation function p;:
Pk = P1Pr—1+ G2p— k=12
Which is the Yule-Walker equations for this model.

For example, for k = 1:

P1 = P1po + P2p1

P1
(1—=¢2)

pr(1—¢) =¢; = p1 =
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for k = 2:

P1°
S

P2 = P1p1 + P2pg = py = ¢,

l.e.

_ P17 + Py — P
P27 ¢y

In the same manner, we gat get the form of p, for any value k.
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3.6.2.2 Partial autocorrelation function of AR (2) model

$oo = 1.
_ P4
¢$11 =p1 = (—0,) "
1 p ,
¢ _ P1 P2 _ P2 — P1
pp 1

_ PP+ P—0,”
Where, p, = T
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1 pg P1=¢p1po+¢2p1
pr 1 P2=¢1p1+¢2p0

_ P2 P1 P3=¢ip,+¢.p4 _ 0 _
33 1 p1 P2 1 p1 p2|
p1 1 pg p1 1 pg
p2 p1 1 p2 p1 1

Because the last column is a linear combination of the first column
(they are not independent). So, it is possible to prove that ¢ =

0 fork = 3.

Thus the PACF for AR(2) can be written as follow:
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pl k — 1

Gk = { P2 — P1° — 9
1—pq?

\0 k >3

Thus, we can summarize the properties of the AR(2) model as

following:

e [f the stationarity conditions are satisfied, i.e.:
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—-1<¢,<1 and ¢, —¢; <1 and o1+, <1

or equivalently, the roots of the characteristic equation:

(1 — ¢1B — ¢,B%) = (1 — G;B)(1 — G,B) = O satisfy |G| > 1
and |G, '| > 1, then:

)
(1=¢1—¢2)

E(y:) =

which is a constant value for all t.
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e The ACF depends on the values of the roots of the
characteristic equation:
- If the roots are real, then the ACF decline in an exponential
fashion.
- If the roots are complex, then the ACF decline in a sin-wave
fashion.
e The PACF has only two values not equal to zero (¢,;and ¢,,)

, Whereas the rest of the values equal zero.
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To show the behavior of the PACF for the AR(2) model we take

the following examples.

The following figure shows the ACF and PACF for ¢, = 1,¢, =

—0.5:
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Autocorrelation

Autocorrelation Function for C1
(with 5% significance limits for the autocorrelations)

ACF for AR(2) model when

¢, =1.¢, = —0.5

Partial Autocorrelation

Partial Autocorrelation Function for C1
(with 5% significance limits for the partial autocorrelations)

PACF for AR(2) model when

¢, =1.¢p, = —05
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We note from figure (a) that the ACF takes the form of a decaying
sine-wave, and from figure (b) that the PACF has only two
coefficients differ from zero, and the function cut-off after two

time lags.

The following figure shows the ACF and PACF for ¢p; = 0.4. ¢, =

0.5 :
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Autocorrelation

Autocorrelation Function for C1
(with 5% significance limits for the autocorrelations)
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Partial Autocorrelation
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(with 5% significance limits for the partial autocorrelations)
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PACF for AR(2) model when
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The ACF decline in an exponential format, and again the PACF

cuts-off after two time lags.

3.6.3 Autoregressive Model of order p

This has the following form:

Ve =0+ P1Yi1+@P2yeo + o+ Ppyiep + &

Where ¢,~WN(0.02).
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using the backshift operator:
(1—¢1B — B> —--—pPBP)y, =5 + &

or:

¢(B)y: =0+ &

These models are always invertible regardless of the values

of parameters ¢;, this is because the number of non-zero m;
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weights are limited. AR(p) models might be stationary or not
depending the values of the coefficients ¢;, however, it can be
shown that if the roots of the characteristic function ¢(B) = 0 fall

outside the unit circle, then the model is stationary.

The autocorrelation function of the AR (p) model can be shown to

satisfy the following difference equation:

Pk = P1Pr—1+ G2p—2 + -+ Pppr—p k21
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we will not derive mathematical solution of this function, however,
we will just mention the forms this function can take (it is very

similar to the forms of the AR(1), and AR(2) cases):

The ACF extend infinitely and consist of a mixture of decaying
exponential or sine-wave functions. So, always the ACF function is
a good indicator whether a series in practical applications can be

modeled by autoregressive models. However, it is not enough in
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determining the order p of the autoregression, so we have to

examine the PACF, which cuts-off after the order p.

3.7 Moving Average Processes
We mentioned earlier that any stationary linear process can be

written in the form:

Vi = & +z¢j &-j ; Where zz,bjz < 00
j=1 J
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In fact many phenomena in economics or social sciences can be
represented (may be after first or second difference) in the same

manner, however with limited number of constants Y j,as follow:

Ve = & T Y161 T Pr&i_p + - FYpEr_g

The processes that can be represented in this form is called the
Moving Average of order g, or MA(q) in short. In literature, it is
written in a special format, so that they can be distinguished from

other operations:

Vi = & — 0161 — 0615 — -+ _qut—q

The constants ¢; are the main parameters of the model.
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The MA models are always stationary no matter what the

parameters values are, because the number of non-zero 1), values

in the linear process representation are limited:

Note: Sometimes itmay be necessary to expressthese models
using the past values of the series y;_4, v;_», ..., this means that we
use the invertibility formula, in which case we must put some
conditions on the parameters 0;, these conditions are called the

invertibility conditions, we will see this conditions when discussing

the models MA(1) and MA(2).
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In most applications that arise in economics and management,
engineering, environmental studies, the value of ¢ is usually less
than or equal 2, so we will confine ourselves to discussing these
two models, and just mention some properties of the general

MA(qg) model.

3.7.1 Moving Average of first order MA (1)
We say that the process {y; } follow a moving average model of

order one if it can be represented as:

Ye = & — 91515_1 t=0.4+1.+2. ...
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Where 6, represent the main parameter of the model, and {¢, } is

the white nose process ¢, ~iid N(0.02).

The MA(1) model is considered as one of the important time series
analysis models that is used in modeling inventory, quality control,
temperature, pollution percentages, and general economic
indicators after being affected by sudden disturbances either from
within the system such as worker strikes, or from outside the

system such as wars or disasters, etc.

As mentioned earlier that the MA(1) model is always stationary, no

matter what the value of the parameter 6, is, because:
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The model can be written in short as:

Ve = 0(B)e;
Where 6(B) = 1 — 6, B is a polynomial.

The linear filter 6(B) is called the moving average operator, it link

the process {y;} as an output with the process {¢; } as input.

3.7.1.1 The autocorrelation function of MA (1)

The model is:

Ve = & — 0181
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Taking the expectation of both sides:
E(y;) =& —616-1=0
and taking the variance of both sides:
var(y.) = y(0) = var(e — 01&_1)
= var(e) + 0,% var(e;_q)
= 02(1+6,%)
and the auto-covariance at lag one is:
y(1) = cov (. Y1) = cov(e; — 0161 . &1 — 018:3)

= —0,cov(gr_q.6-1) = —0,0¢

and at lag two:

y(2) = cov (. Yi—2) = cov(ey — 0161 . &y — 016;_3) =0
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Similarly, one can show that: y(3) =y(4) =--=0

So the auto-covariance function for the MA(1) model can be
written as:

(62(14+6,°). k=0
v) =1 —-6,02. k=1
.0 . k=23...

Note that the expectation, variance, and auto-covariance functions
of this model do not depend on time ¢, (which is expected to be,
since moving average processes are always stationary). Now
dividing by variance y(0), we get the autocorrelation function for

the MA(1) model:
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( 1. k =
i Y k=1
p()—<(1+012)' =
\ 0 k=2.3...

Which means that autocorrelation function of MA(1) processes
cuts-off after the first time lag, which means that observations one
time lag apart are correlated, while at larger lags they are not
correlated. Also, note that if the sign of 6, is negative, then p(1) is
positive, which means that large values of the series y; tend to be
followed by large values, and small values are followed by small

values, in this case the process {y; } is more smooth than the white
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noise process, and this smoothness increases as ¢, approaches -1,

and the reverse situation occurs when 6, is positive.

3.7.1.2 The Partial autocorrelation function of MA (1)

From the definition of partial auto-correlation we have,
$oo = 1.

P11 = py = i
11 — P1 = 1_|_912-

Using the determinants to find the partial autocorrelation

functions, we find:
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1 pq 1 pq
¢ _dp1 p2l _Ip1 O _0_912_ _9%
211 pg| |1 p1|] 1-pi2 1+6%+67
p1 1 pp 1
—67(1 — 07)
- 1-6°

(where me multiplied numerator and denominator by (1 — 82)).

For k=3 we get:

P1
1

P1

P1
0

0

p1° _ —63(1 —67)

¢33 =

P1
1

P1

P2

P1
1

~1-2p,3

1-—06°%
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_akr4 a2
ile(zl(kfj)) for all k > 0. Thus

1

the PACF for the MA(1) model takes the same form as the ACF for
the AR models:

In general we can prove that ¢ =

i) If 0<6 <1 ; then the PACF follow a damped exponential
function.
ii) If—1 < 6 < 0; then the PACF follow a damped sine-wave

function.

To show the behavior of the ACF and PACF for the MA(1) model

we take the following examples.
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1- The following figure shows the ACF and PACF for
01 = —0.7:
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) Aoutchrrelati_on Function for C1 Partial Autocorrelation Function for C1
(with 5% significance limits for the autocorrelations) (with 5% significance limits for the partial autocorrelations)
1.0 1.0
0.8 0.8
0.6+ c 0.6
.g
s 0.4 % 0.44
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O -0.2-1 < -0.2
5 3
< -0.44 £ -0.44
0.6 & 0.6
-0.8 -0.84
-1.0- -1.0
2' 4 6' 8' 1'0 1'2 1'4 1I6 1I8 2'0 2 4 6 8 10 12 14 16 18 20
Lag Lag

a) ACF for MA (1) model when  b) PACF for MA (1) model when
81 = —0.7 01 = —0.7
We note from figure (a) that the ACF cuts-off after lag 1, and from

figure (b) that the PACF takes the form of a decaying sine-wave.
Also, note that p; = 0.4698 and its sign is opposite to the sign of 6.
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2- The following figure shows the ACF and PACF for
01 = 0.7:
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. A:.ltchrrelati_on Function for C1 . Partial Autocorrelation Function for C1
(with 5% significance limits for the autocorrelations) (with 5% significance limits for the partial autocorrelations)
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a) ACF for MA(1) model when b) PACF for MA(1) model when
0, = 0.7 0, = 0.7

We note from figure (a) that the ACF cuts-off after lag 1, and from

figure (b) that the PACF takes the form of a decaying exponential
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function. Also, note that p; = —0.4698 and its sign is opposite to
the sign of 6.

3.7.1.3 Invertibility

We have already mentioned the invertibility, and explained the
importance of writing the model in terms of the past values of the
series V;_1.V:_»...., also, we have mentioned that to be able to

achieve this goal we have to put some conditions on the weights 7,

the definition of MA(1) model is:

Ve = & — 0161

rewriting it as:
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& =Y+ 0184

From which we can get:

Et—1 = Yi—1 + 01&5

Et—2 = YVi—z + 0153

Et—k = V- T 011

And by continue substituting in ¢, = y; + 0,¢;_4, we get:
_ 3 K k+1
& = Ve +01Ye1 + 07V 2 + 073+ + 07 Vg + 07 e g
[f we continue substitute for large number of times, i.e. letting k —
oo, then last term (65" ¢,_,_,) will not diminish to zero unless we

put the condition that |#| < 1, whereas, if |6| > 1 then it will not
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diminish to zero, and as a consequence the observations in the
MA(1) model will be affected by all observations in the history of

the series.

3.7. 1.4 importance of Invertibility
Invertibility is a special characteristic concerned with the models
and is completely independent in terms of concept and importance

from stationarity. Some points about its importance are:

1. Invertibility ensures that the value vy, is affected after a

specific period of time by the nearby observations more than
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being affected by observations very distant apart, in fact we see
this effect decreases in an exponential manner.
2. Invertibility ensures the existence of a single model

corresponding to a specific auto-correlation function. We have

found for MA (1) model that:
(146,

P1

Cross Multiplication and rearranging terms, we get:
01°p1+ 61 +p1 =0

or,
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0
02 +—=4+1=0
P1

it is a quadratic function in 6, , which has two roots their

multiplication equal 1, and thus if 6, is one root, then the

second will be 91* , this means that there are two MA(1) models
1

having two different values for 6; but have the same auto-
correlation function!

3. Invertibility makes it possible sometimes to use MA(q) with
a small order as an alternative for a model that uses a large

number of previous observation:

Ve =6+ 601y 1+ 07y 2+ 07y 3+
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Example:

If {y;} is a MA(1) process with 6; = 0.5, what is the auto-
correlation function for this process, then show that there exist
another value for 6, satisfy this auto-correlation function. Which

value satisfy the invertibility condition?

Solution:

— o) . =0.k>1
P1 = 1+912 y Pk = V.

So if 8, = 0.5, then:
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S (1 +O(.(?.5)2> -0

Now, if we used the other root that satisfy this equation, which is

T =L1= 2, then:
4 0.5

1

1

A 05 — s

2
1+ (55)

. « 1.
This means that 6, = o gives the same value for p; as the value

0, = 0.5, so we have two MA(1) models having the same auto-

correlation function:
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:{—0.4. k=1
Pk=10 . k=23 .

The first model MA(1) with parameter 0.5, the other with
parameter 2, of course the first one satisfies the invertibility

condition (|6| < 1).

3.7.2 Moving Average of second order MA (2)
We say that the process {y; } follow a moving average model of

order two if it can be represented as:

Yt = & — 6151:—1 — ngt_z t=0.+1.4+2. ...
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Where 6, 6, represent the main parameters of the model, and

{e,}is the white nose process s,~iid N(0.c2).

The MA(2) model is similar to the MA(1) model, but it has more
ability in modeling a more complicated situations, as itis used in
modeling important economic indicators after being affected by
sudden disturbances when effects of such disturbances extend to

two time lags.

Also, the MA(2) model is always stationary, no matter what the

value of the parameter 6, 6, are, since:

¢1:_91;1/J2:_92,'1/Jj20. Jj>2
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The model can be written in short as:

Ve = 0(B)é;
Where 6(B) = 1 — 6,8 — 0,B% is a polynomial in the operator B.

3.7.2.1 The autocorrelation function of MA (2)

The model is:
Ve = & — 0161 — 026
Taking the expectation of both sides:
E(y:) = & — 0161 — 026, =0
and taking the variance of both sides:

var(y,) = y(0) = var(e; — 0161 — 02&¢—3)
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= var(e;) + 0,% var(e,_1) + 0,° var(s;,_,)
=02(146,° +6,°)
and the auto-covariance at lag one is:
y(1) = cov (V¢ yi-1)
= cov(e — 0161 — 0265 &1 — 0165 — 0,6 3)
= —0,02 + 0,0,07
= —0£0,(1 - 6,)
and at lag two:
y(2) = cov (y¢.yi-2)
= cov(er — 0161 — 02615 &y — 0165 — 0,6_4)

— 2
— _620-8
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Similarly, one can show that: y(3) = y(4) = =0

So the auto-covariance function for the MA(2) model can be
written as:

(62(1+6,°+6,°). k=0
. 0. k =3.4...

Note that the expectation, variance, and auto-covariance functions
of this model do not depend on time t, (which is expected to be,

since moving average processes are always stationary). Now
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dividing by variance y(0), we get the autocorrelation function for

the MA(2) model:

([ —0,(1—6,)
- —. k=1
(1+6,°"+6,%)
p(k) =+ -6,
. k=2
(1+6,"+6,")
L 0. k = 3.4. ..

Which means that autocorrelation function of MA(2) processes
cuts-off after the two time lags, thus we say that MA(2) models

have a memory size of 2.

3.7.2.2 The Partial autocorrelation function of MA (2)
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We will not derive the mathematical form of this function due to
the mathematical complications, however, we will just mention the

properties and form of this function:

1- If the roots of the quadratic function 6(B) =1 — 6,B —
0,87 = 0 are real, then the PACF will be in form of a decaying
exponential function.

2- If the roots of the quadratic function 6(B) =1 — 6,B —
0,B% = 0 are complex, then the PACF will be in form of a

decaying sine-wave function.

292



To show the behavior of the ACF and PACF for the MA(2) model

we take the following examples for some values of 6, and 6,:

1. The following figure shows the ACF and PACF for

9, =0.7,6, = —0.1

Autocorrelation

1.0
0.8
0.6
0.4+
0.2

0.0

-0.2
-0.4
-0.6
-0.8
-1.0

Autocorrelation Function for C3
(with 5% significance limits for the autocorrelations)

Partial Autocorrelation

1.0
0.8+
0.6
0.4+
0.2

0.0

-0.2
-0.4
-0.6
-0.8
-1.0

Partial Autocorrelation Function
(with 5% significance limits for the partial autocorrelations)
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We note from figure (a) that the ACF cuts-off after lag 2, and from
figure (b) that the PACF takes the form of a decaying exponential

form.

2) The following figure shows the ACF and PACF for
91 — 162 = —0.7:
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Autocorrelation Function Partial Autocorrelation Function
(with 5% significance limits for the autocorrelations) (with 5% significance limits for the partial autocorrelations)

1.0 1.0

0.8 0.8

0.6- 5 0.6+
g 0.4 % 0.4
-'.-' 1
] 0.2' A 02' —I

o

g 0.0 |_‘_. __________ . T " . - g 0.0 - '_'I_'_l'_'l_'_l ''''''''''' —
s —_— | S B [ — S v N — p— ___|___|___|___| _____ | ——
; : 1
8 -0.24 < -0.2
s =
< -0.4- -g 0.4

-0.6 & 06

-0.8 -0.84

-1.0 -1.04

2 4 6 8 10 12 14 1 18 2 2 4 6 8 10 122 14 16 18 20
Lag Lag

a) ACF for MA(2) model when b ) PACF for MA(2) model when
0,=1.0,=—0.7 0,=1.0,=—07
We note from figure (a) that the ACF cuts-off after lag 2, and from

figure (b) that the PACF takes the form of a decaying sine-wave

function.
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3.7.2.3 Invertibility
We will not derive invertibility conditions for the MA(2) model,

however we will just mention these conditions:

e —-1<K6, <1
o 6, +60, <1
o 6, —0, <1
Which as we can see are very similar to the stationarity conditions

of the AR(2) model.

Example: If the model that best fits the process {vy; } is
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v = & + 0.8¢,_; — 0.15¢,_,, where {&; } is the white noise process,

does this model satisfy the invertibility conditions?
Solution:

From the model equation, we see that the model parameters are 0, =

—0.8 . 6, = 0.15. Now applying the invertibility conditions:
(i) |6, =015 <1
(ii) 6 +6,=—-08+0.15=-065<1

(iii) 6, — 6, = 0.15 — (=0.65) = 0.95 < 1
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Therefore, all invertibility conditions are satisfied, and the process

is invertible.

3.7.3 Moving Average of order q

This model can be written on the form:
Ve = & — 0161 — 0365 — - — qut—q t=0.+1.+2. ...

Where ¢,~WN (0 .0?), and the constants 0;.0,. ... 6, are the model

parameters. These models are always stationary. The models MA
(g) can be invertible or non-invertible depending on the constants
f; , but generally it can be shown that this process is invertible if

the roots of the equation:
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0(B) = (1-6,B—0,B% —---—0,B%) = 0
all lie outside the unit circle.

And for autocorrelation function for the MA (g) models, it can be

shown to have the following form:

(—Op + 0,041 + -+ +0,_1.0
R 99 k=12....q
pe=1 (14624462
\ 0 vk >q

We will not derive this mathematical equation, however we will
show the pattern it can take, which is very similar to the MA(1), and
MA(2) case. The ACF cuts-off after g time lags, this indicate that

these processes have a memory of size g, also we can prove that
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there are 29 models with different parameters that have the same
ACF , however, only one of them satisfy the invertibility condition.
As for the partial auto-correlation function it has the same pattern

as MA(2) model, i.e.:

1-  Ifthe roots of the quadratic function 6(B) =1 — 6,B —
0,B% — -+ — 0,8 = 0 are real, then the PACF will be in form

of a decaying exponential function.
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2- Ifthe roots of the quadratic function 6(B) = 1 — 6,B —
0,B% — -+ — 0,87 = 0 are complex, then the PACF will be in

form of a decaying sine-wave function.

3.8 Autoregressive- Moving Average Processes

We say that {v, } follow an Autoregressive-Moving average process of
order (p, q), in short ARMA(p, g) model, if it has the following
form:

Vi = Q1Ye—1 + T PpVi—p + E—016_1 — - —0461_4
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Where s, ~WN(0.0?), and the constants ¢ ;. ¢,. ... ¢, and

6,.0,....0, are the model parameters. We can express this

process in the form:
¢(B)y: = 0(B)e; (1)
Or,
(1—-¢yB—¢p,B? — - —¢,B? )y, = (1-6,B—6,B* — --- —6,B%)¢,
Where:
¢ (B) : the auto-regressive operator, a polynomial in powers of B.

0(B) : the moving average operator, a polynomial in powers of B.
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Now, notice from (1) that:

~ 6(B)
Yt = 3 (B)

Which is in the form of the general linear process:

Ve = Y(B)g; (2)

That is y; can be written as an infinite moving average process, and in

€t

this case we require the roots of the characteristic equation ¢(B) = 0,

to lie outside the unit circle as a stationarity condition for this model.

Note also, that (1) can be put alternatively in the form:
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_¢B)
€t = H(B) Yt

Which is in the form of the invertibility formula:

g = I(B) y; (3)

That Is £, can be written as an infinite auto-regressive process, and Iin
this case we require the roots of the characteristic equation 8 (B)=0, to

lie outside the unit circle as an invertibility condition for this model.

By noting both (2) and (3) we see that:
[(B) = ¢y~'(B)

or,
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N(B)Y(B) =1
The weights 1; and 7z; can be found by equating the coefficients of BJ

In both sides of equations (2) and (3), we will see this for the model
ARMA(1,1).

3.8.1 ARMA (1,1) model
We say that {y, } isan ARMA(1,1) process if it can be represented as:

Ve = $1Ye-1 T &
Where s, ~WN(0.0%), and the constants ¢,. 6, are the model

parameters.
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This model can be put in the form:

¢(B)y: = 0(B)e;
or,
(1=¢1B)y; = (1-0,B)¢;
The ARMA(1,1) process is stationary if |¢,| < 1, in this case it can

be expressed as an infinite moving average process, as follow:

ye = P(B)e;
where,
~ (1-6,B)
VB =B

= (1-¢1B)Y(B) = (1-6,B)
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and thus,
(1=¢1B)(1 + Y4B +P,B* + -+) = (1-6,B)
equating the coefficients of B/ in both sides, we have;
Bhyy —¢pr=—-0; =19 =¢—0;
B2, — )1 =0 =Y, = p1p; = ¢p1(Pp1—61)
B3: 15 — 11, =0 = 3 = P11, = P71 = d7(P1—061)

Thus it is possible to get the general expression for the 1,
weights for the ARMA(1,1) process as:

Wi =i = (Pp1—61). j>0
The ARMA(1,1) process is invertible if |6,| < 1, in this case it can be

expressed as an infinite auto-regressive process, as follow:
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where,
- (1-¢1B)
1B) =0,
= (1-6,B)II(B) = (1—¢4B)
and thus,

(1-6,B)(1 + myB + m,B* +---) = (1—¢.B)
equating the coefficients of B/ in both sides, we get:
T; = ¢1—0;
m, = 60111 = (¢p1—01)
m3 = 071, = 07 (¢p1—6,)
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Thus it is possible to get the general expression for the 7; weights

for the ARMA(1,1) process as:

M= g1mjg = 617" ($1=61). j >0
It Is clear from the expression of ); and 7z; weights that ARMA(1,1)
models can be used as an appropriate approximations for either MA (o)
or AR(o0), but with merit of having a limited number of parameters
(Just 21) (parsimonious law), thus mixed models are generally used
instead of the moving average or the autoregressive models with

large orders.
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3.8.1.1 autocorrelation function for ARMA (1,1) model

The model function is:

Ve = Q1Ye—1 + &—01&¢1
Taking expectation on both sides, we find:

E(ye) = p1E(yi—1) +0
therefore:

E(y;)=0

Taking variance of both sides:
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var(y,) = y(0) = ¢7y(0) + of + 67 0 — 2¢16,0¢
hence:
of(1+ 912 — 2¢161)
1-¢f
and the auto-covariance at lag one is:
y(1) = cov (Vi Yi—1)
= cov(P1 Vi1 + =011 Vo1 )
= ¢,y(0) — 6,07
Substituting the value of y(0), we get:
0f (1 — 61)(1 — ¢161)
1 - ¢f

y(0) =

y(1) =

and at lag two:
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Y(2) = cov (V¢ yi—3)
= cov(P1 Vi1 + =016 . Ye2)
= ¢,y(1)

Generally, we can show that:

v(k) =¢pv(k—1) ;k=2.3...
So the auto-correlation coefficient at lag one is:

oy = YD _ @1 =000 = ¢:60)
y(0) ~ (1+62—2¢,6,)

and the auto-correlation coefficient at lag k is:

_v(k) o
p(k) — m — ¢1p(k — 1) ; k =2.3...

or,
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p(k) =¥ 1p(1) ;k=23...

[ (p1 — 6)(1 — $167)
p(k) =4 (1+62—-2¢,60,) °

LBX1p(1). k=23...

So, it is clearly noted that for the ARMA(1,1) process, the ACF

exhibits an exponential decay starting from p; not from p, as is the
case in the AR(1) process. Also, note that value of p; depends on
both parameters ¢, f;, and its sign depends on the quantity (¢, —

0,), if ¢; > 6, then p; > 0, and vice versa. After lag 1, the function
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will start to decay in exponential manner if ¢; >0, or in a

decaying sine-wave formatif ¢, < 0.

Thus, we notice the resemblance of the ACF shape of ARMA(1,1)
model to that of the AR(1) model, the only difference is that decay

starts after p; not after p,.

Example:

If vy, =05y,_4+ ¢ +09¢,_,, find the autocorrelation function
and plot it, show the difference between this function and the

AR(1) with same parameter.
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Solution:
We have ¢; = 0.5, 6; = —0.9, so using the formula of the ACF of

the ARMA(1,1) model,

([ ($1— 601 — $16)) L
p(k) =4 (1+62-2¢.60,) ° B
P p(D), k=23...

we get:

(0.5+09)(1+045)
P =109z = 2005y001) - O7°

p(2) = ¢pz71p(1) = (0.5)(0.75) = 0.375
p(3) = $p371p(1) = (0.52)(0.75) = 0.1875

315




p(4) = ¢ 1p(1) = (0.53)(0.75) = 0.09375

p(5) = ¢ 1p(1) = (0.5*)(0.75) = 0.046875
Whereas, for the AR(1) model with parameter ¢, = 0.5, and using
the ACF:

p(k) = ¢p¥p(0) = ¢ ;k =123...
We get:
p(1)=05. p(2)=0.25. p(3) =0.125 . p(4) = 0.0625
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Autocorrelation function for ARMA(1,1), phi=0.5, theta=-0.9 Autocorrelation function for AR(1), phi=0.5
1.0 1.0
0.8 - 0.8
0.6 0.64
m
o o
0.4 1 0.4
0.2 0.24
00 I I N b I R
0 2 4 6 8 10 0 2 4 6 8 10
c1 cl

(a) ACF for ARMA(1,1) model (b) ACF for AR(1) model when
when ¢, = 0.5.6, = —0.9 b, = 0.5

So we notice the resemblance of both function, but in ARMA(1,1),
the exponential decay starts from p(2), whereas in AR(1) the decay
starts from p(1).
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3.8.1.2 partial autocorrelation function model ARMA (1,1)

We can deduce the PACF for the ARMA(1,1) model by applying the

definition of partial autocorrelation that we have previously

addressed,

$hoo = 1.
(1—-¢1601)(¢p1—64)
$11 = p1 = 1—20,0,16,%
1 ps ,
qb _ P1 P2 _ P2 — P1
22 1 ,01 1 — pl
pr 1
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P3 — P21P2 — P22P1

¢33 = 1— i py — Doy $21 = P11 — $22P11

The PACF for ARMA(1,1) either decay in an exponential manner,
or in a sine-wave manner, exactly as the case of MA(1), except

that it starts after the initial value ¢p;; = p;.

3.9 Integrated Autoregressive-Moving averages processes

Most of the actual time series that arise in practical applications in

many areas of knowledge are not stationary in the mean, and thus,
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we must use the difference transformation to make it
stationary. Let us assume that d is the minimum order of the
differences that must be taken to render
the series stationary. Models that describe these processes are
symbolized as ARIMA(p, d, q), so that to distinguish them from the
stationary ARMA(p, q) models.

Thus, we say that a process {y; } is an ARIMA(p, d, q) process if it

is possible to express it in the form:

Qb(B)VdYt = 0(B)e;

Where,

320



¢(B) = (1_¢1B_¢232 I _¢po)_
0(B) = (1-6,B—6,B% — ---—0,BY).

v =(1-B)*
e
Ve~ARIMA(p.d.q)

Usually the transformed series 7%y, is denoted as z,, i.e. is expressed
as:
¢(B) zy = 0(B)e;

Where z,~ARMA(p, q) which Is a stationary process.
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Example:
Express the ARIMA(1,1,1) in its final form.

Solution:
The ARIMA(1.1.1) model has the form:

(1-¢1B)(1 — B)y, = (1-6,B)¢;
Now putting z; = (1 — B)vy;, we get the model:
(1-¢1B)z; = (1-6,B)¢,
l.e.
Zt = 1249 + =018 4

Substituting for z; = vy, — y,_, we get:
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Ve = Vi1 = P1(Veo1 — Ye—2) + €016
or,

Ve = (1 + @1)Ye-1 — $1YVt—2 + €016
Which is the final form for the ARIMA(1.1.1) model.
Note that y; in the previous format looks like an ARMA(2,1), which is
true, however with these parameter values it is not stationary, and that
after differencing {z:} we have turned it into a stationary ARMA(1,1)

Process.
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Chapter 4: Parameter Estimation

We will assume that the order of the model ARMA(p,q) have been

determined, I.e., we have determined the values of p and q.

Hence, we need to estimate the values of the parameters ¢ , ¢, and

6. In what follow, we will discuss some methods for doing so.

4.1 Method of Moments

This method is considered the simplest among estimation methods,

where, as we know, the sample moments are equated to the
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corresponding theoretical moments, and solving the resulting

eguations, one can get the required estimates.

4.1.1 Autoregressive Models

AR (1) model:
As we have shown before, p; = ¢, and we estimate p, by the sample

autocorrelation coefficient r;, thus the method of moments estimate

for ¢, Is:

AR (2) model :
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Since there are two parameters to be estimated, namely, ¢, and ¢,
thus we need two equations for the estimation process, in this regard

we can use the Yule-Walker (recall that the Yul-Walker equations

have the form:
Pk = P1Pk-1 + P2pk—2 + -+ Pppg_p
so If there are two parameters, we need the following two equations:
p1=P1 + P2p1

P2 = P1p1 + P,

Now replace p, by r;, and p, by r, , and solving these equations we

get:
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(:bl_ 1—T'12
5 =1y

AR (p) model:
In this case we need to solve the following system of Yule-

Walker equations:
n=¢+nrg,+--+1r_1¢,

rp =1+ ¢, + -+ Tp—zd)p
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rp = p—lqbl + Tp—2¢2 + et ¢p

which will require some more effort, but maybe mathematical

software can be used for this purpose.

4.1.2 The Moving Average models
Method of moments for these models is not as easy as we have seen
for AR models, it might be even impossible for models with large

orders, let us consider the MA (1) model:
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As we have shown earlier that:

3 o
P1= "1 g2
so replacing p; by r;, we get:
B v
L WP

From which, we will get a quadratic equation in 6
r0%°+80+r, =0

In case |r;| < 0.5, then the real roots of the equation are:
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—14/1— 417

0 =
214

One solution satisfy the invertibility condition || < 1, it is possible

to check that this solution Is:

—1+ 1 — 41

0 =
21

For higher order MA models, the solutions will be more

complicated.

4.1.3 Estimating the white noise variance o2
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For any stationary ARMA (p, g) model, vy, = Var(y;) is
estimated using the sample variance of the time series y;:
G2 — ?=1(yt o }_/)2
n—1
and then we use the relationship between o2 and the parameters

6 or ¢ toget 62 for any model we want, for example:

4.1.3.1 AR (p) model

We use the following relationship that we have already obtained when

discussing the AR(p) model:
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Yo = P1v1 + G2¥2 + -+ dpyy + 0 (*)

The relationship p, = = y, = y,p. , enable us to write (*) in

Yo

the form:

Yo = $1VoP1 + d2vop2 + - + dpyop, + 07

form which we have:

Yo — ®1YoP1 — P2YopP2 — - — ¢p)’0,0p = (732

or.

Uez = (1 — P1p1 — Ppp — o — ¢pPp)V0
and thereby, estimate of the white noise variance Is:
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552 =(1- <IS17"1 - qu"”z — (ﬁprp)sz

For example, for AR (1) model, we have one parameter estimated as

¢, = 1, thus the estimate of ¢ is:

6¢ = (1 —1{)S?

And one can estimate ¢ for any AR model, for example , for AR(2)

model , the equation is

6¢ =(1- <l§17”1 - 0327"2)52
and replace the parameter estimates ¢,and ¢, in terms of r; and 7.
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4.1.3.2 MA (g) models
We use the following relationship that we have already obtained when

discussing the MA(g) model, which connects between ¢ and the

parameters 04,0, ..., 6,

Y
Yo = 0f (1+912+---+9§):>082=(1+62 _|_0..._|_g2)
1 q

Estimating y, by the sample variance S, we get the following

estimate of o2 :
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2
0]

g — A A A
A1+674+065+--4+67)

For example, for MA (1) model:

2
52 ~1+ /1—4r1

0: = 189 where 6 = -

For the mixed model ARMA (1,1), it can be shown that the equation

for estimating the white noise variance is given the following

relationship:
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52 — (1 B QB%) G2
© (1+67-26,¢)

Example: Suppose that we have observed a time series Y; of size

n = 121, and we have decided that AR (2) model is suitable for
modelling Y; , also, we have estimated the sample autocorrelation

coefficients ;, = 0.936 and r, = 0.802. The series mean

= 51069, and y, = Var(y,) = S% = 1.99487. Hence, using the

following relations:
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2

b, = r11(1;;~2)’ and ¢, = 7;2_:;, we can get the parameter estimates as
- -
follows:
~ 0.936(1 —0.802) _ 150
P1="1 00362 -
and,
~ 0.802 — 0.936% 0598
$2="7T"0o0362

and the estimate of the white noise variance Is:

6f = [1 - q§17"1 - q32r2]52
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62 =[1-1.50 % 0.936 — (—0.598)0.802]1.99487 = 0.388
So we may write the estimated model of this time series in the form:
y, —5.1069 = 1.5(y,_; — 5.1069) + 0.598(y,_, — 5.1069) + &,
where ,~WN(0.0.388).
Note that the model can be written in an equivalent form as follow:

yt —_ _56074‘ + 1'5yt—1 + 0'598yt—2 + gt

4.2 Least Squares method
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4.2.1 AR (1) model:
The model takes the form:
Ve — U =P(Ye—1 — 1) + &

The idea of least squares is to minimize the sum of squared errors:

= — 1) —PYVeoqr — 1)

That 1s, to minimize the term:

S(p.w) = ) & E(yt — P(Ve—1 — W)]?

n
t=2 2

n
t=
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Thus, we find estimates of the parameters ¢ and x by finding the
corresponding values that minimize the term S(¢. ), So:

n

D 200t~ 1) = $0es — WI-1+¢) =0

t=2

And solving for 1, we find:

t=2 YVt — P Nt=2Vt-1
(n—1)(1-¢)

=

Note that for large n,
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n

n
z Yt Nz Ye-1 _ _
n—1 n—1 7
t=2

t=2

Thus whatever the value of ¢,then:

y—¢y y(A—-¢)
1-¢p 1—0¢

So we notice that the least squares method estimate . approximately

i~ =y
as y, In case of large sample sizes.

Now, to estimate ¢, we differentiate S(¢.y) with respect to ¢ and

eguate It to zero,
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n

S0 = ) [0 =) = dWey — W]

t=2

05(¢.7) N\ ) _ -
o6 —; 20 = 9) = dt-1 =M1 =) =0

From which we get:

t=2(Ve = V) Ve-1 — Y)
Dit=2 (Vo1 — ¥)?

¢ =
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Note that in the denominator, we have one missing term, namely

(v,, — ¥)?, which will make ¢ exactly equal r, but for large sample
sizes the effect of this missing term will be negligible, and hence the

method of moments and least squares method produce approximately

equal estimates for ¢ for large sample sizes.

4.2.2 MA(1) model

This model takes the form:

Ve = & — 0&_4
We can rewrite the model in the form:

& =Y +0&_4
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and conditioning that £, = 0, we find.:
€1 =M
&2 =Y, + 0 =y, + 0y,

g3 =y3+0&, =y3 + 0y, + 0%y,

En =Yn +0yp_q+ -+ Hn_lyl

Now the value of 6 is estimated by minimizing the sum of squares:

n n

SO)= ) &= ) G+ 0yny++0"1y)’
1

t=1 t=
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Which is a non-linear equation in 4, thus cannot be solved immediately,
but we can use any numerical optimization method to solve it
(for example , by the Gauss- Newton method). The same method

IS used In the case of higher order moving average models.
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Chapter 5: Forecasting

5 .1 Introduction

The problem of forecasting is summarized in how to employ the model that
passes all diagnostic tests together with the observed time series at hand to
predict future values that did not occur yet, i.e. the values y; . 1. V;i5..... In
other words, we want to use the current and previous observations to predict
the observation that will occur after [ periods of time, 1.e. y;,;.[ = 1.2. ....

We usually denote [ as forecast horizon or, lead time.
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Complete statistical inference for the variable y,.; requires knowledge
of its conditional density function, that is, its density function given that
history of the time series is known up to time t. This is called the predictive
distribution. Usually, we look for one suitable value to represent the center
of this distribution in order to use it as a point estimate ofthe variable vy, .,

In addition we construct a predictive interval around this point.

The best value representing the center of the predictive distribution is
the (average) or the expected value of the conditional distribution of
the variable v, . ; given that the history of the series y,. vy,..... y; IS known.
This conditional expectation is considered the best point estimate of this

variable, because it fulfils an important characteristic which is the minimum
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mean square errors, meaning that if the model for y, is correct, then there is

no other forecast produce a smaller mean squared errors.

A quick review of some of the properties of the conditional expectation:

If X and Y are random variables having joint density function f(x.y),
and marginal functions f(x) and f(y) respectively, then the conditional

density function for Y given X = x Is:

f(x.y)
f(x)

The conditional expectation for ¥ given X = x is:

fYIX =x) =
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Co

E(YIX = x) = f Y FYIX = x) dy

Note that this 1s the mean of the conditional distribution, therefore all the

characteristics of the mean function applies, for example:

a) E(aY+bZ|X =x)=aE(Y|X =x)+ bE(Z|X = x)

oo

b) E(h(NIX =x) = J_, hONfY|X =x) dy
Also, the mean of the conditional distribution, has the following properties:

1) E(h(X)|X = x) = h(x)
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Which means that knowing that X = x, i.e. it takes a fixed value, then

h(x) Is considered a constant function.

2) E(E(Y|X))=E(), andif Y and X are independent then, E(Y[X) =
E(Y).
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5.2 Forecasting functions for ARMA models

As we have already mentioned, one of the objectives of time-series analysis
Is to build mathematical models and use them in forecasting future values

of the time series.

Let us consider the series {Y; } and suppose that we can write it in the form
of ARMA (p, q)

model or the general linear model form:

$(B)y: = 0(B)e;

Which can be written as:
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~ 0(B)
Yt 3 (B)

€t

=Y (B)g
Also, suppose that we have observed the series up to time ¢, I.e. that we have
the observations y;.y;_;....., let’s denote it as y = (v;. V;_1....) , we will
discuss how to use the available observations up to time ¢ to predict the
future value of the series at time ¢t + 1, 1.e. y;,,. We denote this predictor
at time ¢ and for one step in the future as y; (1), and in general for [ steps in
the future as vy, (1), where t is called the time origin, and [ is called the lead

time.
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5.3 Minimum Mean Square Error Forecast

We will denote this as ¥, (1), and it is given by:

Ve) = EQep1lye-Ye-1- ) (*)
In other words, it Is the conditional expectation of the studied

phenomenon at time ¢+ [, provided that thevalues of
the phenomenon until the time ¢ are known. We will discuss below

how to get the forecasts for some ARMA models.

5.4 AR (1) Model

As we know the general form of the

AR(1) model is:
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Ve — U =P(Y—1 — 1) + &

If we want to predict one step in the future, we replace ¢t with ¢ + 1:

Vit1 —U =Y — 1) + Et41

Applying the definition of minimum mean square error forecast by

taking the conditional expectation of both sides:

Ve(1) —pu = El(Yes1 — W|Ye-Veo1e oo V1]

we get:

V(1) —pu=QlEWe|ye-Ye—1. - ¥1) — 0l + E(€e51|Ye- Yeo1e oo Y1)

using property number (1) of the conditional expectation we get:

354



Eilye-Yi-1- Y1) = Ve
and since ;.4 Is Independent from y;.y;_;.....y;, we get from

property (2):

E(ecr1lye-Ye-1- Y1) = E(gr41) =0
thus,

Ve(D) =u+ oy — 1)

In the same way, we can find the forecast for any value [, where we

replace ¢ with ¢ + [ as follows:

Veiri — U= PVeq1—1 — 1) + €4y
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Thus v, (1) is given by the conditional expectation:

VeD) = u+ QlEWesi-11Ye- Vet - V1) — U]
+ E(ers1|Ye- Vi1 oo V1)

D =p+¢[HU—-1)—pul. 1=1

Note that the previous equation provide forecasts for lead time |
In terms of previous forecasts (L — 1). Also we can use this

equation to find a prediction of any value [, in terms of the original

values :

=1 y.(D)=pu+ ¢y — p
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l=2: 3.(2)=pu+ ¢[y.(1) — ]

=u+¢*(y; — 1)
=3 9.B)=u+¢p:2)—pul=u+¢lu+ o>y — 1) — ul
=u+d(ye —

In general,

3D =p+o'(y,—p), 1>1

Example: Suppose that we have the following

AR (1) model:
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yt —_ 10 + 0'7(yt—1 — 10) + gt

and that the current value of the series is equal to 10.6, then one-time

period ahead forecast Is given as:

y:(1) =10 + le(Yt — 10),

=10+ 0.7 X (10.6 — 10) = 10.42

and for two-time periods ahead, the forecast is:

y:(2) =10 + ¢p*(y, — 10),
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=10 + 0.7%(10.6 — 10) = 10.294

of course, It was possible to get the forecasts in terms of previous

forecasts v, (. ):
9.(1) = 10.42

y:(2) =10+ 0.7]y,(1) — 10]

=10+ 0.7][10.42 — 10] = 10.294

Remark: We can evaluate the error of one-step ahead forecast for the
AR(1) model, as follow:

er(1) = yry1 — 9:(1)
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=pu+ ¢ —w + e~ + e — W] = €41
The white noise process {<; } can now be reinterpreted as a sequence

of one-step ahead forecast errors. We shall see that this is true for all
ARMA models.

Also, the equation implies that e, (1) is independent of the process
history v, v;_4, ... up to time ¢. If this were not so, the dependence

could be exploited to improve our forecast.
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5.5 MA(1) Model

As we know the general form of the model is:
Ve =u+e —0g 4

If we want to predict one step in the future, we replace ¢t with ¢ + 1:
Ver1 = U+ Eqpq — O&;

Applying the definition of minimum mean square error forecast by

taking the conditional expectation of both sides:

V(1) =+ E(ers1|ye ve—1- o y1) — OE (e |Ye- YVe1. oo Y1)
But:
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E(eri1|ye-Ye—q- oo ¥1) =0

E(eclye-ye-1--¥1) = &

so the one-step ahead forecast Is:

Ye(1) = u—0O¢g

and the forecast error Is:
er(1) = Y1 — Ve (1)
=W+ ey —08)—(U—0&) = &4q

which is the same result we obtained for the process AR (1).
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To forecast future values in the process MA (1) for values [ > 1:

Ve) = pu+ E(erq|Ve- Vi1 oo V1) — OE(Er1—1|Ve- Yeore - V1)
= u+ E(erqr) — OE(g41-1)

=u+0-(0)0=pu.l>1

In other words, in the process MA (1) if we want to predict for

a period greater than one , the best prediction this process provide us

IS the mean of the series.
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5.6 Some results for the general ARMA (p, g) process

The relationship that gives the forecasts of this model are as follows:
Ve =pu+ P[P (U—1) —ul + P2 [9:(L —2) —u] + -
+ (:bp Vel —p) —ul = O1E(ersi—1|Ye-Yeo1e - Y1)
o _QqE(5t+l—q|J’t-Yt—1- ----J’1)

Where:

0 =1
E(£t+]|yt'yt_1' ""yl) - {Et_*_] -j S O¥

For example, for ARMA (1,1):
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The model has the form,

Ve =uU+P(y—q — 1) +& — 04

and forecasts are given by the relation:

YD) =pu+ oy, —pn) — O¢; . (1)

Ve(2) = u+ ¢[P:(1) — ul. (2)

and in general:

YD) =p+oy.U-1)—pu]. =2 (3)
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also we can use the relations (1) to (3) to find forecasts in terms of

the original values of the series as follow:

VD =p+d' e —w)—¢p' 0. 121

In the same way that has been used previously, we can find
the forecasting error for the one-step ahead forecast [ = 1 of the
ARMA(1,1) model as follows:

e (1) = Yepq — Y (1)

=y — 1) t &1 — O — [p(ye — 1) — Oe] = €44
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which is the same result that have already been obtained for

the other models.

The forecast error for any lead time could be written as (we will not

prove this):

-1
e:(l) = Z Yi&tsi-j
j=0

And therefore any ARMA model we have:
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[-1
et(l) le] E(€t+l—j) — O, [>1

j=0

This means that the average forecast error is equal to zero, I.e. they are
unbiased. The forecast error variance Is:

I

Varle, D] =a2 ) %, =1
0

(Y

J
From which we note that the forecast error variance increases as lead

time Increase.

5.7 Confidence intervals for forecasts
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If we assume that the terms of the white noise process follow the
normal distribution, then it is also possible to show that the forecast
error e; (1) will also follow the normal distribution, then a

(1 — a)1009% for the future value vy, is given as,

9.() £ zl_%Jvamet(o)

5.8 Forecast update for ARMA (p, q) models

Suppose for instance that we study a monthly time series, and that we

have observed the series until month number 6, and we have
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forecasted the values of the series for months: 7,8, and 9, that is we
have lead time [ = 3. Assume that later we got the actual value of the
series for the month 7. Then we can use this new value to modify our
forecast for the months 8 and 9, this procedure is called forecast

update.

In general, we have the observations vy, v,, ..., v;, let the time origin
Is t, and lead time [, our forecast for ([ + 1) steps ahead is denoted

v:(l + 1), and when the observation at time ¢ + 1 become available,
l.e. observation vy, . ,, then we want to update our original value to be

Ve+1(1). The equation for getting this update is:
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Veer (D) =9+ 1) + Y lyrs1 — P ()]

Example:

Suppose that the model which was applied to a time series is the AR
(2), and the time origin was t = 121, that is we have the observed
time series y,. v,. .... V121 , and that we have the following 1y values,

Y, = 1.563 and Y, = 1.46 and that we got the following forecasts

from the model:
y121(1) = 5.81027,91,1(2) = 5.48419,

5;121(3) —_ 53215
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Suppose now that we have obtained the actual value for time ¢t = 122,
which is y;,, = 5.9, then our update for the forecast at time t = 123

(i.e. [ = 1) becomes:
updated value = value before update + ,[forecast error ]
V122(1) = J121(2) + Y1[y122 — Y121 (D]
= 5.48419 + 1.563[5.9 — 5.81027]
= 5.62444

Also, our update for the forecast at time ¢t = 124 (i.e. [ = 2) becomes:
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updated value = value before update + ,|forecast error ]
$122(2) = 3121(3) + Y2 [y122 — Y121 (V)]
= 5.3215 + 1.46([5.9 — 5.81027]

= 5.4525
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Chapter 6: Box-Jenkins Methodology
The methodology developed by the scientists Box and Jenkins 1n their

important book:

" Time Series Analysis, Forecasting and Control (1976) ", consist of

several steps:

1-1dentification
2-estimation
3-diagnosis

4-forecasting
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We have already discussed briefly the estimation step (chapter 4), and
forecasting step (chapter 5), in the following sections we will look
at 1dentification and diagnosis steps with application to some data sets

to be able to understand this methodology well.

6.1 identification

The first stage of the analysis of time series is to identify the initial
model appropriate to the observed time series data. The meaning of
identification is to choose the rank of the three parameters (p.d.q),
where d represent the order of differencing needed to make the series

stationary, p represent number of past observations that should be
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included 1n the 1nitial model, 1.e. the autoregressive order. Whereas, g
represent number of white noise terms to be included in the initial

model, 1.e. the moving average order.

Application of Box and Jenkins methodology requires in addition to
the theoretical foundations, skill and experience and some amount of
personal judgment of the researcher. Here are some important points

regarding the application of this methodology:

a) In this stage selection of the initial adequate ARIMA(p.d.q)
model for the time series 1s governed by theoretical and scientific

foundations, and the skill of the researcher and his ability to judge
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how the data characteristics 1s compatible with the characteristics
of the random process that may have produced this data set.
b) The selected model 1n the initial stage 1s not final and may be
modified or improved, or even to reach to a completely different
model 1n the advanced stages of study and analysis.
c) Inthis stage, the researcher might arrive to different appropriate
models, he has to carry these models with him for further stages of
analysis hoping that at the end he will keep the best model capable
of representing the characteristics of the time series data set he i1s
analyzing.

6.1.1 Determine the rank of differences (d)
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We mentioned earlier that most of the time series data that arise iIn
the various application fields might show signs of non-stationarity

either in the mean, the variance or in both.

In fact, non-stationarity may occur in several ways. We have earlier
mentioned that judging the stationarity of certain time series by
examining the roots of the characteristic equation ¢(B) = 0. If the
roots of this equation lie outside the unit circle, it means that the series

IS stationarity, In which case the autocorrelation function decrease

rapidly with increasing time lags. However, If a root Is located on

the unit circle, it means that the process or the series is not stationarity
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but homogeneous. This kind of non-stationarity is the characteristic of
most of the actual time series that arise in practical applications. It can
be converted to a stationary series using the mathematical

transformations we have seen before.

Now, how to determine appropriate value of d in order to convert non-
stationarity series in the mean to a stationary one? In fact, the first thing
to check before determining the value of d Is to check the stationarity
of the series variance, by checking the time scatter plot of the original
series y,. If the variance is not stable, it must be made stationary
by taking logarithms of the original series. Usually logarithms succeed

In stabilizing the variance, but in some cases we may need to use
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another transformation such as square root or cubic root or any other

transformation. After that, to determine the value d we follow the

following steps:

® Plotting time curve of the original series y;, and the sample
autocorrelation function (SACF) 7, (the correlogram). If the time curve
does not show obvious signs of existence of trend, and r;, decrease
rapidly to zero as time lag increase, then the series iIs considered
stationary and we do not need to take any differences, i.e. letd = 0, and

move on to deciding the values of p and g.
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®|f thetime curve shows lack ofstationary in the mean and
the SACF decay slowly with increasing time lag, then we must take
the first differences of the time series, and then again plot the time
curve, and the correlogram for the series of first differences, z;. If
both shows no sign of non-stationarity, then we let d = 1, and move

on to deciding the values of p and g.

® |f the time curve of the series z; still shows lack of stationary in
the mean, and the SACF decay slowly with increasing time lag, then
we must take the second differences of the time series, and study the

transformed series in the same manner as above.
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® Usually small values for d, like d = 0,1,2 are enough to make
the time series stationary In most practical applications. Also,
you should pay attention to the seriousness of taking unnecessary
differences, although taking differences of a stationary series also

produces stationary series, however, this process of over differencing

leads to:

(1) a model that contains unnecessary additional parameters,
(2) a more complicated auto-correlation pattern,

(3) Increases the variance of the series.

Example:
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consider the following series:

YVt = &t
Where {&;} is the white noise process. Discuss the stationarity of

the series, and then take the first differences of the series, and again

discuss the stationarity and the variance of the differenced series.

solution:

As we note the original series y; Is exactly the white noise process,
which, as we know, is stationary, and have no parameters, and has auto-

correlation function equal to zero for all time lags k > 0.

Now let's take the first differences transformation of the process vy;:
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Zt = VY = Ve = YVe-1 = & — &1
Thus we see that the resulting model is the moving average model
of order one, with parameter 6 = 1, which, of course does not fulfil
the invertibility condition, butit 1is stationary, because all
the moving average models are stationary.Thus by this
transformation we have complicated the model (from the simple
white noise model to non invertable MA(1) model). The variance

of the original model is:
var(y,) = var(g;) = o/

and the autocorrelation function is:
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Now the variance of the transformed model is:
var(z,) = var(g,) + var(g,_,) = 20

This means that the transformation has made the variance increase

to double the original variance.

The autocorrelation function is:

Pk =11+ 62 =
0. k>1
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so we note that the degree of complexity of the correlation function

has increased after transformation.

6.1.2 determine the order of the moving average and
autoregressive models

After determining the necessary differences to render the series
stationarity (and before thatdetermining the need to take
a logarithmic, or asquare-root or other transformations to
stabilize the wvariance), one must determine the order ofthe

autoregressive and the moving average parts of the
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model. The autocorrelation function and the partial
autocorrelation function are the most effective tools in
distinguishing between AR(p), MA(q) or ARMA(p, g) models and
determining the order ofeach ofthem. We here recallthe
theoretical forms of these functions for the AR(p), MA(q) or
ARMA(p, q) models:

Model Pk Dk
Approach zero Cut off

AR(1) exponentially or completely after

in a sinusoidal . :
the first time lag
manner
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Approach zero

Cut off

AR(2) exponentially or | completely after
in a sinusoidal the second time
manner lag
Approach zero
AR(p) exponentially or compcllel‘fe?;fa fter
in a sinusoidal time lag p
manner
Cut off completely Approach £ero
MA(1) after the first time e.xpon.entlal.l y or
lag in a sinusoidal
manner
Approach zero
MA(2) Cut off completely |exponentially or in
after the second 1 sinusoidal
time lag manner
MA(q) |Cutoffcompletely | Approach zero

after a time lag g

exponentially or in
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a sinusoidal
manner

Gradually Gradually
approaching zero | approaching zero
ARMA(p. q)| after (q — p) lags | after (p — q) lags
exponentially or | exponentially or

in a sinusoidal in a sinusoidal
manner manner

The characteristics of the autocorrelation and the partial
autocorrelation functions mentioned in the table above are the
theoretical characteristics of the stochastic process, but, as we
know, there exist differences between the theoretical
characteristics of the stochastic process that generated the

observed time series (what is called in the field of statistics as
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population), and the properties of the observed time series (what
is called the sample) because of the sampling errors. Anyway, if the
length of the series (sample size) is large, then we expect that the
sample autocorrelation function 7, will reflect approximately the
characteristic of the theoretical autocorrelation function p,, the

same is true for 1, and ¢.

To explain this, let’s consider that sampling is from a MA(2)
process, where in this process the autocorrelation function p; is
characterized by complete cut off after time lag 2, as in figure (a)

below, however, the sample that might result from such processes
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might not produce an estimated autocorrelation function 7;, that

cut off exactly after time lag 2, see figure (b),

0.44

0.4-

0.3+

0.2

0.1+

T N O

0.0

b) theoretical autocorrelation function p,, for

MA(2) model a) sample autocorrelation function r;, for

MA(2) model

This means that the sample generated from MA(2) process might

produce an estimated autocorrelation function with two large
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values at time lags one and two, together with small
autocorrelations (but do not exactly equal zero) at other time lags,
but, we might consider them equal to zero. So, how do we formally
test that these coefficients do not significantly differ from zero? To
answer this question, we recall the results deduced by Bartlet

(1940) where it was shown that one can use the test statistic

zZ = SEZ’; ) to test that the function p;, cuts off after a certain number
k

of lags, g, for instance. We can infer this statistically by testing the
significance of the coefficients of p, after lag g. The initial

impression we got from figure (b) is that the theoretical
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autocorrelation function might take the form in figure (a), in this

case, to ascertain this first impression is to test the hypothesis:
Hy:p3 =0 vsS Hy:p3 #0

If H, is accepted, then we have to test,
Hy:po =0 vs Hi:py #0

If H, is accepted, then we have to test p-, and so forth.

Usually, the results of the tests are clear by simply comparing 75,
with double the standard error without the need to calculate the

test statistic z, where we reject Hy: p;, = 0 if:
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With respect to the partial autocorrelation function, how can we
test the significance of its coefficients, i.e.,, how to decide on the
order of the AR(p) model? To answer this question we refer to the

results deduced by Anderson and Quenelle, where one can use the

T'kk _ Tkk

SE(rge)  1/vn

statistic z = = 1,.7/n  which follow approximately

the standard normal distribution to test the cut off point for the

function ¢, after any time lag. So, to infer statistically about the
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significance of the coefficients of ¢, after time lag p + 1, we have

the following hypothesis:
Hy: ¢, =0 vs Hi:ppp #0 ;k=p+1.p+ 2. ..

If these coefficients do not differ significantly from zero, then we
can accept the hypothesis that the theoretical function ¢, cut off
after time lag p, and hence we choose the right order of the AR(p)

model.

With regard to mixed ARMA(p,q) models, in fact the situation is
more complicated to identify their order than the pure AR (p) or
pure MA (q) models, but we just mention here that both the
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autocorrelation and partial autocorrelation functions decay

exponentially or in the form of sine wave functions.

Example:

The following data illustrate the autocorrelation and partial
autocorrelation functions for a time series with length 100

observations. Specify initial model suitable for the series:

k 1 2 3 4 5 6 7 8 9 10

Tk 0.405 -0.073 | 0.08 0.11 |0.092 | -0.09| 0.1 0.1 | -0.09 | 0.052
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Tk 0.405 0.32 0.24 -0.11 0.09 | -0.02 | 0.01 | 0.03 | -0.05| 0.03

Solution:

The autocorrelation function 1, seems to cut off after the first time
lag, thus, we first conduct a test for the significance of p; assuming
that the stochastic process generated the data is purely random,

that is a white noise process, i.e. ¢ = 0, thus for all time lags k, we

1 ,1
SE(TR) = \/;: mz()l k>0

So, to test the hypothesis:

have,
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Ho:pl = O Vs Hl:pl =+ O
We use the test statistic:

T 0.405

SE(ry) 0.1

Z

Hence, we reject Hj, and deduce that p; is significantly different
from zero, and that the stochastic process generated the series
cannot be a pure random process. The question now arises; can we
assume that all other autocorrelation coefficients do not differ

significantly from zero? To answer this question, we have to
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calculate the standard error of the process assuming the process is

MA (1), i.e.

1
SE(r;,) = ]Z 14272). k>1

2

1
j— - 2 —
~ Jmo [1+ 2 (0.405)2] = 0.115

hence, 2SE(r,) = 2(0.115) = 0.23 ;k > 1

By inspecting all estimated autocorrelation coefficients in the table,
we see that || < 0.23 for all values k=2,3,... , we see that

autocorrelation function cuts off after the first time lag which
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indicate that the MA(1) model is a tentative possible model for the

series.

Example:

The following data illustrate the autocorrelation and partial

autocorrelation functions for a time series with length 92

observations. Specify initial model suitable for the series:

k 1 2 3 4 5 6 7 8 9
Tk 0.66 042 | 029 | 0.19 | 0.09 | -0.01 | 0.01| 0.02 |0.01
Tik 0.66 0.39 | 0.01 | 0.02 | -0.01 | -0.03 | 0.02 | 0.01 |0.01

Solution:
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The partial autocorrelation function 7, seems to cut off after
the second time lag, thus, we first conduct a test for the significance

of ¢»,, assuming that the stochastic process generated the data is

AR(1), thus we have,

1
SE(rex) = |- =

So, to test the hypothesis:
HO:¢22 =0 vs H1:¢22 * 0

We use the test statistic:
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o2 039 .o
1T SE(ry,) 0104

Hence, we reject H,, and deduce that ¢, is significantly different
from zero, and that the stochastic process generated the series
cannot be AR(1) process, hence we assume it is AR(2), thus the

standard error for all time lags k > 2 is:

1 ’1

2SE (1) = 0.208 ;k > 2
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By inspecting all estimated partial autocorrelation coefficients in
the table, we see that |1, | < 0.208 for all values k=2, 3..., thus
there is evidence that it cuts off after the second time lag. Hence,
the AR (2) model seems a tentative possible model for the series,
especially that the autocorrelation function seems to decay

exponentially.

Example:

The following data illustrate the autocorrelation and partial
autocorrelation functions for a monthly time series of length was
400 months representing the number of car accidents occurred in

a city:
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k 1 2 3 4 5 6 7 8 9
Tk 0.85 0.45 0.28 0.15 | 0.10 | 0.06 |0.03]0.02]0.01
Ter | 0.85 0.61 0.45 0.40 | 0.30 | 0.20 |0.11]0.10|0.05

Specify initial model suitable for the series, if the series length was

400 months.

Solution:

Obviously, both autocorrelation and partial autocorrelation
functions do not seem to cut off after short time lags, which might
indicate that mixed model is suitable for modelling the data. Note
also that 7, start decay from r; not from r, which might indicate

that ARMA(1,1) model might be suitable to model the data, what
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support this choice is that behavior of 1, seems similar to MA(1)

behavior.

6.3 Diagnostics

Time Series model identified in the first stage depends on an
important theoretical hypothesis of the stochastic process that
generated the data set, and on the general form of the model and
the random shocks ¢;. This means that parameter estimates and its
statistical properties and inferences have no meaning unless these
assumptions are fulfilled, or at least cannot be rejected for the

available data set. Thus, investigating the appropriateness of these
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assumptions is a corner stone of studying and analyzing time
series. Such investigation is called model diagnostics, which can be
seen as a balance between theoretical assumptions the model is
based on and the practical output of the estimation stage.
Diagnostics is the third stage of Box-Jenkins methodology, after
initial identification of the tentative model and estimation of its
parameters, then comes the third stage of making sure that
estimated model comply with theoretical assumptions, or that at
least do not show a clear deviation from these assumptions. This
stage is the most serious and important stage of the analysis, as it

can assure us that the model is adequate and thus can be used for
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forecasting, or it might show that the model has to be modified
according to these diagnostics. In general, model diagnostics
depend on conducting several checks and tests, the mostimportant

dare.

1- stationarity analysis
2- invertibility analysis
3- residual analysis

4- fitting a lower model

5- fitting a higher model
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6.3.1 Stationarity Analysis

We have mentioned before that the conditions for stationarity
requires that the roots of the characteristic equation ¢p(B) =0
must all be outside unity circle. Therefore, in the estimation stage,
if the absolute value of each root is outside the unit circle then this
indicates that the process generated the observed series
is stationary, but if the absolute value of one root is close to 1, this
indicate the need totake additional differences, adjusting

the initial model Consequently.

Example:
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Assume that the identified and estimated model for an observed

time series is ARIMA (1,0,1), that is, it has the form:

(1-¢1B)y: = (1-60,B)¢,

[f the parameter ¢; does not differ significantly from 1 , then the

model can be re - written in the form:
(1-B)y; = (1-6,B)¢;
or,
2y = (1-6,B)¢g,

Where,
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ze = (1= B)y: = Yt — V-1

This process is stationary, which means that the model

ARIMA (0,1,1) or IMA (1,1) may be better than ARIMA(1,0,1) to

model the time series.

Example:

After initial estimation of the model ARIMA (2,0,1) for time series

data v;, it was found that one of the roots of the characteristic
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equation ¢ (B) = 0 is near to 1. Suggest a better model for the data

than the initial model.

solution:

The original model is (1 —¢,B — ¢$,B%)y; = (1-0,B)s; , and
since one of the roots of 1 — ¢,B — ¢»,B% = 0 isnear to 1, then the

original model could be written as:

(1-B)(1—¢1B)y. = (1-6,B)¢;

Which means that the series is not stationary, thus;

(1—¢1B)z, = (1-6,B)s,
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is a stationary process, this means that the model ARIMA(1,1,1)
might be a better model than the original ARIMA (2,0,1) model.
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6.3.2 invertibility analysis

We have mentioned the importance of invertibility condition for
time series models, and thus it is very important to examine the
estimates of the moving average parameters to check that the
invertibility conditions are satisfied. These conditions are that the
roots of the equation 6 (B) = 0 should all be outside the unit circle.
However, if one root was near to one, then this might indicate we

have taken extra unnecessary differences.

Example:
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Assume that the identified and estimated model is

ARIMA(1,1,1), i.e. has the form:

(1—¢1B)z; = (1-0,B)¢e;

where,

Ze =Y — Ye-1 = (1 = B)y; (D
assuming that the value of the parameter 6, does not differ

significantly from 1, this means:

(1-¢1B)z; = (1 — B)e;

or,
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(1-¢1B)(1 = B) 'z, = & (2)

Substituting from (1) into (2):

(1-¢1B)y: = &
Which means that the model ARIMA(1,0,0) may be better than the
original model ARIMA(1,1,1) in modeling the time series.

Example:

After initial estimate of the model ARIMA (1,1,2) for the time
series data, it was found that one of the roots of the equation
¢(B) = 0isnear to 1. Propose an alternative model that might be

a better fit to the data than the original model.
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Solution:

The original model is (1—¢,B)(1 —B)y, = (1 —0,B — 0,B%) &

As one of the roots of the equation 1 — 6,8 — 8,8 = 0 is near to

1, then the model could be written as :

(1-¢1B)(1 —B)y, = (1 —B)(1-6,B)¢,

or,

(1—-¢1B)y, = (1-6,B)¢;
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which means that the model ARIMA(1,0,1) might be better in
fitting the data than the original ARIMA(1,1,2) model.

6.3.3 Residual analysis

[f the model that was chosen in the first phase truly represents the
characteristics of the random process that generated the time
series at hand, then the residuals resulting from the estimation
phase should fulfill the theoretical assumptions postulated for the
random shocks ¢, or at least, these residuals do not show serious
deviations from these assumptions, the most serious one being “c;

are not correlated”.
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If we assume that &,.¢,..... £, represent the residuals after fitting
the initial model to the available time series observations, and this
model was a good fit for the data, then the model residuals should
not show any patterns or regular movements that can be predicted,
in other words, the residuals should reflect the main characteristics

of the variables ¢;, which are:

1- random variables

2- with zero mean

3- and a constant variance

4- and follow the normal distribution

5- and are uncorrelated
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For checking these assumptions, we have to plot the residuals as a
time series, check the autocorrelation function for the residuals &,
plot the histogram for the residuals, conduct some non-parametric
tests for checking the randomness and normality of the residuals
and that their mean is not significantly different from zero, use the
modified Box-Pierce statistic. We will go through these steps in

some detail in the following sections.

6.3.3.1 Plotting the residuals
The first and most important step in the residual analysis is to plot

the residuals graphically, where the horizontal axis represents time
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and vertical axis represents residuals £;.This is a vital and
irreplaceable step, as it can reveal the principal features of the
residuals such as the trend, the variance, and outliers if they exist,
in such a way even the statistical tests might not be able to reveal.
If the initial model was adequate, then this means that it can
accommodate all the patterns and the regular movements in the
time series data, leaving residuals free of any pattern, thus the
residual plot should show them oscillating with a constant variance
around the vertical line passing through zero. Also, this plot should
be looking random and free of any information that can be used in

forecasting the time series.

420



time

6.3.3.2 Randomness of the residuals
The randomness of the residuals is tested by Runs test around zero,

which is one of the non-parametric tests, the command to perform

the test in MINITAB is:
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MTB > RUNS 0 Ci

where the column Ci that contains the estimated residuals.

6.3.3.3 Test that the residuals mean is equal to zero
The hypothesis that we test here is:
Hy:E(e;,)) =0 vs Hi:E(g) =0

Et

which is a two-tailed test and we use the test statistic u = e(i)
t

which has the standard normal distribution. So, at significance level

a = 0.05, we consider E(g;) =0, if ju| < 1.96 (assuming the

422



sample size is at least 30, which is satisfied in most time series

data). The command to perform the test in MINITAB is:

MTB > OneZ Cy:

SUBC> TestO

6.3.3.4 Constant variance
As mentioned in previous sections, plotting the residuals reveals
important issues, including whether the residual variance is

constant or not. If the variance is constant, the plot will
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approximately reveal this point. If we observe increasing or
decreasing variance in the residual plot, then we must return to
the original series and use some transformation to try to stabilize

the variance, and analyze the data again.

6.3.3.5 Autocorrelation function of residuals
If the errors ¢; are purely random variables, then the estimated
residuals &, must reflect this fact, thus the autocorrelation function

must be free of any spikes, that is, all the autocorrelation
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coefficients ought to be small in order to accept that the
corresponding theoretical coefficients are not significantly
different from zero. We check every autocorrelation coefficient
separately, thus we have to check the sampling distribution of
these coefficients. Anderson (1942) have shown that if the model
was appropriate, then the autocorrelation coefficients for large and

medium sample sizes are uncorrelated and follow normal

. . o _1
distribution with standard deviation n~ /2. Hence, the

autocorrelation coefficient of the residuals at a certain lag that fall
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outside the interval + 2/+/n support that the corresponding

theoretical coefficient is significantly different from zero.

In spite of the simplicity of conducting this test, however the

. . 1. .
approximate variance — is greater than the actual variance for the

autocorrelation coefficients at small lags. Thus, if the
autocorrelation function is free of any spikes, then this is an
important indication that ¢; represent purely random variables,

however it is not sufficient, as some autocorrelation coefficients at

small lags might be inside the interval + 2/+/n but actually the

corresponding theoretical coefficient is significantly different from
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zero if compared to the true standard deviation which is less than
1/~+/n . This means that it is not sufficient to plot the autocorrelation

coefficient with the interval limits + 2/+/n to conclude that &, are
random, but we have to conduct further checks and tests to assure

that these variables are random.

In fact, the results and outcomes of the estimation stage and
calculation of the autocorrelation function for the residuals
remains particularly important, even if these results do not
support that the model is appropriate because the spikes noted in

the autocorrelation function might be used to adjust the initial
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model. For example, if the autocorrelation function of the residuals
shows a spike at the first time lag, this may be an evidence for the
need to add a moving average parameter to the initial
model especially if the partial autocorrelation function of
the residuals behaves in an exponential function shape. Suppose

for example that the initial model we have chosen for the series y;

is an MA (1) which has the form:

yr = &—015-1 = (1-6,B)e;
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If we assume that examination of the autocorrelation function of
the residuals show that the errors are not random, but follows

the MA (1) model as well, then,
& =a; —ca_, = (1 —cB)a;
where {a; } is a white noise process. Substituting for &, we get:
Ve = (1-6:B)(1 — cB)a;
=a; —01a;1 — 030,
where,

0 =(06,+c) ;0;,=—cO,
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This means that {y;} follow MA(2) and not MA(1), in which case we
have to go back and fit an MA(2) for the time series, estimate its
parameters and perform diagnostic checks again to make sure

it fits the data well.

On the other hand, ifthe autocorrelation function of
the residuals decreases exponentially, or gradually approaching

zero interchanging in sign, then the original initial model

MA(1) may need the inclusion of an autoregressive
parameter, especially if the partial autocorrelation function of the

residuals completely cut off after the first time lag. In this case,
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the initial model is modified to the ARMA (1,1) model, fitting it to
the time series, estimate its parameters and perform diagnostic

checks again to make sure it fits the data well.

6.3.3.6 Modified Box and Pierce statistic

Checking every coefficient of the autocorrelation function of the
residuals is an important indication of the appropriateness of the
model assumptions, the most important assumption is the
randomness of the &; variables. But, it is not sufficient to just

perform this diagnostic for two reasons. First - which we have
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mentioned above- that there exist some difficulties at small time
lags that lead mistakenly to consider a theoretical autocorrelation
coefficient at a small time lag not significantly different from zero,

when in fact it differs significantly from zero if we used the true
. . . . 1
variance instead of the approximate variance — The second reason

is that some spikes might exist especially at large time lags, but the
model is still considered appropriate, since the randomness of the
variables ¢; does not prevent existence of some large coefficients in

the sample (because the estimated residuals &; are considered as a
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sample from the process {¢; }), upon which we may accept that the

corresponding theoretical coefficients are different from zero.

For these reasons it is necessary to examine the appropriateness
of the model using a different philosophy. Instead of checking

every autocorrelation coefficient r¢, (j) separately, it is possible to

check that a group of coefficients all together are equal to zero.
Suppose that we denote the first & terms of the residual

autocorrelation coefficients as 73 (1),7;,(2),...,7¢,(k) resulting

from fitting ARMA(p,q) model to the series y;, Box and Pierce
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(1970) proposed a test such that if the fitted model is appropriate
then the statistic:

k

Q=n ) r2()

j=1

has, for large sample sizes, a y* distribution with (k —p — q)
degrees of freedom. Thus if some coefficients are not sufficiently
close to zero, then ( tends to be large. In general, we do not reject
the randomness of the autocorrelation coefficients -or
equivalently- the appropriateness of the model if calculated value

of Q is less than the tabulated y2 where,
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PXG—p-q) > Xa| = @
a is the significance level. The value of k is subjective and is chosen
by the analyst, the power of the test decrease as k increase. The
statistic 0 works well if the sample size is large or moderately large,
however for small sample sizes it's power decrease. For small
sample sizes the approximation of Q by the y? distribution is not
good, for this reason Ljung-Box introduced a modified statistic in

the form:

—n(n+2)z(n =5
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which has a better approximation to the y? distribution with

(k —p — q) degrees of freedom.

Example:

The following table shows the first 12 autocorrelation coefficients
for the residuals resulting from the fitting ARMA (1,1) model for a

time series of length 100 observations.

k 1 2 3 4 5 6 7 8 9 10 11 12

re, (k) | 0.03 | 004 | -03 | -0.1 | 0.01 | -0.03 | 0.02 | -0.05 | 0.3 | 0.1 | 0.08 | -0.1
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1-Test the significance of each theoretical correlation coefficient
(i.e. that it is different from zero at each time lag).

2-Test the appropriateness of the model using Box-Pierce
statistic.

3-Test the appropriateness of the model using modified Ljung-
Box statistic

Solution:

. 11
1-We first calculate the standard error AT 0.1, and hence

2 —

Vn

comparing each correlation coefficient with this interval, we see

the approximate 95% confidence limits are + +0.2 , then
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that p.(3) and p.(9) are both significantly different from zero at

significance level 5%.

2- Box-Pierce statistic:

k

Q =n ) r2(j) = 100[(0.03)% + (0.04)? + - + (~0.01)?] = 22.28
=1

and since the tabulated value is y§ ,c ;, = 18.3, thatis Q > yZ, then

we say that there is some doubt about the appropriateness of the

model.

3- Modified Ljung-Box statistic:
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Q* —n(n-I—Z)Z(n =

(0032 (0042 (<00
99 i 98 T

= 100(102)

)]—2433

and since the tabulated value is y§ . 1, = 18.3, that is Q* > y72,
then we say that there is some doubt about the appropriateness of

the model.

Example:
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The following table shows the first 10 autocorrelation coefficients
for the residuals resulting from the fitting ARMA (0,2,1) model for

a time series of length 123 observations.

k 1 2 3 4 5 6 7 8 9 |10

re, (k)| 0.01 | 0.02 | -0.01 | -0.10 | 0.10 [0.01| 0.02 |0.04|0.03|0.1

Test the appropriateness of the model using Box-Pierce statistic.
Solution:

Since the model used a difference of order 2, then we lose two
observations from the series, hence the effective number of

observations is:
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n* =123 -2=121
Hence,
0 =121[(0.01D)? + (0.02)? + ---+ (—0.1)?] = 4.0656
the tabulated value is )((2)_05’9 = 16.9. Because Q < yZ , we deduce
that there is no non-random pattern in the first 10 autocorrelations
of the residuals, and hence the model is appropriate for the

observed time series.

6.3.5 Fitting the lower order model
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We have mentioned previously that the identification stage
depends partially on personal judgment of the researcher, as
testing the cut off points of both the autocorrelation and partial
autocorrelation functions depend on the used significance level,
where large significance levels are used for small time lags, and
small significance levels for larger time lags. Sometimes the model
might contain a parameter of large order, then simplification of the
model, i.e. fitting the next lower model is achieved by dropping the

largest order parameter from the model.
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Thus, it is necessary to perform some additional checks apart from
the residual analysis and the estimation stage outcomes. We must
study whether the lager order parameter is significantly different
from zero by comparing this parameter estimate with double its
standard error. If it is less than double of the standard error, then
it is preferred to omit this parameter from the model. But before
omitting the parameter one must investigate the correlation of the
parameter estimate with all other parameter estimates. If we
notice existence of strong correlation, then this is a good indication
that the model can be further simplified, and thus fitting a lower

order model is justified. It is important to subject the reduced
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model for all diagnostic tests and checks to make sure the other
parameters could compensate for the effect of dropping the higher

order parameter.

6.3.6 Fitting the higher order model

We can also answer the following question: Can the model
efficiency be improved by adding an extra parameter? for example
if the original model we have found suitable for the data is an
MA(1) then, one can add an extra moving average parameter to this

model, and hence fit an MA(2) model to the data, and study the
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improvement in the diagnostic checks of the model, also study the
significance of the added parameter €,, and the correlation
between 0, and 6. If it is found that the added parameter 6, is not
significant, or that the correlation between 6, and 0 is large, then
we have to drop the added parameter 6,, and just keep the original

model MA(1), and vice versa.

Of course, one could have added an autoregressive parameter ¢,
to the original model], i.e. fit the model ARMA(1,1) to the data and
study the efficiency of adding the parameter ¢, in the same

manner.
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What we want to emphasize here, is that testing of omitting or
adding some parameters depend to a high extent on the experience
of the researcher and his personal judgment, that’s why we say that
the identification and diagnostic checks are the most important
stages in the modern time series analysis, and are the vital steps in

getting trustable forecasts.

6.4 Practical example of time series analysis
The following time series represent a count of the number
homicide cases recorded in Australia during 1915-1993, it

represents the rate number of yearly homicide for every 100000.
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Analyze these data, write a full report about your findings, use the
proposed model to forecast rate of homicide cases for the next five

years.
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6.4.1 General form of a data analysis report

Introduction:

We have a time series data that represent rate number of yearly
homicide for every 100000 recorded in Australia during 1915-
1993. Since the data are recorded serially over the years, then we
would expect them to be correlated over time. Thus we can study
the autocorrelation structure of the data to see how it behave, and
based on this structure we can develop a mathematical model that
can describe how the rate number of homicide develop over time

in Australia, we will also use this developed model to forecast the
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rate of homicide in the next five years, and construct a 95%

confidence limits for these forecast.

Data description:

Figure (1) shows rate number of yearly homicide for every

100000 recorded in Australia during 1915-1993:
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Time Series Plot of homoscide
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Figure (1): rate number of yearly homicide for every 100000 recorded in Australia during 1915-1993

From figure (1) we notice that the data seems to be stationary in

the mean as we do not notice any long term increase or decrease in
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the series, the series oscillate around the mean (the value 0.5149).

We also, do not notice any seasonal pattern in the data, or any

outliers.
a)The autocorrelation function of the data:

Figure (2) shows the autocorrelation function of the data:
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Autocorrelation Function for homoscide
(with 5% significance limits for the autocorrelations)
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Figure (2): autocorrelation function of rate number of yearly homicide

for every 100000 recorded in Australia during 1915-1993

452



We notice that the autocorrelation function takes the form of an
exponential decay function, this is a common feature of the

autoregressive models.

b)  Figure (3) shows the partial autocorrelation function of the

data:
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Partial Autocorrelation Function for homoscide
(with 5% significance limits for the partial autocorrelations)
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Figure (3): Partial autocorrelation function of rate number of yearly homicide

for every 100000 recorded in Australia during 1915-1993

We notice that in the Partial autocorrelation function two

values at time lags k = 1.2 seems to differ significantly from
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zero, also we can imagine that the function takes the form of an
exponential decay function. Thus, from the structure of the
estimated autocorrelation and partial autocorrelation
functions of the data we can propose that the models AR(1),
AR(2), or ARMA(1,1) are potential models to describe the
evolution of the rate number of yearly homicide for every

100000 recorded in Australia during 1915-1993.

Fitting proposed models:
(i) Autoregressive model of order one AR(1):

We obtained the following results when fitted the AR(1) model:
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Type Coef SE Coef T P

AR 1 0.4385 0.1024 4.28 0.000
Constant 0.28923 0.01126 25.68 0.000

Mean 0.51514 0.0200606
Number of observations: 79
Residuals: SS = 0.771700 (backforecasts excluded)

MS = 0.010022 DF = 77

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 30.8 37.8 50.1 73.7
DF 10 22 34 46
P-Value 0.001 0.019 0.037 0.006

As we note from the table, the parameter estimates are

significant (i.e. they differ significantly from zero), thus have to
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be kept in the model. Looking at the p_value for the estimated
model parameter ¢, = 0.4385, which we use to test the
hypothesis Hy: ¢, = 0 vs H;: ¢4 # 0, since the p_value equal to
0 (less than 5% or 1% whatever we used), then we reject H,
and conclude that that ¢, should be kept in the model. Now
looking at the result of Ljung-Box statistic, which is used to test

the hypothesis:
Hy:py=--=pr=0 Vvs Hj:atleasttwo # 0

This hypothesis test that residuals of the fitted model up to time

lag k are uncorrelated, hence in case we accept H, we will
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deduce that the model is suitable to the data. But from the table
above, we note that all p_values for any k are less than 5%,
hence we reject H, and deduce that the model is not
appropriate for modelling all the autocorrelation structure in
the data. We can also plot the autocorrelation and partial

autocorrelation functions of the residuals to check this point;
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Partial Autocorrelation Function for RESI1
(with 5% significance limits for the partial autocorrelations)

Autocorrelation Function for RESI1
(with 5% significance limits for the autocorrelations)
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Figure (4): autocorrelation and partial autocorrelation functions of the residuals of AR(1) model

As we note from figure (4), the autocorrelation function shows

that some autocorrelation in the residuals at lags k=2,4 still

exists, which means that the model couldn’t model them

properly. The same comment for the partial autocorrelation

459




function, as it seems that some autocorrelation structure is still
not accounted for by the AR(1) model, hence we move to the

next proposed model.

(ii) Autoregressive model of order two AR(2):

We obtained the following results when fitted the AR(2) model:
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Final Estimates of Parameters

Type Coef SE Coetf T P
AR 1 0.2937 0.1083 2.71 0.008
AR 2 0.3312 0.1087 3.05 0.003
Constant 0.19334 0.01071 18.06 0.000
0.

Mean 0.51535 02854
Number of observations: 79
Residuals: SS = 0.088118 (backforecasts excluded)

MS = 0.009054 DF = 76
Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 11.6 22 .5 32.77 51.1
DF 9 21 33 45
P-Value 0.234 0.371 0.484 0.245

As we note from the above table, all parameters included in the

model are significantly different from zero and hence have to be
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retained in the model. Also, the p_values for testing the hypothesis
Hy:py = p, =+ = py = 0 are not significant for all values of Kk,
hence we accept H, and deduce that the model is tentatively
appropriate for the data. Plotting the autocorrelation and partial
autocorrelation function for the residuals of the AR(2) model, we

get:
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Figure (5): autocorrelation and partial autocorrelation functions of the residuals of AR(2) model

As we note from figure (5), the residuals of the AR(2) model are
much better from those of AR(1) as they do not show any

unexplained autocorrelation structure in the residuals.

Now, we have to perform the diagnostic checks to verify whether the

model residuals fulfill the assumptions of the white noise process &;,
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where as we know, &; are actually estimates for the terms of the
white noise process. The following figure shows results of diagnostic

checks of the model residuals:
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Figure (6): Diagnostic plots for the residuals of AR(2) model

a) Residuals follow the normal distribution:

Checking figure (6), we note that the probability plot shows
percentiles of the residuals that agree to a high extent with those of
the normal distribution, also the figure shows the result of applying
a non-parametric test for goodness of fit, the Anderson-Darling test

for the hypothesis:

Hy:residulas of the model follow Normal distribution
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The P_value of the test is 0.780, which means the acceptance of H,.
Also, note that the histogram of the data resembles to a good extent

the normal histogram.
b) Variance of the residuals is constant:

The plot at the top right hand side of figure (6), shows residuals
against the estimated fitted values, which indicate that the variance

is constant and does not change with time.
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c) Mean of the residuals is zero:

We can conduct a t-test for testing the hypothesis that residuals
mean is zero, the MINITAB output provide us with the following
output:

One-Sample T: RESI3

Test of mu = 0 vs not = 0

Var N Mean StDev SE Mean 95% CI T P
RESI3 79 0.0006 0.093%924 0.010567 (-0.020460, 0.021615) 0.05 0.957

Since the P_value of the testis 0.957, which means the acceptance of

the zero mean hypothesis of the residuals.

467




d) Randomness of the residuals:

Using the Runs test, which is a non-parametric test for testing the
hypothesis that the residuals are random versus that they are not

random, the MINITAB provide us with the following results:

Runs test for RESI3
Runs above and below K = 0

The observed number of runs = 40
The expected number of runs = 40.4937
39 observations above K, 40 below
P-value = 0.911

Since the P_value of the test is 0.911, which means that we accept

the hypothesis of the residuals randomness.
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e) Residuals are uncorrelated:

We have already mentioned the result of the Ljung-Box test, which
in fact is a test for the uncorrelation of the residuals, and we have

accepted this hypothesis.
e Stationarity analysis:

The estimated values of the model parameters are:
¢, = 0.2937. ¢, = 0.3312, and applying the stationarity
conditions for this model:

Q) |¢, <1=10.3312| <1
() ¢+ ¢, <1=0.2937 + 0.3312 = 0.6249 < 1
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(iii) ¢, — ¢p; <1 = 0.3312 —0.2937 = 0.0375 < 1

So the estimated parameters of the model satisfy the stationarity

condition.

Hence, we note that the AR(2) model has passed all diagnostic
checks, and thus we conclude that it is suitable to model rate number
of homicide cases in Australia during 1915-1993, and the form of the

model is:

Y, = 0.19334 + 0.2937 Y,_, + 0.3312Y,_, + &,

Where, Y; is rate number of homicide cases at year ¢, and the

variance of the white noise process ¢; is estimated as
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MS = 0.009054.

(1ii) As previously mentioned, ARMA(1,1) model was a tentative
model for our data, thus we are going to fit it and see how good it is

for modelling the rate number of homicide cases in Australia.

The results of applying this model to the data in MINITAB is shown

in the following table:

Final Estimates of Parameters
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Type Coef SE Coef T P

AR 1 0.9384 0.0603 15.56 0.000

MA 1 0.6959 0.1234 5.64 0.000

Constant 0.0317 0.00319 9.94 0.000

Mean 0.51579 0.05191

Number of observations: 79

Residuals: SS = 0.649709 (backforecasts excluded)

MS = 0.008549 DF = 76

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 10.0 17.9 26.5 42.1
DF 9 21 33 45
P-Value 0.348 0.654 0.782 0.594

As we note from the above table, all parameters included in the

model are significantly different from zero and hence have to be

472



retained in the model, as all P_values of the parameters ¢, ¢, and
the constant ¢ are all equal to zero. Also, the result of the Ljung-
Box test indicate that the model is adequate for the data since all
the p_values are larger than o = 0.05. In addition, the parameter

estimates fulfill the stationarity and invertibility conditions.

Model diagnostics:

The following figure shows results of diagnostic checks of the

model residuals:
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Figure (8): Diagnostic plots for the residuals of ARMA(1,1) model
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From figure (8), it is evident that the residuals follow the normal
distribution , and that their variance is constant and do not change

with time. The rest of the diagnostic checks are as follow:

(a) Mean of the residuals Is zero:
We can conduct a t-test for testing the hypothesis that residuals mean

IS zero, the MINITAB output provide us with the following output:

One-Sample T: RESI1

Test of mu = 0 vs not = 0

Var N Mean StDev SE Mean 95% CI T P
RES 79 0.001949 0.091246 0.010266 (-0.01848, 0.02238) 0.19 0.850
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Since the P_value of the test is 0.850, which means the acceptance of

the zero mean hypothesis of the residuals.

(b) Randomness of the residuals:
Using the Runs test, which is a non-parametric test for testing the
hypothesis that the residuals are random versus that they are not

random, the MINITAB provide us with the following results:

Runs Test: RESI1

Runs test for RESI1

Runs above and below K = 0

The observed number of runs 38

The expected number of runs 40.3418

42 observations above K, 37 below
P-value = 0.594
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Since the P_value of the test is 0.594 which means that we accept the

hypothesis of the residuals randomness.
(c) Residuals are uncorrelated:

We have already mentioned the result of the Ljung-Box test, which in
fact is a test for the uncorrelation of the residuals, and we have accepted
this hypothesis. Plotting the ACF and PACF for the residuals, we get:
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Figure (9): autocorrelation and partial autocorrelation functions of the residuals of ARMA(1,1) model

As we note, the ARMA(1,1) succeeded in modelling all the

autocorrelation structure in the data.

Figure (10): autocorrelation and partial autocorrelation functions of the first differences of the residuals of
ARMA(1,1) Model
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Hence, we note that the ARMA(1,1) model has passed all diagnostic
checks, and thus we conclude that it is suitable to model rate number
of homicide cases in Australia during 1915-1993, and the form of the

model Is:

Y, = 0.031771 + 0.9384Y,_, + &, — 0.6959 &,_,

Where, Y; is rate number of homicide cases at year t, and the variance

of the white noise process ¢; Is estimated as MS = 0.008549.

Since we have proposed two models that can successfully model the

correlation structure available in the data, hence we have to use some
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comparison criteria to choose the best model of the two, from these
criteria are:

a) Akaike information criterion (AIC):
This criterion is defined as:  AIC(m) = nln(62) + 2m

b) Bayesian information criterion (BIC):

This criterion is defined as: BIC(m) = nIn(62) + 2m In(n)

Where, m : number of estimated parameters
n: Is the number of available observations (if any
differences are taken, then it is the total number of observations after

the difference).
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62 1 is the estimated variance of the model residuals (or the
estimated variance of the white noise process)

Now, we summarize the results in the following table:

Model n | m 52 AIC BIC

AR(2) 79 2 0.009054 | -367.659 -354.1816

ARMA(1,1)| 79 2 0.008549 | -372.193 | -358.7155

Since the model to be selected is the one with the lowest value of the
comparison criterion, thus we see from the table that both criterion
select the ARMA(1,1) to model the homicide rate in Australia.
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Using the model to forecast the homicide rate in Australia for the next

five years:
The following figure shows the forecast the homicide rate in Australia

for the next five years:

) ) ) FIVE YEARS FORECAST FOR HOMOCIDE DATA
Time Series Plot for homoscide
(with forecasts and their 95% confidence limits) Variable
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Figure (11): forecast the homicide rate in Australia for the next five years using the ARMA(1,1) Model
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The following table shows these forecasts, together with a 95% C.1I.:

Table (1): Forecasting homicide rate for every 100000 capita in Australia

for five years using ARMA(1,1) model

Year L(_)w_e ' Forecast U_pp_er
limit limit
1994 | 0.366362 |0.547620 |0.728877
1995 ]0.359149 |0.545659 |0.732170
1996 |0.352802 |0.543819 |0.734836
1997 10.347194 |0.542093 |0.736991
1998 | 0.342218 |0.540472 |0.738726

*Base year (1993) where homicide rate for every 100000 capita is 0.53395
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As we note from these results, that we expect the homicide rate to
Increase In 1994 to 0.547620 for every 100000 capita, then the rate

will start to decline in an average yearly rate of 0.30 %.
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Chapter seven: Seasonal Models

As we have seen in the previous chapters, the stochastic time series
models could successfully model the correlation structure in the
data. However, in case the data show a seasonal behavior, then the
model should incorporate a component that reflect such

seasonality.

7.1 Autoregressive seasonal models
Assume for example that we have a quarterly time series, then we
say that it follows a seasonal autoregressive model of order one if

we can express the current value of the series y; as a linear function
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of the value of the series at the same season in the previous year
Vi_s (here we assume S = 4) plus a random variable term &;, that
IS:

Ve = P1Yi—s + &

Where @, represent the seasonal autoregressive parameter, this

model is denoted as SAR(1).

In the same manner, we can add seasonal autoregressive

parameters to this model to get SAR(P), which can be expressed as:
(1 - ®,BS — ®,B% — ... — ®,BFS)y, = ¢

or,
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Ve = P1Ye-s + PoYens + -+ Ppyr_ps + &
[t can be proven that the autocorrelation function for the seasonal
autoregressive model is very much similar to the ACF of the usual
autoregressive model, except that the autocorrelation coefficients
appear at multiples of S, i.e. at the multiples of the seasonal period.
For example, for the SAR(1) model, with a positive parameter @,
and seasonal period length s =4, then the autocorrelation
coefficients will appear at multiples of the number 4, and will

gradually decline to zero, see figure (7.1).
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ACF for SAR(1) model with phi_1 = 0.5, S=4
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Figure (7.1): autocorrelation function for SAR(1), s=4

If we have SAR(1) model with seasonal period S=12, then the
autocorrelation coefficients will appear at multiples of the number 12

(i.e.at 12,24, 36,48, ..) .
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7.2 Moving average seasonal models
we say that a stationary time series follows a seasonal moving average
model of order one If we can express the current value of the series y;
as a linear function of the value of the random shock that occurred at
current time &; and the one occurred at the same season In the previous
year ¢;_. that Is:
Ve = & — 018

It could also be written as:

Ve =(1—0,B%)g
Where 0, represent the seasonal moving average parameter, this model

Is denoted as SMA(1). In the same manner, we can add seasonal moving
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average parameters to this model to get SMA(Q), which can be
expressed as:

v = (1 —0,BS — 0,B% — --- — 0,BY)¢,
or,

Ve = & — 0185 — 02625 — = Og&_gs
It can be proven that the autocorrelation function for the seasonal
moving average model is very much similar the ACF of the usual
moving average model, except that the autocorrelation coefficients
appear at multiples of S, I.e. at the multiples of the seasonal period. For
example, for the SMA(1) model, then there is only one non-zero

autocorrelation value that occur at a time lag that is equal to seasonal
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period, , see figure (7.2). For SMA(Q) models the number of non-

negative autocorrelation coefficients will appear at multiples of S.

ACF for SMA(1), with theta_1 =-0.8, S=4
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Figure (7.2): autocorrelation function for SMA(1)

7.3 Autoregressive Moving average seasonal models
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It Is possible to combine both the autoregressive and models in one
group, such models are expressed as:
O(B*)y: = O(B>)¢;
Where,
®(BS) = (1 — ®,BS — ®,B% — ... — @, BF)

O(B%) = (1 — ©,B° — ©,B% —--- — 0,B%)
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And the symbol used to denote such models is SARMA(P,Q). In case
the series was not stationary, then it is possible to apply the differences

operator to the series as follows:

®(B%) V¢ y, = O(B)e,

Where V£ represent the seasonal differences at the seasonal period S,
In this case we have the model SARIMA(P,D,Q), where,
P: the order of the seasonal autoregressive model

Q: the order of the seasonal moving average model
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D: number of seasonal differences to render the series to be stationary
at seasonal periods S.
It is possible as well to get a general form of the Box-Jenkins models
that incorporate both normal and seasonal terms, and it is sometimes
called “General multiplicative Box-Jenkins models”:

G(B)D(B%) V4 V2 y, = 6(B) 0(B*)¢,

It 1S abbreviated as,

SARIMA(p,d, q)(P,D, Q)s

Example:

Write the mathematical formula for the model SARIMA(0,0,1)(0,0,1)4.
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Solution:

We have the following values for the order indexes, g=1 Q=1 «S=4,
thus the model form is:

yve=(1-6,B)(1-— @134) Et

=V =& — 0161 — 0184+ 0,01&_5
7.3.1 some characteristics of the general multiplicative models
There are in fact very few general characteristics for the ACF and PACF
functions that could be used to identify the multiplicative seasonal

models. Table (7.1) shows some basic characteristics for ACF and
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PACF for some multiplicative seasonal models, which are used to try
to see If a specific multiplicative seasonal could be used to model the

data.

Model Pk Prk
Cut off
SARIMA(p,0,0)(P,0,0) completely
after the
= SAR(p, P) time lag
p+sP
Cut off
SARIMA(0,0,9)(0,0,Q) completely

after the
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= SMA(q, Q) time lag

q+sQ
Approach | Approach
SARIMA(p,0,q)(P,0,Q) Zero Zero

gradually | gradually

7.4 Example:

Data in table (7.2) represent amount of monthly produced electrical
energy in the United States during the period of Jan. 1985 —Dec. 2014.
Study this set of data, try to get a suitable mathematical model able to

model it. Use your chosen model to forecast the amount of monthly
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produced electrical energy for the year 2015. The actual monthly

production for 2015 is shown below:

Month Amount of produced electricity

1 399.96
400.26
401.52
403.26
403.94
402.80
401.30
398.93

0l | O V| B W N
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9 397.63
10 398.29
11 400.16
12 401.85

499




Table (7.2): amount of monthly produced electrical energy in the United States during the period
of Jan. 1985 —Dec. 2014

Month/year
12 11 10 9 8 7 6 5 4 3 2 1

345.82 | 344.4 |343.08 | 343.2 | 344.85 | 346.65 | 348.4 | 348.92 | 348.2 | 347.66 | 346.06 | 345.25 1985
347.15 | 345.86 | 344.47 | 345.01 | 346.09 | 348.11 | 349.9 | 350.53 | 349.77 | 348.05 | 347.13 | 346.54 1986
349.18 | 347.96 | 346.65 | 346.52 | 347.84 | 349.9 | 351.61 | 352.14 | 351.32 | 349.72 | 348.7 | 348.38 1987

351.44 | 350.15 | 349.08 | 349.03 | 350.66 | 352.58 | 353.68 | 354.18 | 353.66 | 352.24 | 351.68 | 350.38 | 1988
352.84 | 351.44 | 350.29 | 350.02 | 351.53 | 353.98 | 355.3 | 355.89 | 355.59 | 353.8 | 353.24 | 352.89 1989
354.27 | 353.05 | 351.59 | 351.28 | 352.89 | 354.88 | 356.32 | 357.29 | 356.28 | 355.65 | 354.88 | 353.79 1990
355.07 | 353.79 | 352.32 | 352.3 |353.89 | 356.12 | 358.1 | 359.09 | 358.51 | 357.06 | 355.68 | 354.87 | 1991
355.53 | 354.27 | 353.31 | 352.93 | 354.91 | 356.85 | 359.32 | 359.55 | 359 |357.82 | 356.93 | 356.17 1992
356.84 | 355.4 |354.12 | 354.1 |355.46 | 357.42 | 359.52 | 360.19 | 359.27 | 358.36 | 357.27 | 356.86 1993

358.87 | 357.56 | 356.09 | 355.63 | 357.42 | 359.39 | 360.8 | 361.68 | 361.32 | 359.91 | 358.98 | 358.22 1994
360.61 | 359.4 |357.97 | 358.11 | 359.11 | 361.7 | 363.22 | 363.77 | 363.23 | 361.77 | 360.79 | 359.87 1995
362.18 | 360.84 | 359.54 | 359.6 |361.38 | 363.53 | 364.93 | 365.16 | 364.51 | 364.17 | 363.17 | 362.04 1996
364.33 | 362.45 | 360.71 | 360.31 | 362.2 | 364.34 | 365.59 | 366.69 | 366.25 | 364.47 | 364.09 | 363.04 1997
367.08 | 365.52 | 364.35 | 364.01 | 365.79 | 367.74 | 368.95 | 369.49 | 368.61 | 367.13 | 365.98 | 365.18 1998
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1999

368.04 | 366.68 | 365.35 | 364.94 | 366.86 | 369.28 | 370.33 | 370.77 | 370.96 | 369.6 | 368.98 | 368.12
369.67 | 368.33 | 366.99 | 366.91 | 368.2 |369.84 | 371.71 | 371.51 | 371.82 | 370.56 | 369.5 | 369.25 | 2000
371.18 | 369.69 | 368.42 | 368.16 | 369.63 | 371.57 | 373.18 | 373.82 | 373.37 | 372.53 | 371.49 | 370.52 | 2001
373.71| 372.2 | 370.51 | 370.66 | 371.83 | 374 | 375.5 [375.65| 375 |373.94|373.14 |372.45| 2002
375.93 | 374.64 | 373.1 | 373.2 |374.31|376.72 | 378.18 | 378.5 |377.74 | 376.48 | 375.62 | 374.87 | 2003
377.45 | 375.93 | 374.44 | 374.11 | 376.15 | 377.61 | 379.56 | 380.63 | 380.41 | 378.73 | 377.87 | 377 2004
379.92 | 378.29 | 376.98 | 376.66 | 378.73 | 380.78 | 382.2 |382.47 | 382.2 | 381.14 | 379.76 | 378.47 2005
381.79 | 380.18 | 379.16 | 378.92 | 380.45 | 382.38 | 384.09 | 384.98 | 384.73 | 382.66 | 382.16 | 381.35 | 2006
383.89 | 382.42 | 381.14 | 380.9 | 382 |384.49 | 386.05 | 386.58 | 386.4 |384.56 | 383.81 [382.93| 2007
385.56 | 384.13 | 382.99 | 383.09 | 384.15 | 386.43 | 387.88 | 388.5 |387.16 | 385.97 | 385.73 | 385.44 | 2008
387.31| 386 |384.39|384.79 | 385.92 | 387.78 | 389.45 | 390.19 | 389.44 | 388.77 | 387.42 | 386.94 | 2009
389.73 | 388.65 | 387.2 | 386.83 | 388.26 | 390.22 | 392.15 | 393.04 | 392.52 | 391.09 | 389.94 | 388.5 2010
391.83 | 390.24 | 388.96 | 389.04 | 390.19 | 392.42 | 393.72 | 394.21 | 393.34 | 392.49 | 391.82 | 391.24 | 2011
394.28 | 392.81 | 391.01 | 391.06 | 392.41 | 394.3 | 395.82 | 396.78 | 396.18 | 394.45 | 393.6 [393.12| 2012
396.81 | 395.11 | 393.66 | 393.51 | 395.15 | 397.2 | 398.58 | 399.76 | 398.35 | 397.31 | 396.8 [395.54 | 2013
398.84 | 397.27 | 395.95 | 395.35 | 397.1 |399.04 | 401.2 | 401.88 | 401.34 | 399.62 | 397.93 | 397.81 | 2014

Solution:
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We start the analysis by plotting the time series for the amount of
monthly produced electrical energy. Figure (7.3) shows this time series,
It 1S evident that there is an upward trend in the total produced
electricity. Also, we note the clear seasonal component, beside that we
do not notice any change in variation of production over the years, so

we do not need to use any transformation to stabilize the data variance.
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Total electricity production in USA (Jan. 1985 - Dec. 2014)
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Figure 7.3: Monthly produced electrical energy in USA during1985 —2014

Surely, we will need to apply the differences operator to make the series

stationary in the mean, also it Is possible that we might need to take a
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seasonal difference of order 12 if the series is not stationary at the
seasonal periods, this will be apparent when we plot the autocorrelation

and partial autocorrelation functions.

Identification:

As mentioned above we need to take the ordinary differences of order

1, 1.e. z; = Vy,. We got the following ACF and PACF functions for z;:
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Figure 7.4: Autocorrelation and partial autocorrelation functions for the series z; = Vy;

Inspection of the estimated functions, we note that the autocorrelation
function decay very slowly to zero, also that the first partial
autocorrelation coefficient (0.83) is very large, this indicate that we

might need to apply a second difference to the series. Also, we notice
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that PACF coefficients at the seasonal periods (12, 24, 36,...) decay
slowly, which again would indicate the need to take a seasonal

difference at period s=12.

Figure (7.4) nominate an initial model SARIMA(2,1,0)(0,0,1)12 , also
following the notes in the previous paragraph, we applied a second
difference to the data, i.e. w, = V?y,, and obtained the following ACF

and PACF:
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Figure 7.5: Autocorrelation and partial autocorrelation functions for the series w, = V2y,

Inspection of the estimated functions in fig. (7.5), we note that the
autocorrelation function cuts off after the first time lag, besides that, the

partial autocorrelation function decay in an exponential format, this is
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an indication that the data might follow a moving average of order one
pattern. Also, that PACF coefficients at the seasonal periods (12, 24,
36,...) decay exponentially, and there exist a single significant value at
the seasonal period s=12, which again would indicate that the data
might follow a seasonal moving average of order one pattern . Thus

Figure (7.5) nominate the model SARIMA(0,2,1)(0,0,1)12 .

Fitting the tentative models:

1)  The model SARIMA(2,1,0)(1,0,0)12
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Fitting the model with MINITAB, we got the following output:

Type Coef SE Coef T P

AR 1 -0.3175 0.0385 -8.25 0.000
AR 2 -0.1331 0.0384 -3.46 0.001
SAR 12 0.9807 0.0096 102.04 0.000

Differencing: 1 regular difference

Number of observations: Original series 672, after
differencing 671
Residuals: SS = 103.064 (backforecasts excluded)

MS = 0.154 DF = 668

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 172.2 183.6 194.0 202.7
DF 9 21 33 45

P-Value 0.000 0.000 0.000 0.000
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As we can see from the output, all the model parameters are
significantly different from zero, hence have to be retained in the

model. However, when looking at the result of the Ljnug-Box statistic,

that Is used to test the hypothesis:

Ho:py = =px =0

H;: at least two do not equal zero
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This hypothesis tests the assertion that residuals of the model up to time
lag k are uncorrelated, hence, upon accepting H, we will deduce that
the model is suitable to that data. However, from the output above we
notice that the P_values for the Ljung-Box test are all equal to zero,
thus we reject H,, and deduce that the model SARIMA(0,2,1)(1,0,0)12
could not capture all the autocorrelation structure of the data and thus
It Is unsuitable to model the data. We can also, plot the ACF and the

PACEF for the residuals of this model to check this point:
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PACF of Residuals fory_t ACF of Residuals fory_t
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Figure 7.6: Autocorrelation and partial autocorrelation functions for the residuals of the model

SARIMA(0,2,1)(1,0,0)12

We notice figure (7.6) that there is still some autocorrelation between
the residuals of the model at time lag S=12 not explained by the model,

also the PACF at time lags k=12, 24, 36 decay in an exponential
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fashion. Hence, we search for another model that can model the data

better.
1)  The model SARIMA(0,2,1)(0,0,1)12 :

Fitting this model using MINITAB, we got the following:

Type Coef SE Coef T P
MA 1 0.0142 0.0415 0.34 0.733
SMA 12 -0.5200 0.0364 -14.29 0.000

Differencing: 2 regular differences

Number of observations: Original series 672, after
differencing 670

Residuals: SS = 386.630 (backforecasts excluded)

513




MS = 0.579 DF = 668

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 322.0 850.2 1207.7 1616.3
DF 10 22 34 46
P-Value 0.000 0.000 0.000 0.000

We see notice that the moving average parameter in the non-seasonal
part does not significantly differ from zero, thus it has to be removed
from the model, also, we notice that all the P_values of the Ljung-Box

test indicate that the model is not adequate in modelling the data, this
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means that it could not model the correlation structure of the data. We,
can also plot the ACF and the PACF for the model residuals to check

upon this point:

PACF of Residuals for diff*2 y_t ACF of Residuals for diff*2y_t

(with 5% significance limits for the partial autocorrelations) (with 5% significance limits for the autocorrelations)
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Figure 7.7: Autocorrelation and partial autocorrelation functions for the residuals of the model

SARIMA(0,2,1)(0,0,1)12
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We notice from figure (7.7), the ACF of the residuals, there are still
some high values of the autocorrelation coefficients at lags
$=12,24,36,... . The same could be realized from the PACF at seasonal
and non-seasonal lags. So, we deduce that the model could not model
the correlation structure in the data properly. Hence, we search for

another model that can model the data better.

The pattern revealed at Figure (7.7) indicate that we should take a

seasonal difference to the data. So, we propose the model
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SARIMA(0,1,1)(0,1,1)12. Notice that we have removed the regular
difference of order 2, this is because taking many (unnecessary)
differences might distort the autocorrelation structure of the data, and
when we decided to take a seasonal difference, this might relieve us
from taking the second regular difference, we will study this model and

see If it can convince us in modelling the data properly.
1) The model SARIMA(0,1,1)(0,1,1)12 :

Fitting this model using MINITAB, we got the following:
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Final Estimates of Parameters
Type Coef SE Coef T P

MA 1 0.3726 0.0366 10.18 0.000
SMA 12 0.8929 0.0176¢ 50.66 0.000

Differencing: 1 regular, 1 seasonal of order 12

Number of observations: Original series 672, after

differencing 659

Residuals: SS = 56.8926 (backforecasts excluded)
MS = 0.0866 DF = 657

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 11.4 24.3 36.4 50.0
DF 10 22 34 46
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‘P—Value 0.329 0.333 0.359 0.317

As we can see from the output, all the model parameters are
significantly different from zero, hence have to be retained in the
model. Also, the Ljnug-Box statistic, shows that all the P_values are
greater than a« = 0.05 , hence we accept the hypothesis Hy: p; = «++ =
pr = 0, and deduce that the model is suitable for the data, since it could
model all the observed autocorrelation structure in the data. Inspecting

the ACF and PACF for the residuals of the model:
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Figure 7.8: Autocorrelation and partial autocorrelation functions for the residuals of the model

SARIMA(0,1,1)(0,1,1)1,

Which indeed indicate that the model is adequate, and that it could

model all the autocorrelation in the data. The residuals of the model
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show that it I1s an estimate of a white noise process, since all
autocorrelation and partial autocorrelation coefficients do not
significantly differ from zero, (which is a property of the white noise

process).

Diagnostics:

Now, we have to perform diagnostic tests to see how these model
residuals fulfill the conditions of the white noise process &;, because the

model residuals £; are actually estimates of the white noise termse;.
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The following figure shows results of diagnostic checks of the model

Residual Plots for y_t
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Figure (7.9): Diagnostic plots for the residuals of SARIMA(0,1,1)(0,1,1)12model

a) Residuals follow the normal distribution

From figure (7.9), the normal probability plot, shows that the
percentiles lie on a straight line, which indicate that the residual
percentiles agrees to a large extent with those of the normal distribution.
The figure also show the result of a nonparametric goodness of fit test
with the normal distribution, it is the Anderson-Darling (AD) test for

testing the hypothesis:
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H:residuals follow the normal distribution

The P_value is 0.183, which indicate that we accept H,, also note that
the histogram of the residuals takes a shape very similar to the normal

distribution.

b) Variance of the residuals Is constant:

The plot at the top right side of the figure indicate that the variance of

the residuals does not change over time.
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c) Mean of the residuals is zero:

We can conduct a t-test for testing the hypothesis that residuals mean is

zero, the MINITAB output provide us with the following output:

One-Sample T: RESI

Test of mu = 0 vs not = 0

Var N Mean StDev SE Mean 95% CI T P
RESTI 659 0.024 0.2931 0.0114 (0.001375, 0.046210) 2.08 0.038

Since the P_value of the test is 0.038, thus we reject the zero mean

hypothesis of the residuals, also note that the 95% CI for the residual
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mean does not contain zero, thus we conclude that we have to make
amendments to the model. Let us include a constant term o to the model,

Doing so, we obtained the following output:

Final Estimates of Parameters

Type Coef SE Coef T P
MA 1 0.3958 0.0500 7.91 0.000
SMA 12 0.9448 0.0291 32.46 0.000

Constant 0.0025838 0.0009135 2.83 0.005

Differencing: 1 regular, 1 seasonal of order 12

Number of observations: Original series 348, after differencing 335
Residuals: SS = 27.2551 (backforecasts excluded)
MS = 0.0821 DF = 332

Modified Box-Pierce (Ljung-Box) Chi-Square statistic
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Lag 12 24 36 48

Chi-Square 8.0 22.8 28.6 37.9
DF 9 21 33 45
P-Value 0.536 0.355 0.688 0.764

From the above output, we notice that all the results indicate that the
model Is appropriate, and that constant parameter 6 should also be

retained in the model. Now, let us perform again the test that residuals

mean IS zero:

One-Sample T: RESI1

527




Test of mu = 0 vs not = 0

vVar N Mean StDev SE Mean 95% CI T P
RES 659 -0.0048 0.2857 0.01506 (-0.0356, 0.0258)-0.31 0.755

Since the P_value is 0.755, so we accept the hypothesis of zero mean for the residuals.

a) Randomness of the residuals:

Using the Runs test, which is a non-parametric test for testing the
hypothesis that the residuals are random versus that they are not

random, the MINITAB provide us with the following results:
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Runs Test: RESI1

Runs test for RESI1
Runs above and below K = 0

The observed number of runs = 174

The expected number of runs 168.487
166 observations above K, 169 below
P-value = 0.546

Since the P_value of the test is 0.546 which means that we accept the

hypothesis of the residuals randomness.

1- Residuals are uncorrelated:
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We have already mentioned the result of the Ljung-Box test, which in
fact Is a test for the uncorrelation of the residuals, and we have accepted

this hypothesis.
2- Stationarity analysis:

Since the model contains only moving average terms, then it is

stationary.

3- Invertibility analysis:
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The estimated parameters are 8; = 0.3958 . 0, = 0.9448 , thus we

see that the invertibility conditions are satisfied:

0] <1=10.3958| < 1,8, <1=109448| < 1

Thus the model SARIMA(0,1,1)(0,1,1)12 has passed all diagnostics
tests, hence, it is suitable to model generated electricity amounts in
USA during Jan. 1985 till Dec. 2014, and it has the form:

v, = 0.00227 + y,_, + & — 0.3823¢,_, — 0.9058¢,_1, + 0.3463¢;,_15
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where V¢ F€present generated electricity amounts in month t, and the white
noise estimated variance is MS = 0.0858.
e Using the model to forecast the generated electricity amount for
the next 12 months:
The following figure shows the forecasts for the 2015 together with

the observed actual values:
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Figure (7.11): Forecast for the generated electricity amount for the year 2015 using SARIMA(0,1,1)(0,1,1)12 Model

The following table also shows these forecasts together with 95%

confidence limits:
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Table (7.2): Forecast for the generated electricity amount for the year 2015 using
SARIMA(0,1,1)(0,1,1)12 Model

Lower Actual Upper
Month Forecast .

limit value limit
1 397.369 397.81 397.931 398.493
2 398.094 397.93 398.750 399.406
3 398.913 399.62 399.652 400.391
4 400.168 401.34 400.981 401.794
5 400.734 401.88 401.615 402.496
6 400.046 401.20 400.991 401.935
7 398.450 399.04 399.454 400.457
8 396.368 397.10 397.427 398.487
9 394.878 395.35 395.991 397.103
10 394.952 395.95 396.115 397.277
11 396.331 397.27 397.542 398.753
12 397.750 398.84 399.008 400.266
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As we can see from table (7.2), the proposed model could produce
forecasts that are very near to the actual values of the production
amounts, also it was able to model seasonality in the data with high
accuracy. Also, notice that the confidence limits contain the actual
values, except the production amount for February, as the actual value
lies outside the limits, but bearing in mind that this is a 95% C.1., then
one would expect about 5% of the values to be outside the confidence

limits, and hence this does not down grade the postulated model. Also,
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note that these limits are very narrow, indicating that the model is very

highly reliable.
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