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Chapter 1: Introduction 

1.1 What is a time series 

 
A time series is a collection of observations of some phenomenon collected sequentially 

over a period of time.  For example, volume of rain over months of the year, number of daily accidents in 

Saudi Arabia, value of quarterly foreign remittances, and so on).  This means that data have chronological 

order. 

There are many examples of time series in many fields of knowledge, it can be found in agriculture - Medicine 

- Economics - Engineering - Education and others.  Therefore, the methods used in time series analysis play 

an important role in the science of statistics. 

Example 1: Figure 1.1 illustrates the profit gain of a company over a period of 50 years. 
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Figure 1.1 illustrates the profit gain of a company over a period of 50 years 

Example 2: Figure 1.2 illustrates the average monthly temperatures in a city during a period of 6 years. 



2 
 

Index

C
1

8

70635649423528211471

30

25

20

15

 

Figure (1.2): average monthly temperatures in a city during a period of 6 years 

Example 3: Figure 1.3 illustrates the monthly sales for some industrial piece during a period of 15 years. 

Researchers might be interested for example in predicting the future sales so that proper planning of 

production can be accomplished, or even investigating the relation between sales series and any other series 

such as advertising and others. 
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Figure (1.3): monthly sales for some industrial piece during a period of 15 years 

1.2 Some used terminology 

A time series is said to be continuous, when observations are taken in a continuous manner over time, and to 

be discrete when observations are taken at a specific times (usually at equal intervals). In this course we will 

be interested in discrete time series. 
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As we know, most of the statistical theory, which we have already studied is interested in studying random 

samples that in which observations are independent. But as we have seen from the above examples, the 

nature of time series means that the observations are not independent. Therefore, statistical analysis to be 

used for the analysis must take into consideration the chronological (or spatial) order of the observations. 

When observations are not independent of each other, then it is possible to predict future values 

of the series using the previous values, and if it is possible to predict the future with complete accuracy 

then the series is called deterministic.  However, most of the time series are stochastic and therefore 

completely accurate predictions are not possible. 

1.3 Goals of time series analysis 

There are several goals for the analysis of time series, some of which are: 

1) Description 
Time series analysis is used to describe and portray the available information that shows how the studied 

phenomenon evolve over time. That is, describe the main features of the time series, which will help in 

determining the best mathematical model that can be appropriate to achieve the other goals of the 

analysis, and get to know the upward and downward movements in the time series and to identify the 

major components such as trend and seasonal changes. So when analyzing any time series, the first step 

must be carried out is to draw the time series as we have seen in the   previous examples and get 

some descriptive characteristics. 

 

 For example, in Figure (1.3), we notice the existence of strong seasonal effects, as sales    

      increase in the middle of the year, and decreases in the ends.   

 It also seems that  annual sales increase from year to year (i.e. there is a growing trend, so for  

Some series, description of the observations can be achieved through a simple model that includes 

a trend component, and a seasonal component. However, some series may need a more 

complicated models. 

 

2) Interpretation 

 
Interpretation means explaining the changes occurring in the phenomenon using other time series that 

are related to it, or by using environmental factors affecting the phenomenon, for example, 

one can study how the sea level is affected by temperature, or how sales are affected by advertising.  
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3) Control 

In production lines (in the factories), one may get time series that designate the product quality in the 

manufacturing process, and the goal here might be to control product quality so that it does not go below 

a specified level. 

 

4) Forecasting 

Forecasting is considered one of the most important goals of time series analysis. As one might want to 

know or expect the future values of a time series. Analysis of time series usually starts by identifying an 

appropriate model that explains the evolution pattern of the series, and then uses the model to extrapolate 

this pattern into the future. The main assumption here is that this pattern will continue in the near future. 

It should be noted that any forecasting method will not give good forecasting results if the pattern did not 

continue in the future, so it is always advisable to restrict forecasting to the near future, and update the 

forecasts as new observations become available. 

 

1.4 Measuring forecasting errors 

Usually a time series is studied for the purpose of finding out the evolution pattern of the historical values 

of the phenomenon and then use this pattern to forecast the future values. However, any future forecast 

will contain a certain amount of uncertainty, this could be reflected by adding an error component in the 

forecasting model.  

Error component is one representing factors that cannot be explained by the typical or regular 

components in the model. Of course, whenever the error component is small, this will increase our ability 

to forecast accurately, and vice versa. If we assume that the value of the phenomenon at time 𝑡 is 𝑦𝑡 , 

and that our forecast at time 𝑡 is �̂�𝑡 , then forecast error at time 𝑡 is defined as: 

𝜀𝑡 = �̂�𝑡 − 𝑦𝑡 ,   𝑡 = 1,2, … , 𝑛 

Where  𝑛 is the length of the series (i.e. no. of observations in the series). 

Examining successive forecasting errors 𝜀𝑡 reveals how good is the forecasting model. As we know from 

regression analysis, a good model must produce errors that are random, i.e. errors that are free of any 

systematic changes, as shown in the following figure: 
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If these errors are acceptable, so that the forecasting method is considered appropriate then we should 

measure the size of these errors. There are some measures of error size, the most important are: 

a) Mean absolute deviation (MAD):  

It is defined as, 

𝑀𝐴𝐷 =
1

𝑘
∑|𝜀𝑡|

𝑘

𝑖=1

 

                 =
1

𝑘
∑|𝑦𝑡− �̂�𝑡|

𝑘

𝑖=1

 

 

MAD measures the deviations in the same units as the original data. 
 

b) Mean Absolute Percentage Error (MAPE): 

This measure finds out how accurate is the model fitted to the data, it is given as, 

𝑀𝐴𝑃𝐸 =
100
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It gives the forecasting errors as a percentage, this provide us with a tool to compare different models, 

and their forecasting ability. 

c) Mean Squared Deviation (MSD): 

𝑀𝑆𝐷 =
1

𝑘
∑(𝜀𝑡)
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             =
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This measure is similar to the usual measure MSE (mean squared error), but it is better in comparing the 

different models, because the MSE uses in the denominator (𝑛 − 𝑘) degrees of freedom, where 𝑘 represent 

the number of estimated parameters in the models, which change with the used model, whereas, MSD uses in 

the denominator (𝑘) degrees of freedom, which does not change with the model. Also note that MSD gives 

more weight for large errors as it squares them. 

In all the measures above, we choose the model that produce the lowest values for MAD, MSD, MAPE.  

 

1.5 Choosing the appropriate method for forecasting 

Choosing the appropriate method of forecasting is one of the most important steps in the analysis of time 

series, which is not an easy task, and requires experience, skills, and employing the appropriate statistical 

methods for the data, but generally it depends on many factors including:  

a) Minimizing forecasting errors, which is the first criteria analyst should pay attention to, these are 

measured through the three criteria mentioned in (1.4). 

b) Quality of required forecast. If a point forecast is required, then using simple traditional methods will 

be enough to achieve the goal. Whereas, if it is required to estimate forecast interval and to evaluate 

it through test of hypothesis, then more sophisticated methods should be employed, such as BOX-

Jenkins methods. 

c) Cost of used statistical methodology and availability of relevant statistical software. 
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d) Simplicity of necessary statistical operations and calculations and understanding the used forecasting 

method. 

e) Extent to which theoretical assumptions upon which forecasting model rely on are satisfied. This is a 

very important consideration and should be checked. 

Which means that the best forecasting method is not necessarily the method that achieves the highest 

accuracy or the smallest forecasting errors, but one method may be used because of type of the required 

forecast, another because of only small number of observations are available, a third because it has a low 

cost, and a fourth because its theoretical assumptions comply with the data set in hand. 

1.6 Forecasting methods 

It is possible to identify two main forecasting methods: 

1.6.1 Regression approach 

This approach is based on identifying the variable(s) that may have a causal relationship with the variable 

under study that we want to predict, this variable is called the dependent variable, then determine the 

appropriate statistical model or appropriate functional relationship which explains how the dependent 

variable is associated to the independent or explanatory variables. Using this model we can predict the 

dependent variable under study. The main disadvantages of this approach are: 

1- Difficulty of identifying all the explanatory variables that are related to the dependent variable. 

2- This method requires the availability of detailed historical information about all the explanatory 

variables, and the ability of knowing these variables or predicting them. 

1.6.2  Time series approach 

  This approach relies on analyzing historical data of the variable under study in order to 

determine the pattern it follows. Assuming that this pattern will continue in the future, we use it 

to predict future values of the variable. Time series models are divided into three major types: 

1- deterministic models 

2- ad hoc methods 

3- stochastic time series models 
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  1.6.2.1 Deterministic models 

As we know from our study in statistics that the mean model can be expressed in the 

following general form: 

 

𝑦𝑡 = 𝐸(𝑦𝑡) + 𝜀𝑡 

             Where 𝜀𝑡 are uncorrelated  random variables with mean equal to zero and a constant    

             Variance, this model is called deterministic if we are able to express 𝐸(𝑦𝑡) as a direct   

             function of time 𝑡 , and let it be 𝑓(𝑡, 𝛽), where the vector 𝛽 denote the parameters of  

             this function. In this case it is possible to express the observations of the time series 𝑦𝑡 in  

               the form: 

𝑦𝑡 = 𝑓(𝑡, 𝛽) + 𝜀𝑡 ,       𝑡 = 1,2, … , 𝑛 

              Which means that future values of the series can be expressed in the form: 

𝑦𝑡 = 𝑓(ℎ, 𝛽) ,       ℎ = 𝑡 + 1, 𝑡 + 2,… 

                This indicate that future values of the series takes on a deterministic form, i.e. a non  

               random form 𝑓(ℎ, 𝛽).  These models are based on two main assumptions: 

1- The function 𝑓(𝑡, 𝛽) is a deterministic nonrandom function. 

2- 𝜀𝑡 are uncorrelated random variables with mean equal to zero and a constant   variance. 

These assumptions indicate that the variables 𝑦1, 𝑦2, … , 𝑦𝑛 are uncorrelated. Examples of 

mathematical functions used in these models are the polynomials, exponential functions, 

and trigonometric functions. 

               The deterministic models have some disadvantages: 

1- These methods focus on mathematical logic in trying to find a suitable mathematical 

function that can be used to fit the data more than trying to discover the important 

statistical features of the series, and the most important feature is their correlation 

structure. So they are just models to regenerate the observations 𝑦1, 𝑦2, … , 𝑦𝑛.  
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2- These models assume that the long-term evolution of the series is systematic and 

regular so that it can be predicted very accurately. 

3- These models also assume that the observations are not correlated, which is rarely true 

in different application areas. 

Because of all these disadvantages, the deterministic models usually produce statistically 

less accurate forecasts. 

1.6.2.2  Ad hoc methods 

   These methods rely on expressing the forecast of the series at time 𝑡 in terms of the current 

value 𝑦𝑡, and its past values 𝑦1, 𝑦2, … , 𝑦𝑡−1. So if we assume that 𝑡 represent a certain origin 

point, and that we want to predict the value of the series after 𝑘 time intervals, then this 

approach indicate using the following functional relationship: 

�̂�𝑡+𝑘 = 𝑓(𝑦1, 𝑦2, … , 𝑦𝑡−1, 𝑦𝑡) 

Many ways exist to carry out such predictions, such as moving averages method, and    

exponential smoothing methods. 

a) Simple Moving Average 

 
 
This method uses the most recent 𝑘 values of the series to predict next value :  

�̂�𝑡+1 =
1

𝑘
[𝑦𝑡 + 𝑦𝑡−1 + …+ 𝑦𝑡−(𝑘−2) + 𝑦𝑡−(𝑘−1)],   𝑡 = 𝑘, 𝑘 + 1, … , 𝑛 

                    this means that :   

�̂�𝑡+2 =
1

𝑘
[𝑦𝑡+1 + 𝑦𝑡 + …+ 𝑦𝑡−(𝑘−2)] 

That is, to find a simple moving average �̂�𝑡+2 we use the same values used in finding the 

previous mean �̂�𝑡+1 after replacing the older value 𝑦𝑡−(𝑘−1) with the most recent one 𝑦𝑡+1 , 

and it this that gave this procedure its name, moving average, because always the mean is 
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updated by dropping the oldest observation and adding a new one. For example for 𝑘 = 3 , 

we can form a simple moving average as follows: 

             �̂�4 =
1

3
[𝑦3 + 𝑦2 + 𝑦1] 

          �̂�5 =
1

3
[𝑦4 + 𝑦3 + 𝑦2] 

          �̂�6 =
1

3
[𝑦5 + 𝑦4 + 𝑦3] 

                 ⋮ 

        �̂�𝑛 =
1

3
[𝑦𝑛−1 + 𝑦𝑛−2 + 𝑦𝑛−3] 

Choosing the right value for 𝑘 depends on the experience of the researcher. Indeed, it is one 

of the difficulties of using simple moving average method. Another problem is in assigning 

equal weights for all observations, for example for 𝑘 = 8 , the weight given to the most recent 

value 𝑦𝑡 is equal to the oldest value 𝑦𝑡−7, which contradicts with properties of time series, as 

it is more logical to assign larger weights to the most recent observations, that’s why it is 

preferred to use simple moving averages in forecasting when the observed time series is 

random in nature. 

Example:    For the following data, calculate a moving average of order 𝑘 = 3 : 

355,451, 435,558,556,573,565,608 

solution: 

𝑚𝑎1(3) =
𝑦3 + 𝑦2 + 𝑦1 

3
=  
435 + 451 + 355

3
= 419.68 

𝑚𝑎2(3) =
𝑦4 + 𝑦3 + 𝑦2 

3
=  
558 + 435 + 451

3
= 481.33 

In the same manner, we get, 

𝑚𝑎3(3) = 516.33,𝑚𝑎4(3) = 562.33,   𝑚𝑎5(3) = 582,   𝑚𝑎6(3) = 626.33 

Example: In MINTAB program, open data file  "EMPLOY.MTB" , Use data Variable (Metals): 
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44.2 44.3 44.4 43.4 42.8 44.3 44.4 
44.8 44.4 43.1 42.6 42.4 42.2 41.8 
40.1 42.0 42.4 43.1 42.4 43.1 43.2 
42.8 43.0 42.8 42.5 42.6 42.3 42.9 
43.6 44.7 44.5 45.0 44.8 44.9 45.2 
45.2 45.0 45.5 46.2 46.8 47.5 48.3 
48.3 49.1 48.9 49.4 50.0 50.0 49.6 
49.9 49.6 50.7 50.7 50.9 50.5 51.2 

50.7 50.3 49.2 48.1 

Plotting the data, we get: 
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And we can apply the moving average with order k = 3 as Follows: 
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And get the following: 
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b) single exponential smoothing 

As we have seen, simple moving average assigns the same weight to all observations, that is, it gives 

both old and recent observations the same importance in smoothing, but real life applications dictate 

that most recent observations should have more influence on the smoothing than older ones.  

AS previously seen, for the time series 𝑦1, 𝑦2, … , 𝑦𝑡, the simple moving average (SMA) of order k has 

the form: 

�̂�𝑡 =
1

𝑘
(𝑦𝑡 + 𝑦𝑡−1 +⋯+ 𝑦𝑡−𝑘+1)  ,   

 

Or,  

�̂�𝑡 =
1

𝑘
𝑦𝑡 +

1

𝑘
𝑦𝑡−1 +⋯+

1

𝑘
𝑦𝑡−𝑘+1 

Or,  
�̂�𝑡 = 𝛼𝑦𝑡 + 𝛼𝑦𝑡−1 +⋯+ 𝛼𝑦𝑡−𝑘+1 

This means that SMA gives all observations the same weight 𝛼. 

This problem can be avoided by giving the old observations weights that decrease exponentially, 

which is called the simple exponential smoothing (SES), 

𝑆𝑡 = 𝛼𝑦𝑡 + 𝛼(1 − 𝛼)𝑦𝑡−1 + 𝛼(1 − 𝛼)
2𝑦𝑡−2… ,    𝑡 = 1,…𝑛,   0 < 𝛼 < 1 

the value 𝑆𝑡 is a weighted average that decreases exponentially, it can be written in an recursive 

manner as follows:  

𝑆𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑆𝑡−1     , 𝑡 = 1,…𝑛;        𝑆0 = �̅� , 0 < 𝛼 < 1 

Example:  Open data file  "EMPLOY.MTB" , use data Variable (Metals), smooth the data using single 
exponential smoothing. 

Solution: 

From Minitab, we have: 
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we get the following window: 

 

And the result is: 
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Where we note that the smoothing is better than that obtained from SMA . 

Note also the difference between giving a small value for 𝛼 and larger values. If the value is large then 

we give recent values larger effect, while older values has little effect in forecasting.  For small values 

for 𝛼, the resulting series will be smoother, and vice versa for large values of 𝛼.  This means that in 

case the series has lots of fluctuations then we use a small value for 𝛼. Usually, we try several values 

for 𝛼 and choose the value that gives the best value of the accuracy measures we have seen before.  

  

Note: SES does not provide good forecasts if the series contains trend component (see forecasts in 

the above figure), and therefore there are other ways of exponential smoothing that provide better 

forecasts in this case. For example, the so- called double exponential smoothing method, which is a 

generalization to SES, where in a first stage the original data is smoothed by single exponential 

smoothing, and in the second stage the smoothed data is smoothed again.  Note that in this case we 

have two smoothing parameters, one for the level of the series, and the other for 

trend. The following figure shows the result of using this method to data from the previous example: 
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we get the following: 
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1.6.2.3 Stochastic time series models 

The techniques discussed in the previous sections are simple and traditional, and none of them can 

be considered to be statistically structured methodology for the analysis of time series. The Stochastic 
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time series analysis provide more sophisticated methods of forecasting. The random model always 

assume the existence of a theoretical stochastic process able to generate the time series at our hands. 

If it is assumed theoretically that such a process is used to produce large group of series on the same 

time interval under study, then every series will be different from the others, however, all group of 

series will follow same probability rules. This is exactly the same case as the population and the 

sample, where we can select many different samples from the same population, however these 

samples will follow same probability rules as the population. 

Therefore, the proposed method suggested here, assumes that the observations of the time series 

(𝑦1, 𝑦2, … , 𝑦𝑛) that are observed in the time interval (1,2, … , 𝑛) is a realization drawn from 

multivariate random vector (𝑌1, 𝑌2, … , 𝑌𝑛) that have cumulative distribution function 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛) 

which is used to make inferences about the future of the stochastic process.  It is well known in 

statistical science, that knowing or determining such a cumulative distribution function is a very 

difficult task, but it is the norm to create a model to describe the behavior of the series efficiently, 

this efficiency depend on how such model can reflect properties of the true probability distribution.  

We will present in this course a modern statistical methodology for the analysis of time series called 

Box-Jenkins methodology denoted shortly as ARIMA models. 

1.7 Types of change in time series  

Traditional methods of time series analysis rely on dismantling the change in a time series into four 

different components: 

 trend component 

 seasonal component 

 cyclical component 

 random component 

1.7.1 trend component  

If there exist a long term increase (or decrease) in the level of the series, then we say there exist a 

trend component in the series, see figure 1.3 for an example. 
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 So when examining the time series plot, often we notice the presence of a slow and gradual 

changes in the short term (increase or decrease), and a general tendency to increase in the 

long term, as it happens, for example, in time series of the number of births, or 

the number of pilgrims, or prices of goods annually. On the other hand, we may find a general 

tendency to decrease in the long term, as for example, in the series of the number of deaths, or oil 

stocks, or for a particular disease. 

1.7.2 seasonal component  

     Many time series in practice can be affected by what is called seasonal pattern changes, for 

example, the electric power consumption reaches its peak in summer and fall in winter, see figure 

(1.2) for the time series of daily temperature as an example. Seasonal changes occur at periods less 

than a year, such as hour, day, week, month, quarter, etc.  

 

 

1.7.3 cyclical variation 

These changes are similar to seasonal variation, but they appear in long periods of time (more 

than one year), and to discover the cyclical variation one need a very long annual series, for example, 

climate changes needs data of fifty years or more to discover its cycle. Also, economic cycles need a 

long periods of time, for example five or ten Years, to appear. 

1.7.4 Random variation 

After getting rid of seasonal, trend, or cyclical components from the data, we are left with a residual 

series, which represent the irregular changes. These changes differ from the other components, as 

they can’t be predicted, and they do not occur according to any law or system. 
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 Chapter 2:  Basic Concepts 

As we mentioned earlier, the modern time series analysis presented by Box and Jenkins in the year 

(1971), is based on examining the random nature of the time series. This methodology assumes that 

there is always a theoretical random process (Stochastic process) capable of generating 

infinite number of time series of a certain length 𝑛, and that the observed series we are studying 

(called sometimes  a sample) is just one of them.  We study this sample for the purpose of 

understanding and describing the nature of the random stochastic process that generated it.              

Box-Jenkins methodology is popularly used in the scientific community of theoretical and applied 

sciences. It has proven to be highly efficient in modeling and forecasting time series that arise in 

various fields of knowledge such as economics, business administration, environment, chemistry and 

engineering, among others. The method of Box-Jenkins has several advantages including: 

1- It is a comprehensive approach, in the sense that it offers good solutions for all 

stages of analysis in the form of a more scientific and rational scheme than other methods 

through building models, diagnosis and estimating its parameters and forecasting future 

values. 

2- Richness of the stochastic models that this methodology is capable of dealing with, enables 

Box-Jenkins methodology to reflect the probabilistic mechanism for a lot of stochastic 

processes that appear in various areas of application. These models are known as 

Autoregressive Moving Average models or ARMA models in short. 

3- It does not assume independence between the observations of the time Series but, in fact, it 

takes advantage of the dependence structure between the observations in the modeling and 

forecasting process, which usually lead to a more accurate and credible forecasts than the 

ones we get through the conventional methods. 

4- It gives more credible confidence intervals for future values when compared to other 

conventional methods such as exponential smoothing. 
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However, the method of Box-Jenkins has some disadvantage, the most important one is that 

it requires availability of a large number of observations (at least 50 observations), to get a good 

model. 

2.1 Stationarity 

Modern time series analysis assumes that any observation  𝑦𝑡1  at certain point of time 𝑡1 is just a 

single observation randomly chosen from a random variable 𝑌𝑡1  (which represents all observations 

that can be observed at time 𝑡1)  and has a cumulative distribution function 𝐹(𝑌𝑡1). 

Similarly, it assumes that any two observations (𝑦𝑡1,𝑦𝑡2) at any two different time points (𝑡1, 𝑡2) 

represents a single point   drawn from bivariate random variable (𝑌𝑡1 , 𝑌𝑡2) (which represents all 

observations that can be observed at the two time points (𝑡1, 𝑡2)  and has a cumulative distribution 

function 𝐹(𝑌𝑡1 , 𝑌𝑡2). 

 In   general   modern time series analysis assumes the existence of a (theoretical) stochastic process 

capable of generating an infinite number of time series, and that the observed time series at hand is 

just one of them, and that there is probabilistic distribution for the random variables (Y1, Y2, … , Yn) . 

2.1.1 Strict Stationarity 

We say that a time series is strictly stationary if the joint cumulative probability distribution of any 

subset of the variables that make up the series is not affected by displacing the time forward or 

backward any number of time units. So, if  (𝑡1, 𝑡2, … , 𝑡𝑚) is any subset of time units, where 

 𝑚 = 1,2,3, … and 𝑘 = ±1,±2,… , then we say the series is strictly stationary if the joint cumulative 

probability distribution for the variables (𝑌𝑡1 , 𝑌𝑡2 , … , 𝑌𝑡𝑚) is the same as  the joint cumulative 

probability distribution for the variables (𝑌𝑡1+𝑘, 𝑌𝑡2+𝑘, … , 𝑌𝑡𝑚+𝑘) for any time point and any time 

shift k .  Mathematically we can write the condition of strict stationarity as:  

𝐹(𝑌𝑡1 , 𝑌𝑡2 , … , 𝑌𝑡𝑚) = 𝐹(𝑌𝑡1+𝑘, 𝑌𝑡2+𝑘, … , 𝑌𝑡𝑚+𝑘) 

⇒ 𝑃(𝑌𝑡1 ≤ 𝑐1, 𝑌𝑡2 ≤ 𝑐2, … , 𝑌𝑡𝑚 ≤ 𝑐𝑚) 
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                             = 𝑃(𝑌𝑡1+𝑘 ≤ 𝑐1, 𝑌𝑡2+𝑘 ≤ 𝑐2, … , 𝑌𝑡𝑚+𝑘 ≤ 𝑐𝑚) 

Strict stationarity simply means that the mechanism of generating the observations for the stochastic 

process under consideration is constant through time, so that the shape of the model and the parameter 

estimates do not change with time shift.  From this definition we can see that strict stationarity 

necessarily leads to the fact that the mean and the variance of the stochastic process are constant (of 

course provided they exist). Also the covariance between any two variables 𝑌𝑡 and 𝑌𝑠 depend only on 

time lag (or the time distance between them). 

So strict stationarity leads to the following: 

i) 𝜇𝑡 = 𝐸(𝑌𝑡) =  𝜇 , 𝑡 = 0, ±1,±2,… 

ii) 𝜎𝑡
2 = 𝑉𝑎𝑟(𝑌𝑡) =  𝜎

2 , 𝑡 = 0, ±1,±2,… 

iii) 𝛾(𝑠, 𝑡) = 𝐶𝑜𝑣(𝑌𝑠, 𝑌𝑡) = 𝐸[(𝑌𝑠 − 𝜇)(𝑌𝑡 − 𝜇)] = 𝛾(𝑠 − 𝑡) 

that is the covariance between (𝑦𝑠, 𝑦𝑡) will be a function in the time lag (𝑠 − 𝑡) only, so: 

𝛾(𝑡, 𝑡 − 𝑘) = 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) = 𝛾(𝑘) 

 As we know, the variance could be considered as a special case of the covariance function 𝛾(𝑠, 𝑡) if  

𝑠 = 𝑡 , i.e.  

𝑉𝑎𝑟(𝑌𝑡) = 𝛾(𝑡, 𝑡) 

and if the series is stationary then,  

𝑉𝑎𝑟(𝑌𝑡) = 𝛾(𝑡, 𝑡) = 𝛾(0),     𝑡 = 0,±1, ±2,… 

2.1.2 Weak Stationarity 

We say that a series is weakly stationary if the moments up to second order exist, and: 

1- The expected value or the mean of the process 𝜇𝑡 does not depend on time t , i.e. : 

𝜇𝑡 = 𝐸(𝑌𝑡) =  𝜇 , 𝑡 = 0,±1,±2, … 

2- The variance  𝜎𝑡
2 does not depend on time t , i.e. 



22 
 

𝜎𝑡
2 = 𝑉𝑎𝑟(𝑌𝑡) =  𝜎

2 , 𝑡 = 0, ±1,±2,… 

3- Covariance between any two variables depend only on the time lag between them, i.e.,  

𝐶𝑜𝑣(𝑌𝑡−𝑘, 𝑌𝑡) = 𝛾(𝑘),   𝑡 = 0, ±1,±2,… ; 𝑘 = ±1, ±2,… 

 

From the above we can see that strict stationarity always leads to weak stationarity, the vice versa is 

only correct in the case that the joint cumulative distribution of the variables (𝑌𝑡1 , 𝑌𝑡2 , … , 𝑌𝑡𝑚) is the 

multivariate normal distribution since this distribution is completely defined by its first two moments, 

in this case only if the stochastic process is weakly stationary then it is strictly stationary. 

If we mentioned stationarity from now on, then we mean weak stationarity. 

2.1.3 The importance of stationarity 

If the statistical characteristics of the stochastic process that generated the time series is stationarity, 

we will face many difficulties. The most important is the large number of parameters, such as 

expectations, and variances and covariances and the difficulty of interpreting these parameters. 

 Reducing the number of parameters: 

If we assume that the process 𝑦𝑡 is stationary and that one observation is available at every time 

point, which is the case in most real life time series, so that we have the following observed series  

(𝑦1 ,𝑦2, … , 𝑦𝑛), then the major parameters of the theoretical process are :  

𝐸(𝑌) = [𝐸(𝑌1) 𝐸(𝑌2)…𝐸(𝑌𝑛)]
` = [𝜇1  𝜇2…𝜇𝑛]

` 

 

𝑉𝑎𝑟(𝑌) = 𝛾(𝑠, 𝑡) = [

𝛾(1,1) 𝛾(1,2)… 𝛾(1, 𝑛)

𝛾(2,1) 𝛾(2,2)… 𝛾(2, 𝑛)
⋮ ⋮ ⋮

𝛾(𝑛, 1) 𝛾(𝑛, 2)… 𝛾(𝑛, 𝑛)

] 

 

Where we interpret the mean of the stochastic process at time 𝑡 , i.e. 𝜇𝑡 as the mean for all values that 

this process can generate at time 𝑡, also, we interpret the variance of the stochastic process at time 𝑡 , 
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i.e. 𝛾(𝑡, 𝑡) as the variance for all these values. Whereas, the covariance 𝛾(𝑠, 𝑡) measures the linear 

dependence between all values that this process can generate at time s and time 𝑡.  

Now notice that number expectations is n, and the number of parameters of the variance and 

covariance matrix is 𝑛(𝑛 + 1) 2⁄  . Thus, the total number of main parameters to be estimated if the 

process is not stationary are 𝑛(𝑛 + 1) 2⁄ + 𝑛 =   𝑛(𝑛 + 3) 2⁄  which is a large number especially if 

the number of observations n is large. However, in the case of stationarity, number of parameters will 

be (𝑛 + 1) which are: 

𝜇, 𝛾(0), 𝛾(1), … , 𝛾(𝑛)   

Where in case of stationarity, 𝜇 represent level of the series. Also the variance 𝛾(0) measures 

variability of the process around 𝜇. In the same manner we can interpret the auto-covariance at time 

lag k (i.e. 𝛾(𝑘)), so 𝛾(1) represent the auto-covariance between variables one period of time apart, 

𝛾(2) represent the auto-covariance between variables two period of times apart, etc. 

 

Preliminary Stationarity tests 

There are several ways to test the stationarity of the series, some of these methods are accurate others 

are approximate. If the series follows a known theoretical model then we can test its stationarity by 

calculating its expectation, variance and covariance functions. If both the expectation and variance 

does not depend on time, and the auto-covariance function depend only on time lag between any two 

variables, then stationarity of the series can be decided. 

Example :  If the series follow the following model: 

𝑦𝑡 = 𝛽0 + 𝜀𝑡,     𝑡 = 1,2, … , 𝑛 

Where 𝛽0 is a fixed constant, and the variables 𝜀1, 𝜀2, … are uncorrelated random variables with mean 

zero and contrast variance 𝜎2. Is the series stationary? 

 

solution: 
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Calculate the expectation, variance and covariance of the process: 

𝐸(𝑌𝑡) = 𝛽0  ,   𝑡 = 0, ±1,±2,… 

𝑉(𝑌𝑡) =  𝑉(𝛽0 + 𝜀𝑡) = 𝑉(𝜀𝑡) = 𝜎
2 

𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) = 𝐶𝑜𝑣(𝛽0 + 𝜀𝑡, 𝛽0 + 𝜀𝑡−𝑘) = 0 ,   𝑘 = ±1,±2,… 

 

Therefore, we note that all the weak stationarity are fulfilled here. 

Example:   If the series follow the following model: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜀𝑡,     𝑡 = 1,2, … , 𝑛 

Where 𝛽0, 𝛽1 are  fixed constants, and the variables 𝜀1, 𝜀2, … are uncorrelated random variables with 

mean zero and contrast variance 𝜎2. Is the series stationary? 

solution: 

We calculate the expectation of the process: 

𝐸(𝑦𝑡) = 𝛽0 + 𝛽1𝑡  ,   𝑡 = 1,2, … 

This means that the expected value of the series is not constant but increasing (decreasing) by a 

constant value if 𝛽1 > 0,  (𝛽1 < 0) i.e. the series has a trend component in case 𝛽1 ≠ 0, and hence it 

is not stationary. 

Example: If the series {𝑦𝑡} follow the following model: 

𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡,     𝑡 = 1,2, … , 𝑛 

where {𝜀𝑡}  is a random process as defined in the previous example. Is the process stationary?  

solution: 

𝐸(𝑦𝑡) = 𝐸(𝑦𝑡−1) + 𝐸(𝜀𝑡) = 𝐸(𝑦𝑡−1) ,   𝑡 = 1,2, … 𝑛 
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Which means that the expected value of the series is constant, and does not depend on time 𝑡. Now 

we look at the variance,  

Var(𝑦𝑡) = Var(𝑦𝑡−1) + 𝜎
2 + 2𝐶𝑜𝑣(𝑦𝑡−1, 𝜀𝑡) 

                                                           = Var(𝑦𝑡−1) + 𝜎
2 

So that Var(𝑦𝑡) ≠ Var(𝑦𝑡−1), i.e. the variance is not constant , and hence the process is not 

stationary. 

 Previous examples have shown how to check stationarity of a time series if the mathematical model 

that explains the behavior of the random process generated it is known. But in practical applications 

often this is not the case, and we will mention later some methods for testing stationarity of the series. 

But as a general guideline is to check the plot of time series, and if we notice the observations to 

oscillate around a constant line that pass through the middle of the series, then we might be able to 

believe that the series is stationary.  However, if we notice existence of a trend component and/or that 

the dispersion of the data change over time then we find this an indication of non stationarity of the 

series, see figure bellow:  

 

 

Series not Stationary in variance Stationary series 

 

 

Series not Stationary in mean (of 

second order) Series not Stationary in mean 
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If the series is not stationary, then sometimes some mathematical transformations might be able to 

transform it to stationarity, we will see this in section 2.5. 

2.2 Auto-Correlation function (ACF) 

For any stationary process {𝑌𝑡}, the auto-covariance function between 𝑌𝑡 and 𝑌𝑡−𝑘  is defined as: 

𝛾𝑘 = 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) = 𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡−𝑘 − 𝜇)] 

This function measure the degree of linear association between any two variables of the same time 

series, for example,  𝛾(1,2) measures linear association between all values that could be generated 

by the stochastic process at time point 1, and those at time point 2. 

Notes: 

1- If 𝛾(𝑠, 𝑡) = 0, this means that the two variables 𝑌𝑡 and 𝑌𝑠 are linearly uncorrelated, however, 

they might still be nonlinearly correlated. 

2- If 𝛾(𝑠, 𝑡) = 0, and the two variables 𝑌𝑡 , 𝑌𝑠 have bivariate normal distribution then this lead to 

the fact that they are independent. 

3- Sample variance can be regarded as a special case of auto-covariance function 𝛾(𝑠, 𝑡),  by 

letting 𝑠 = 𝑡, this means that 𝑣𝑎𝑟(𝑌𝑡) = 𝛾(𝑡, 𝑡). 

4- If the series is stationary, then auto-covariance function 𝛾(𝑠, 𝑡) is a function of the time lag 

𝑘 = |𝑠 − 𝑡| only, and usually we denote it as 𝛾(|𝑠 − 𝑡|), or 𝛾(𝑘). 

2.2.1 what is Autocorrelation 

It is known that the use of covariance function to measure the degree of linear dependence between 

two variables raises some practical problems. The first being the lack of reference boundaries (low, 

high) that can be referenced to determine the strength or weakness of the linear relationship. 

Secondly, the covariance depends on the measurement units of the data, so it always preferable to 

calibrate the covariance by dividing by the product of standard deviation of the variables 𝑌𝑡 and 𝑌𝑠 to 

get what is known as auto-correlation function. 
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Definition : 

The correlation coefficient 𝜌(𝑠, 𝑡) is defined as the correlation  coefficient between the variables 𝑌𝑡 

and 𝑌𝑠 and is given by the form: 

𝜌(𝑠, 𝑡) =
 𝛾(𝑠, 𝑡)

√𝑉𝑎𝑟(𝑌𝑠) 𝑉𝑎𝑟(𝑌𝑡)
 

    =
 𝐸[(𝑌𝑠 − 𝜇𝑠)(𝑌𝑡 − 𝜇𝑡)]

√𝐸(𝑌𝑠 − 𝜇𝑠)2 𝐸(𝑌𝑡 − 𝜇𝑡)2
  ;   𝑠, 𝑡 = 0,±1,±2,… 

 

Since it measure the linear correlation between the same random variable data but at different time 

points, so usually the term "autocorrelation function" is used, and in short written as ACF . 

2.2.2 Characteristics of the autocorrelation function 

1-  Autocorrelation between the variable 𝑌𝑡 and itself equal to one, that is 𝜌(𝑡, 𝑡) = 1. 

2- 𝜌(𝑡, 𝑠) = 𝜌(𝑠, 𝑡) because  𝛾(𝑡, 𝑠) =  𝛾(𝑠, 𝑡). 

3- Value of 𝜌(𝑡, 𝑠) always lies in the interval [−1,1]. 

4- If 𝛾(𝑠, 𝑡) = 0 , then this indicate that the variables 𝑌𝑡 and 𝑌𝑠 are linearly uncorrelated, 

however, they might still be nonlinearly correlated. 

5- If the stochastic process that generated the time series is stationary, then we redefine the 

auto-correlation coefficient as: 

𝜌(𝑘) =
𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡−𝑘 − 𝜇)]

√𝐸(𝑌𝑡 − 𝜇 )2
 

                   =
𝛾(𝑘)

𝛾(0)
;   𝑘 = 0,±1,±2, .. 

Where 𝛾(0) denote the variance of the stationary process, and 𝛾(𝑘) denote its auto-covariance  at 

time lag k. For example, 𝜌(1) measures , degree of linear correlation between any two variables 

that are one time period apart, i.e. between 𝑌1 and 𝑌2, or 𝑌99 and 𝑌100, in general between 𝑌𝑡 and 

𝑌𝑡−1. In the same manner,  𝜌(3) measures degree of linear correlation between any two variables 

that are 3 time periods apart, i.e. between 𝑌1 and 𝑌4, or 𝑌10 and 𝑌13, in general between 𝑌𝑡 and 𝑌𝑡−3. 
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2.2.3 The importance of the autocorrelation function 

When analyzing time series, we might face many forms of autocorrelation functions, for example: 

 we might find it decaying slowly. 

 or, decaying very quickly in an exponential form. 

 or, decaying in sine function form. 

 Sometimes it cut off suddenly (i.e. equal zero) after a certain number of time lags. 

Autocorrelation function ρ(k), plays an important and essential role  when using Box - Jenkins  

methodology for analyzing time series.  As the form of the ACF can determine the initial appropriate 

model for the data. It is also one of the important tools in diagnostic tests of the residuals of the 

initial model in order to improve it. 

Example:    Let the random process {𝜀𝑡} be uncorrelated random variables with mean zero and 

constant variance 𝜎2, find autocorrelation function of the process {𝜀𝑡} .  

Note: {εt} is called the “white noise process” , and it will be used frequently in this course. 

solution: 

According to the definition of the process, then: 

𝐸(𝜀𝑡) = 0,   𝑡 = 0,±1, ±2,… 

𝑉𝑎𝑟(𝜀𝑡) = 𝜎
2,   𝑡 = 0,±1,±2, … 

𝛾(𝑘) = 𝐶𝑜𝑣(𝜀𝑡, 𝜀𝑡−𝑘) = 0, 𝑘 ≠ 0;   𝑡 = 0,±1,±2, … 

𝜌(𝑘) =
𝛾(𝑘)

𝛾(0)
= 0, 𝑘 ≠ 0 

This means that: 

𝜌(𝑘) = {
1, 𝑘 = 0
0, 𝑘 ≠ 0

 

Example: 
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If the series  𝑦𝑡 have the following model: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜀𝑡,     𝑡 = 1,2, … , 𝑛 

Where {𝜀𝑡} is the white noise process as defined in the previous example. Find autocorrelation 

function of the series  𝑦𝑡. 

solution: 

𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝛽0 + 𝛽1𝑡 + 𝜀𝑡) = 𝑉𝑎𝑟(𝜀𝑡) = 𝜎
2 

This is because (𝛽0 + 𝛽1𝑡) is not a random variable, but it is a deterministic function.  

And,  

𝛾(𝑠, 𝑡) = 𝐶𝑜𝑣(𝛽0 + 𝛽1𝑠 + 𝜀𝑠,   𝛽0 + 𝛽1𝑡 + 𝜀𝑡) = 0, 𝑠 ≠ 𝑡 

So that, 

𝜌(𝑘) = {
1, 𝑘 = 0
0, 𝑘 ≠ 0

 

Example: 

If the process  {𝑦𝑡} have the following model: 

𝑌𝑡 = 𝜀𝑡 − 𝜃𝜀𝑡−1,     𝑡 = 1,2, … , 𝑛 

Where {𝜀𝑡} is the white noise process as defined in the previous example. Find the autocorrelation 

function of the process  {𝑦𝑡}. 

solution: 

 

𝐸(𝑌𝑡) = 0,   𝑡 = 1,2, … , 𝑛 

𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟(𝜀𝑡 − 𝜃𝜀𝑡−1) 

                 = 𝑉𝑎𝑟(𝜀𝑡) + 𝜃
2𝑉𝑎𝑟(𝜀𝑡−1) − 2𝐶𝑜𝑣(𝜀𝑡, 𝜀𝑡−1) 

                 = 𝜎2 + 𝜃2𝜎2 = 𝜎2(1 + 𝜃2) ; 𝑡 = 1,2, … 

Now, we find the auto-covariance function for observations that are one time lag apart i.e. 𝛾(1): 

𝛾(𝑡, 𝑡 + 1) = 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡+1) 
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                      = 𝐶𝑜𝑣(𝜀𝑡 − 𝜃𝜀𝑡−1,   𝜀𝑡+1 − 𝜃𝜀𝑡) = −𝜃𝜎2 

In the same manner, we find the auto-covariance function for observations that are two time lags 
apart i.e. 𝛾(2): 

𝛾(𝑡, 𝑡 + 2) = 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡+2) 

                      = 𝐶𝑜𝑣(𝜀𝑡 − 𝜃𝜀𝑡−1,   𝜀𝑡+2 − 𝜃𝜀𝑡+1) = 0 

in the same manner, it can also be shown that 𝛾(3) = 𝛾(4) = ⋯ = 0 

So the auto-covariance function has the form: 

𝛾(𝑘) = {
−𝜃𝜎2, 𝑘 = 1
0, 𝑘 ≥ 2

 

thus the auto-correlation function for this process is: 

𝜌(𝑘) = {

1, 𝑘 = 0
−𝜃

1 + 𝜃2
, 𝑘 = 1

0 𝑘 ≥ 2

 

2.2.4 Estimating the Autocorrelation Function 

As stated previously the importance of imposing stationarity conditions on the stochastic process 

that generated the observed time series. The most important was, reduction of the number of major 

parameters of the process (first and second moments), (see page 22), and easiness of their 

interpretation,  and the possibility of estimating these parameters using the available observations 

𝑦1, 𝑦2, … , 𝑦𝑛 of the time series.  Based on these estimates, we can estimate the auto-correlation 

function for the stationary process as follows:  

𝑟𝑘 = �̂�(𝑘) =
∑ (𝑦𝑡
𝑛−𝑘
𝑡=1 − �̅�)(𝑦𝑡+𝑘 − �̅�)

∑ (𝑦𝑡
𝑛
𝑡=1 − �̅�)2

 

It can be shown that if the random  process {𝑦t} is  stationary and linear, and the  fourth moment 

𝐸(yt
4) is bounded, then the estimate 𝑟𝑘 of the auto-correlation function follow asymptotically a 

normal distribution with mean 𝜌𝑘 and a known variance that also depend on 𝜌𝑘. Then it is 

possible to perform testing of hypothesis for the significance of various auto-correlation 

coefficients at different time lags. 



31 
 

 Bartlett 1946, has proven that if observations q time lags apart are not correlated, that 

is,  

𝜌𝑘 = 0,    𝑘 > 𝑞 

then the sample variance of the statistic 𝑟𝑘 can be approximated by: 

𝑉(𝑟𝑘) ≅  
1

𝑛
 (1 + 2 ∑𝜌𝑗

2),     𝑘 > 𝑞

𝑞

𝑗=1

 

Then one can get approximate estimates of standard errors (SE) of the estimators 𝑟𝑘 by  

replacing 𝜌𝑘 by 𝑟𝑘 and taking the square root in the previous form: 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
 (1 + 2 ∑𝑟𝑘

2)     

𝑞

𝑗=1

, 𝑘 > 𝑞 

 In the special case when all observations are uncorrelated, that is 𝜌𝑘 = 0,  for 𝑘 > 0  then 

this equation simplifies to: 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
 , 𝑘 > 𝑞 

 So if we assume that the process {𝑦t} is completely random, that is a white noise process  then, 

for large sample size the distribution of the estimator 𝑟𝑘 (according to central limit theorem) is 

normal distribution with mean zero and variance 
1

𝑛
  i.e., 

𝑟𝑘~ 𝑁 (0,
1

𝑛
) 

This means that if the series at hand is completely random, then we can find a 95% Confidence 

interval for 𝜌𝑘, which is: 

𝑟𝑘 − 1.96 √𝑣𝑎𝑟(𝑟𝑘) < 𝜌𝑘 < 𝑟𝑘 + 1.96 √𝑣𝑎𝑟(𝑟𝑘) 

That is: 

𝑟𝑘 − 1.96 √
1
𝑛⁄ < 𝜌𝑘 < 𝑟𝑘 + 1.96 √

1
𝑛⁄  

 Anderson in 1942 have shown that for a sample of moderate size and assuming 

that the estimator 𝜌𝑘 = 0,  then the sample estimator 𝑟𝑘 follows approximately the 

normal distribution, and thus the statistic: 
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𝑧 =
𝑟𝑘

𝑆𝐸(𝑟𝑘)
 

follows approximately standard normal distribution under the hypothesis 𝜌𝑘 = 0, thus it 

can be used to test the hypothesis: 

𝐻0: 𝜌𝑘 = 0   vs   𝐻1: 𝜌𝑘 ≠ 0   for 𝑘 > 𝑞 

We reject the null hypothesis, at significance level 𝛼 if |𝑧| > 𝑧𝛼 2⁄ . 

Note: 

Where it has been the norm in practical applications to reject the null hypothesis 𝜌𝑘 = 0, 

if |𝑧| > 2 assuming that 𝛼 = 0.05, but it should be noted that it is not always preferable 

to fix 𝛼 at a certain value to test the significance of the autocorrelation coefficients for all 

time lags.  Some recent studies have concluded that it is preferable to use larger values 

for 𝛼 at lower time lags, and then use smaller values for 𝛼 at larger time lags. Choosing 

the right value of 𝛼, depends actually more on the expertize of the researcher, and how 

he reads the different graphs of the data.  

Example: 

The following data represents the number of sold units (percentage) yearly at a large 

department stores: 

 Year 1992 1993 1994 1995 1996 1997 1998 1999 

Number of sold units 𝑦𝑡 1 3 2 4 3 2 3 2 

Calculate the autocorrelation coefficients, and draw the estimated autocorrelation 

function. 

solution: 

One can easily calculate: 

�̅� =
20

8
= 2.5    ;      ∑ (𝑦𝑡

8

𝑡=1
− 2.5)2 = 6 

Also we can find the pairs (𝑦𝑡 − 2.5) : 

Year 1992 1993 1994 1995 1996 1997 1998 1999 

(𝑦𝑡 − 2.5) -1.5 0.5 -0.5 1.5 0.5 -0.5 0.5 -0.5 
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According to the definition of autocorrelation function 𝑟𝑘, then: 

𝑟1 = �̂�(1) =
∑ (𝑦𝑡
7
𝑡=1 − 2.5)(𝑦𝑡+1 − 2.5)

6
 

𝑟1 =
1

6
[(−1.5)(0.5) + (0.5)(−0.5) + (−0.5)(1.5) + (1.5)(0.5) + (0.5)(−0.5) + (−0.5)(0.5)

+ (0.5)(−0.5)] = −0.29 

Also,  

𝑟2 = �̂�(2) =
∑ (𝑦𝑡
6
𝑡=1 − 2.5)(𝑦𝑡+2 − 2.5)

6
= 0.167 

Similarly, the rest of the values are calculated: 

𝑟3 = −0.21, 𝑟4 = −0.33,   𝑟5 = 0.21,   𝑟6 = −0.17,   𝑟7 = 0.13 

The auto-correlation function can be drawn such that, on the horizontal axis the time lags, 𝑘, 

and on the vertical axis auto-correlation coefficients, this figure is called the correlogram. 

 

2.3 Partial autocorrelation function 

The idea of this correlation arise as follows: 

 If  two variables, say,   𝑌1 and 𝑌3 are found to be correlated , then this might be because of 

correlation between them and a third variable, 𝑌2 , so if we can calculate correlation between  𝑌1 

and 𝑌2 , and correlation between 𝑌3 and  𝑌2, and remove or control this correlation, then the 

resulting correlation is  called partial auto-correlation  

𝑌2 𝑌3 𝑌1 
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The autocorrelation between   𝑌1 and 𝑌3 where the effect of  𝑌2 has been removed  or controlled 

is called the partial auto-correlation  between 𝑌1 and 𝑌3 . 

This idea can be applied to any number of variables, such that the correlation between any two 

variables with the removal of the effect of variables that falls between them. One can calculate 

the auto-correlation between the two variables 𝑌𝑡 and 𝑌𝑡−𝑘, and removing or controlling the 

effect of all the variables that fall between them, i.e. (𝑌𝑡−𝑘+1, … , 𝑌𝑡−1), this is called the partial 

auto-correlation  between 𝑌𝑡 and 𝑌𝑡−𝑘. 

 

 

 

    

The basic idea behind the partial auto-correlation is calculating the linear correlation coefficient 

between [𝑌𝑡 − 𝐸(𝑌𝑡|𝑌𝑡−1, … , 𝑌𝑡−𝑘+1)] and [𝑌𝑡−𝑘 − 𝐸(𝑌𝑡−𝑘|𝑌𝑡−1, … , 𝑌𝑡−𝑘+1)]  

Where 𝐸(𝑌𝑡|𝑌𝑡−1, … , 𝑌𝑡−𝑘+1) and 𝐸(𝑌𝑡−𝑘|𝑌𝑡−1, … , 𝑌𝑡−𝑘+1) are calculated from the corresponding  

conditional probability distributions . 

2.3.1  Yule-Walker system of equations  

Assuming that we have a stationary process with mean equal to zero, we can write a multiple 

regression model of order 𝑝 as Follows: 

𝑌𝑡 = 𝜙11𝑌𝑡−1 + 𝜙22𝑌𝑡−2 +⋯+𝜙𝑘𝑘𝑌𝑡−𝑝 + 𝜀𝑡 

Where  𝜀𝑡 is the white noise process, multiplying both sides by 𝑌𝑡−𝑘, and taking expectations, we 

find: 

𝐸(𝑌𝑡𝑌𝑡−𝑘) = 𝜙11𝐸(𝑌𝑡−1𝑌𝑡−𝑘) + 𝜙22𝐸(𝑌𝑡−2𝑌𝑡−𝑘) + ⋯+𝜙𝑘𝑘𝐸(𝑌𝑡−𝑝𝑌𝑡−𝑘) + 𝐸(𝜀𝑡𝑌𝑡−𝑘) 

........... 𝑌t−k 𝑌t−k+1 𝑌t−1 𝑌t 
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So, 

𝛾𝑘 = 𝜙11𝛾𝑘−1 + 𝜙22𝛾𝑘−2 +⋯+𝜙𝑘𝑘𝛾𝑘−𝑝 

And dividing both sides by 𝛾0 , we find: 

𝜌𝑘 = 𝜙11𝜌𝑘−1 + 𝜙22𝜌𝑘−2 +⋯+𝜙𝑘𝑘𝜌𝑘−𝑝  , 𝑘 ≥ 1 

This is called the Yule-Walker system of equations, and consists of a 𝑘 linear equation in 

the unknowns 𝜙11, 𝜙22, … , 𝜙𝑘𝑘.  We can solve this system by the determinants to get 𝜙𝑘𝑘 ( The 

mathematical derivation details for this is not the concern of this course) : 

𝜙𝑘𝑘 =

{
 
 
 
 

 
 
 
 

1 , 𝑘 = 0
𝜌1 , 𝑘 = 1

|

1 𝜌1 ⋯ 𝜌𝑘−2 𝜌1
𝜌1 1 ⋯ 𝜌𝑘−3 𝜌2
⋮     ⋮         ⋮    ⋮ ⋮
𝜌𝑘−1 𝜌𝑘−2 … 𝜌1 𝜌𝑘

|

|

1     𝜌1 ⋯ 𝜌𝑘−2 𝜌𝑘−1
𝜌1 1 ⋯ 𝜌𝑘−3 𝜌𝑘−2
⋮        ⋮         ⋮    ⋮ ⋮
𝜌𝑘−1 𝜌𝑘−2 … 𝜌1 1   

|

, 𝑘 = 2,3, …

}
 
 
 
 

 
 
 
 

 

Where |. | denote the determinant. 

We note that for large values of 𝑘, the above solution is difficult to find, thus another approach 

that uses recurrence relations is proposed in the literature, as follow: 

𝜙00 = 1 

𝜙11 = 𝜌1 

  

𝜙𝑘𝑘 =
𝜌𝑘 −∑ 𝜙𝑘−1,𝑗𝜌𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝜙𝑘−1,𝑗𝜌𝑗
𝑘−1
𝑗=1

 

Where,  

𝜙𝑘𝑗 = 𝜙𝑘−1,𝑗 − 𝜙𝑘𝑘𝜙𝑘−1,𝑘−𝑗     ,𝑗=1,2,…,𝑘−1 
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2.3.2  Properties of partial autocorrelation function (PACF) 

This function has several properties, including: 

1- partial autocorrelation coefficient at time lag zero is equal to one, that is, 𝜙00 = 1. 

2- The value of 𝜙𝑘𝑘 always fall in the closed interval [−1,1]. 

3-  𝜙11 = 𝜌1 , this is because there are no observations fall between 𝑌𝑡−1 and 𝑌𝑡 . 

4- If 𝜙𝑘𝑘 = 0, then this means there is no linear autocorrelation between 𝑌𝑡−𝑘 and 𝑌𝑡 , 

however, there might be a nonlinear autocorrelation between them. 

2.3.3 Estimating the partial autocorrelation function 

One can get the sample partial autocorrelation function from the previous equations by 

replacing 𝜙𝑘𝑘 by 𝑟𝑘𝑘 , and 𝜌𝑘  by  𝑟𝑘. 

The statistic 𝑟𝑘𝑘 is an estimator for 𝜙𝑘𝑘 i.e.: 

�̂�𝑘𝑘 = 𝑟𝑘𝑘   , 𝑘 = 0,1, … 

To function 𝑟𝑘𝑘 has the following properties: 

1- Anderson and Quenouille  (1949) have found that if the partial correlation coefficient 

𝜙𝑘𝑘 = 0, and for a large sample size, then the estimated sample partial autocorrelation 

coefficients 𝑟𝑘𝑘 follow the normal distribution with estimated standard error:  

𝑠𝑒(𝑟𝑘𝑘) ≅ √
1

𝑛  
,     𝑘>0 

2- For large sample size n, we can carry out the following test: 

𝐻0: 𝜙𝑘𝑘 = 0 

𝐻1: 𝜙𝑘𝑘 ≠ 0 

Where we use the statistic: 

𝑍 = √𝑛 |𝑟𝑘𝑘| 

and reject 𝐻0 at significance level 𝛼, if  |𝑍| > 𝑧𝛼 2⁄  
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Example:  

The following data represent the daily demand of a particular product: 

158 222 248, 216 226 239, 206 178 169 

Calculate the autocorrelation function and partial autocorrelation function and draw 

them. 

solution: 

1- Finding the autocorrelation function 𝑟𝑘: 

First we calculate the mean of the series:  

 

�̅� =
1

9
∑𝑍𝑖 =

1

9
[158 + ⋯+ 169] = 206.89 

 

sample partial autocorrelation function has the form: 

𝑟𝑘 =
∑ (𝑦𝑡 − �̅�)(𝑦𝑡−𝑘 − �̅�)
9
𝑡=𝑘+1

∑ (𝑦𝑡 − �̅�)2
9
𝑡=1

, 𝑘 = 0,1, …, 

We need to find the quantities: 

 

𝑟1 =
∑ (𝑦𝑡−�̅�)(𝑦𝑡−1−�̅�)
9
𝑡=2

∑ (𝑦𝑡−�̅�)2
9
𝑡=1

,  ………………..….,   𝑟8 =
∑ (𝑦𝑡−�̅�)(𝑦𝑡−8−�̅�)
9
𝑡=9

∑ (𝑦𝑡−�̅�)2
9
𝑡=1

 

Which means that if we have 𝑛 observations, then we need to calculate (𝑛 − 1) coefficients of 𝑟𝑘. 

To simplify calculations, we will find first the following pairs, (𝑦𝑡 − �̅�) = (𝑦𝑡 − 206.89) as 

follow: 

(158 − 206.89), (222 − 206.89), … , (169 − 206.89) 

⟹ (−48.89), (15.11), (41.11), (9.11) … , (−37.89) 

Then we get the required 𝑟𝑘 coefficients as follow: 

𝑟1 =
(−48.89 × 15.11) + (15.11 × 41.11) + ⋯+ (−28.89 × −37.88)

(−48.89)2 + (15.11)2 +⋯+ (−37.89)2
= 0.2651 
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𝑟2 =
(−48.89 × 41.11) + (15.11 × 9.11) + ⋯+ (−0.89 × −37.88)

(−48.89)2 + (15.11)2 +⋯+ (−37.89)2
= −0.212 

And the same for other coefficients, 

𝑟3 = −0.076,   𝑟4 = −0.183,  𝑟5 = −0.387, 𝑟6 = −0.242, 

𝑟7 = 0.104, 𝑟8 = 0.230 

Drawing the correlogram , we have: 

Lag
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Autocorrelation Function for C2
(with 5% significance limits for the autocorrelations)

 

The following table shows the result of calculations in the Minitab : 

Autocorrelation Function: C2 

Lag  ACF       T   LBQ 
1  0.265116  0.80  0.87 
2 -0.211557 -0.59  1.50 
3 -0.076111 -0.21  1.60 
4 -0.182772 -0.49  2.26 
5 -0.386675 -1.01  5.96 
6 -0.242061 -0.57  7.89 
7  0.104208  0.24  8.43 
8  0.229851  0.52 13.66 

We can also estimate the variance of 𝑟𝑘 from relationship: 

�̂�(𝑟𝑘) ≅  
1

𝑛
 (1 + 2 ∑𝑟𝑗

2),     𝑞 < 𝑘

𝑞

𝑗=1

 

Then: 
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�̂�(𝑟1) ≅  
1

9
 (1 + 2 ∑𝑟𝑗

2),     𝑞 < 1

0

𝑗=1

 

   ≅  
1

9
(1 + 2(0)) =

1

9
  

�̂�(𝑟2) ≅  
1

9
 (1 + 2 ∑𝑟𝑗

2),     𝑞 < 2

1

𝑗=1

 

            ≅  
1

9
(1 + 2𝑟1

2) =
1

9
(1 + 2(0.2651)2) = 0.12 

 

and the same for the rest of the values we get: 
 

�̂�(𝑟3) ≅  
1

9
(1 + 2𝑟1

2 + 2𝑟2
2) ≅ 0.1367 

�̂�(𝑟4) ≅ 0.138 ,  �̂�(𝑟5) ≅ 0.1454 ,  �̂�(𝑟6) ≅ 0.1787, 

�̂�(𝑟7) ≅ 0.1931, �̂�(𝑟8) ≅ 0.2013. 

We note that the as time lag between the variables increase, then the variance of the estimated 

correlation coefficients increases. 

2- Finding the partial autocorrelation 𝑟𝑘𝑘: 
 

 
𝑟00 = 1 

𝑟11 = 𝑟1 = 0.265, 

And the rest of the coefficients are found through the recurrence relation 

𝑟𝑘𝑘 =
𝑟𝑘 − ∑ 𝑟𝑘−1,𝑗𝑟𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝑟𝑘−1,𝑗𝑟𝑗
𝑘−1
𝑗=1

,   𝑘 = 2,3, … 

 
Where, 

𝑟𝑘𝑗 = 𝑟𝑘−1,𝑗 − 𝑟𝑘𝑘𝑟𝑘−1,𝑘−𝑗     , 𝑗 = 1,2, … , 𝑘 − 1 

So,  

𝑟22 =
𝑟2 − ∑ 𝑟1,𝑗  𝑟2−𝑗

1
𝑗=1

1 − ∑ 𝑟1,𝑗  𝑟𝑗
1
𝑗=1

=
𝑟2 − 𝑟11𝑟1
1 − 𝑟11𝑟1

 

 

= 
(−0.212) − (−0.265)(0.265)

1 − (−0.265)(0.265)
= −0.304 
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𝑟33 =
𝑟3 − ∑ 𝑟2,𝑗  𝑟3−𝑗

2
𝑗=1

1 − ∑ 𝑟2,𝑗  𝑟𝑗
2
𝑗=1

=
𝑟3−[𝑟21𝑟2 + 𝑟22𝑟1]

1 − [𝑟21𝑟1 + 𝑟22𝑟2]
 

 
So we need the value of 𝑟21: 
     𝑟21 = 𝑟11 − 𝑟22𝑟11  =0.345  
Thus, 

𝑟33 =
−0.076 − [(0.345)(−0.212) + (−0.304)(0.265)]

1 − [(0.345)(0.265) + (−0.304)(−0.212)]
= 0.092 

The same calculations for the other values: 
𝑟44 = −0.298 

𝑟55 = −0.294 

𝑟66 = −0.207 

𝑟77 = 0.013 

𝑟88 = 0.042 

The variance of these coefficients is estimated by: 

�̂�(𝑟𝑘𝑘) ≅  
1

𝑛
=
1

9
 

The following table shows the result of calculations in the Minitab: 
 

Partial Autocorrelation Function: C2 

 

                                                                Lag     ACF        T 

1   0.265116   0.80 

2  -0.303151  -0.91 

3   0.091617   0.27 

4  -0.298000  -0.89 

5  -0.294454  -0.88 

6  -0.206605  -0.62 

7   0.013411   0.04 

8   0.042363   0.13 
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2.4 Time series operators 

Proper understanding of Box-Jenkins methodology (which will be discussed later) depends on 

understanding how some important operators work, such as difference operator, and backshift 

operator.  

2.4.1 Backshift operator 

If the value of the series at time 𝑡 is 𝑦𝑡, and at time 𝑟 is 𝑦𝑟 , then the backshift operator B, is 

defined as follow: 

𝐵𝑦𝑡=𝑦𝑡−1 

𝐵2𝑦𝑡=𝐵𝑦𝑡−1 = 𝑦𝑡−2 

⋮ 

𝐵𝑟𝑦𝑡=𝑦𝑡−𝑟 ,   𝑟 = 1,2, … 

 
 
For example, for the model: 

𝑦𝑡 = 𝑦𝑡−1 + 𝑒𝑡 
 
It can be rewritten using the backshift operator as follows: 

𝑦𝑡 − 𝑦𝑡−1 = 𝑒𝑡 ⇒ 𝑦𝑡 − 𝐵𝑦𝑡 = 𝑒𝑡  ⇒ (1 − 𝐵)𝑦𝑡 = 𝑒𝑡 

 
The backshift operator plays an important role in the algebraic manipulations when working 

with Box-Jenkins methodology, where it is used in polynomial forms, such as: 
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1- Autoregressive operator 

This is defined as: 

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯− 𝜙𝑝𝐵

𝑝 

Where 𝜙(𝐵) is a polynomial of order 𝑝 in the operator 𝐵, and 𝜙1, 𝜙2, … , 𝜙𝑝 are constants. 

The polynomial 𝜙(𝐵) is used with values of the time series 𝑦𝑡 as follows: 

𝜙(𝐵)𝑦𝑡 = 𝑦𝑡 − 𝜙1𝑦𝑡−1 − 𝜙2𝑦𝑡−2 −⋯− 𝜙𝑝𝑦𝑡−𝑝 

2- Moving Averages operator 

This is defined as: 

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞 

Where 𝜃(𝐵) is a polynomial of order 𝑞 in the operator 𝐵, and 𝜃1, 𝜃2, … , 𝜃𝑞 are constants. 

The polynomial 𝜃(𝐵) is used with values of the white noise process 𝜀𝑡 as follows: 

𝜃(𝐵)𝜀𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞 

2.4.2  Difference operator 

This operator is denoted as ∇, an is defined as follows: 

If we have a time series 𝑦𝑡, then the difference operator is defined as: 

∇𝑦𝑡=𝑦𝑡 − 𝑦𝑡−1 

∇2𝑦𝑡=∇∇𝑦𝑡 = ∇(𝑦𝑡 − 𝑦𝑡−1) 

                                           = (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2) 

                         = 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2 

The relationship between the backshift and difference operators can be noted from the 
following relation: 

∇= (1 − B) 
 and in general, 

∇𝑟𝑦𝑡 = (1 − B)
𝑟𝑦𝑡 

For example if we applied this relation to find ∇2𝑦𝑡, we get: 
∇2𝑦𝑡 = (1 − B)

2𝑦𝑡 

                     = (1 − 2B + B2)𝑦𝑡 

                        = 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2 
 
which is the same result that we found previously. 
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2.5 Transformations for non-stationary time series 

Time series in many applications are often not stationary in the mean, where we find the level of 

the series is either increasing or decreasing with time. It is also possible to find some series that 

have variance changing with time, and it is possible to have both forms of non stationarity to exist 

in a time series. However, luckily, in many situations it is possible to transform the time series 

into a stationary series through simple transformations. In this case we call the time series as 

homogeneous stationary time series. 

 In what follows we will cast some light on some of the most important mathematical 

transformations used to transform the nonstationary stochastic models into stationary ones. 

2.5.1  Differences of the series 

If the observed time series 𝑦𝑡 shows some trend component –either deterministic or stochastic- 

then taking the first differences of 𝑦𝑡 usually succeeds in transforming the series into a stationary 

series, so if we denote the resulting series as 𝑧𝑡, then: 

𝑧𝑡 = ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 , 𝑡 = 2,3, … , 𝑛 

 
Where 𝑛 denote the number of observations available, or what is called the length of the series. 

So, if the observations of the nonstationary series are 𝑦1, 𝑦2, … , 𝑦𝑛, then the first differences are 

found as follows: 

𝑧𝑡 = ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 𝑦𝑡−1 𝑦𝑡 

- - 𝑦1 

𝑧2 = 𝑦2 − 𝑦1 𝑦1 𝑦2 

𝑧3 = 𝑦3 − 𝑦2 𝑦2 𝑦3 

   

𝑧𝑛 = 𝑦𝑛 − 𝑦𝑛−1 𝑦𝑛−1 𝑦𝑛 

And as we note that taking differences of first order, we lose one observation, and taking 

difference of order two, we lose two observations, etc. 

Example: 

If the series 𝑦𝑡 follow the following model: 
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𝑦𝑡 = 𝛽0 + 𝛽1𝑡 +𝑊𝑡,     𝑡 = 1,2, … 𝑛 

Where {𝑊𝑡} is a stationary process having a mean 𝜇, variance 𝜎2, and covariance function 𝛾𝑘, 

prove that the series 𝑦𝑡is not stationary. How would you transform it to a stationary series? 

 
  Solution: 

𝐸(𝑦𝑡) = 𝛽0 + 𝛽1𝑡 + 𝜇 

It is clear that the mean changes with time, Therefore the series is not stationary in the mean. 

Now we find the following: 

𝑦𝑡−1 = 𝛽0 + 𝛽1(𝑡 − 1) +𝑊𝑡−1 

From which we can find the first differences: 

 

And we could create the first series of the differences ∇𝑦𝑡: 

𝑧𝑡 = ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 

= [𝛽0 + 𝛽1𝑡 +𝑊𝑡] − [𝛽0 + 𝛽1(𝑡 − 1) +𝑊𝑡−1] 

= 𝛽1 +𝑊𝑡 −𝑊𝑡−1  , 𝑡 = 2,3, … , 𝑛 

 

Now we can see the effect of taking the first differences transformation on the series: 

𝐸(𝑧𝑡) = 𝛽1 + 𝜇 − 𝜇 = 𝛽1 

This means that the series 𝑧𝑡 is stationary in the mean. 

Also, its variance is: 

 

𝑉𝑎𝑟(𝑧𝑡) = 𝑣𝑎𝑟(𝛽1 +𝑊𝑡 −𝑊𝑡−1 ) = 𝑉𝑎𝑟(𝑊𝑡 −𝑊𝑡−1) 

                                                       = 𝑉𝑎𝑟(𝑊𝑡) + 𝑉𝑎𝑟(𝑊𝑡−1) − 2𝐶𝑜𝑣(𝑊𝑡,𝑊𝑡−1) 

                                                       = 2𝜎2 − 2𝛾1 

Which is free of time 𝑡, so 𝑧𝑡 is a stationary in the variance. We can also, see the effect of difference 

operator on the auto-covariance function, lets denote the auto-covariance function for 

transformed series 𝑧𝑡 as 𝛾𝑧(𝑘), then: 

 

𝛾𝑧(1) = 𝐶𝑜𝑣(𝑧𝑡, 𝑧𝑡−1) 

= 𝐶𝑜𝑣( [𝛽1 +𝑊𝑡 −𝑊𝑡−1], [𝛽1 +𝑊𝑡−1 −𝑊𝑡−2]) 

= 𝐶𝑜𝑣(𝑊𝑡,𝑊𝑡−1) − 𝐶𝑜𝑣(𝑊𝑡,𝑊𝑡−2) − 𝐶𝑜𝑣(𝑊𝑡−1,𝑊𝑡−1) + 𝐶𝑜𝑣(𝑊𝑡−1,𝑊𝑡−2) 
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= 𝛾1 − 𝛾2 − 𝜎
2 + 𝛾1 = 2𝛾1 − 𝛾2 − 𝜎

2 

Which means that 𝛾𝑧(1) does not depend on time 𝑡. 

Similarly, we can find 𝛾𝑧(2): 

𝛾𝑧(2) = 𝐶𝑜𝑣(𝑧𝑡, 𝑧𝑡−2) 

= 𝐶𝑜𝑣( [𝛽1 +𝑊𝑡 −𝑊𝑡−1], [𝛽1 +𝑊𝑡−2 −𝑊𝑡−3]) 

= 𝐶𝑜𝑣(𝑊𝑡,𝑊𝑡−2) − 𝐶𝑜𝑣(𝑊𝑡,𝑊𝑡−3) − 𝐶𝑜𝑣(𝑊𝑡−1,𝑊𝑡−2) + 𝐶𝑜𝑣(𝑊𝑡−1,𝑊𝑡−3) 

= 𝛾2 − 𝛾3 − 𝛾1 + 𝛾2 = 2𝛾2 − 𝛾3 − 𝛾1 

Which means that 𝛾𝑧(2) does not depend on time 𝑡.  Generally, we can show that: 

𝛾𝑧(𝑘) = 2𝛾𝑘 − 𝛾𝑘+1 − 𝛾𝑘−1 

Hence, since the auto-covariance function depend on time lag 𝑘, and not on time 𝑡, so the series 

𝑧𝑡 is stationary. 

 
Example:  

If  the series 𝑦𝑡 can be modeled as: 

𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡  , 𝑡 = 1,2, … , 𝑛 

Where 𝜀𝑡 is the white noise process. Show that the series 𝑦𝑡 is not stationary. How can you 

transform it to a stationary process? 

Solution: 

𝐸(𝑦𝑡) = 𝐸(𝑦𝑡−1) + 0 

So the series is stationary in the mean, since the mean function does not depend on time 𝑡. 

And for the variance: 

𝑉𝑎𝑟(𝑦𝑡) = 𝑉𝑎𝑟(𝑦𝑡−1) + 𝜎
2 + 2𝐶𝑜𝑣(𝑦𝑡, 𝜀𝑡) 

= 𝑉𝑎𝑟(𝑦𝑡−1) + 𝜎
2 + 0 

Which indicate that 𝑉𝑎𝑟(𝑦𝑡) ≠ 𝑉𝑎𝑟(𝑦𝑡−1), so the series is not stationary in the variance. Now, 

we can try to apply the first differences operator to try to stabilize it: 

Subtracting 𝑦𝑡−1 from both sides of the model equation, we get 

𝑦𝑡 − 𝑦𝑡−1 = 𝑦𝑡−1 + 𝜀𝑡  − 𝑦𝑡−1 

i.e.   

∇𝑦𝑡 = 𝜀𝑡 

so the first difference operator transformed the series into white noise series, which is stationary 

series by definition. 
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But this is not always the case, as sometimes the variance might increase or decrease with time, 

in this case we might need a different tool for stabilizing the series. Some of common 

transformations for stabilizing the variance are mentioned in the following section. 

   

2.5.2 Variance stabilizing transformations 

 Logarithmic  

 Square root  

 Reciprocal  
The logarithmic transformation is used if the variance of the series is increasing or decreasing 

with time, and the mean is almost constant. It is assumed that the values of the observations are 

all positive (since the logarithm is only defined for positive numbers). It is also possible to use 

the square root or reciprocal transformation or any other transformation from the Box-Cox 

family of transformations. However, the logarithmic transformation is the most commonly used 

one in such cases. 

 
The most important case of non-stationarity, is the one in which lack of stationarity happens in 

both mean and variance together. Many examples in economic, social and demographic fields can 

have their values at time 𝑡  greater than their value at time 𝑡 + 1 with a constant rate, plus a 

component of random errors. In such cases we can represent the series approximately in the 

form: 

𝑦𝑡 = 𝛼 𝑦𝑡−1 + 𝑦𝑡−1  , 0 <  𝛼 < 1 

 

This kind of series features a growing trend in both mean and variance, and almost constant 

growing rate of the phenomenon. To use the logarithmic transformation, we rewrite the model 

as: 

𝑦𝑡 = (1 + 𝛼) 𝑦𝑡−1 

   Taking logarithm of the sides, we find, 

𝑙𝑛 (𝑦𝑡) = 𝑙𝑛(1 + 𝛼) + 𝑙𝑛 ( 𝑦𝑡−1) 

Subtracting 𝑙𝑛 ( 𝑦𝑡−1) from both sides, we find, 

𝑙𝑛 (𝑦𝑡) − 𝑙 𝑛(𝑦𝑡−1) = 𝑙𝑛(1 + 𝛼) = 𝛿 
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Where 𝛿 is a constant quantity, this means that : 

𝑧𝑡 = ∇𝑙𝑛 (𝑦𝑡) = 𝑙𝑛 (𝑦𝑡) − 𝑙 𝑛(𝑦𝑡−1) = 𝛿 

so the first differences of the logarithm of the data turned it into a stationary process. 

 

Notes: 
 It is recommended not to use this type of transformation before the use of the normal 

differences of the data, and if the normal differences failed to stabilize the variance, then 

we resort to logarithmic transformation. 

 You must make sure that all the values of the series are positive before using this 

transformation. In case there were negative values in the data, then you can, for example, 

address this problem by adding a certain constant term for each value so that all values 

become positive.  

 Note that the addition of a constant term to a variable does not affect the variance and the 

autocorrelation function of this variable, and therefore this process will not affect the 

autocorrelation structure of the series while helping us making it stationary.  

This transformed series can be studied and analyzed, and after the completion of the 

analysis, researcher should reverse the transformation process so that the results be 

consistent with the data he wanted to analyze in the first place. 

 In some cases, the first difference transformation may still be not stationary, and therefore 

we may need to take the second differences of logarithms to stabilize the series. 

2.5.3 Box-Cox transformations 

This family of transformations are common in the field of design of experiments, it takes 

the following form: 

𝑔(𝑥) = {
𝑥λ − 1

λ
, λ ≠ 0

ln(𝑥) , λ = 0

 

 
Note: Subtracting 1, and dividing by λ, makes the function 𝑔(𝑥) change smoothly as λ approach 

zero. As we know from mathematics of differentiation that lim
λ⟶0

𝑥λ−1

λ
= ln (𝑥). Also, note that 
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choosing λ = 0.5, impose a square root transformation, this is useful if the data are count data 

that follows Poisson distribution, and λ = −1 is the reciprocal of the data. 
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Chapter 3: Random Time Series Models  

3.1 Meaning of linearity in regression models and in time series models 

As we know in regular regression models of the form: 

𝑦 = 𝑓(𝑥1, 𝑥𝑝, … , 𝑥𝑝 + 𝛽0, 𝛽1, … 𝛽𝑝) + 𝜀 

We mean by linearity, the linearity in coefficients, or main parameters  𝜷 = (𝛽0, 𝛽1, … 𝛽𝑝)
𝑇 

Regardless of the shape of the explanatory variables 𝒙 = (𝑥1, 𝑥𝑝, … , 𝑥𝑝)
𝑇. For instance, the simple 

linear regression 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝜀   is linear regression model because it is linear in the 

parameters, the same is true for the models 𝑦 = 𝛽0 + 𝛽1𝑥1
2 + 𝜀, and 

 𝑦 = 𝛽0 + 𝛽1ln (𝑥) + 𝜀  they are all linear in the parameters, note we can redefine the explanatory 

variables as 𝑤 = 𝑥1
2 for the first model, then it takes the form of a liner model, and the estimating 

equations for the parameters are the same and will not be affected, 

 β̂ = (𝑤𝑇𝑤)−1𝑤𝑇𝑦. Whereas, the model 𝑦 = 𝛽0 + 𝛽1
2𝑥1 + 𝜀  is not linear, because it is not linear 

in the parameter 𝛽1 and thus general regression rules can’t be applied here. 

 

On the other hand, in time series context there exist many form of functions that relate the values 

of the variable under study 𝑦𝑡 with its previous values 𝑦𝑡−1, 𝑦𝑡−2, … plus the values of a completely 

random variables we called them white noise 𝜀𝑡, 𝜀𝑡−1, 𝜀𝑡−2, … . We will only study the linear time 

series models in this course. Linearity in the time series context is completely different than 

linearity in regression context, as it mean here linearity in the explanatory variables 𝑦𝑡−1, 𝑦𝑡−2, … 

but not in the model parameters. It is interesting to know that most of the time series models are 

not linear in the parameters!, and this is one of the difficulties in studying time series. 

 

3.2 Static and dynamic models 

Traditional regression models of the form  𝑦𝑡 = 𝑓(𝑥1, 𝑥𝑝, … , 𝑥𝑝 + 𝛽0, 𝛽1, … 𝛽𝑝) + 𝜀𝑡  applied to 

time series data is considered static models , that is they are not dynamic. Since the model 
 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡 depend on the variable 𝜀𝑡 which represent  the disturbance that affect the 

system at time 𝑡, but its effect does not extend to time period (𝑡 + 1) because the system at time 

(𝑡 + 1) is affected by 𝜀𝑡+1 only , and this variable is not correlated with 𝜀𝑡 (this result from the 
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definition of the white noise process), so such systems are have no memory, in the sense that it 

completely “forget” disturbances  that occurred in the past , so such systems are called “static 

systems”. 

Time series random models, on the other hand, depend on the history of the series 𝑦𝑡−1, 𝑦𝑡−2, … 

or on the disturbances occurred in the past 𝜀𝑡−1, 𝜀𝑡−2, …, or on both of them as explanatory 

variables. Thus, these models consist of three main groups of models. The first is known as the 

autoregressive models, and it is such a models where the variables 𝑦𝑡−1, 𝑦𝑡−2, … plays the role of 

explanatory variables that affect the dependent variable 𝑦𝑡. 

The simplest of these models is the autoregressive model of order one, which takes the form: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝜀𝑡  ; 𝑡 = 1,2, … , 𝑛 

 
It might be thought at first glance of the model that the system at time 𝑡depends on the variable 

𝜀𝑡only, and not on previous disturbance 𝜀𝑡−1, but checking the model carefully, then we would 

notice that the model depend on 𝜀𝑡−1 through 𝑦𝑡−1, since this variable (according to the shape of 

the model) can be written as: 

𝑦𝑡−1 = 𝛽0 + 𝛽1𝑦𝑡−2 + 𝜀𝑡−1 

 
Thus the system actually does not forget the random variable 𝜀𝑡−1, in fact it does not forget all 

the disturbances 𝜀𝑡−1, 𝜀𝑡−2, …(by continue substituting in the model). Thus the autoregressive 

model belongs to the dynamic systems. 

The second group of the random time series models is called the moving average models, and it 

is a more complicated models than the autoregressive models, where the system at time 𝑡 is 

related directly to the disturbances 𝜀𝑡−1, 𝜀𝑡−2, … that occurred in the past. Hence these models 

have memory, and belong to the dynamic systems.  

The simplest of these models is the moving average model of order one, which takes the form: 

𝑦𝑡 = 𝛽0 + 𝜀𝑡 + 𝛽1𝜀𝑡−1  ; 𝑡 = 1,2, … , 𝑛   

The third group of random time series models contains both autoregressive and moving average 

parts, where the system at time 𝑡 depends on disturbances 𝜀𝑡−1, 𝜀𝑡−2, …  and on the history of the 

phenomenon 𝑦𝑡−1, 𝑦𝑡−2, …, the simplest example of those models is the autoregressive-moving 

average model of order 1, denoted shortly as ARMA(1,1) : 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝜀𝑡 + 𝛽2𝜀𝑡−1  ; 𝑡 = 1,2, … , 𝑛   



51 
 

 

3.3  Linear Stochastic Processes 

Dynamic models assume presence of a particular form of autocorrelation between the 

observations of the time series that belong to the processes that follow the behavior of such 

models. This might lead to many difficulties when dealing with these time series, especially if 

the autocorrelation coefficients are large. This led the scientists to explore the possibility of 

studying such processes through a simpler ones. 

Wold ( ) has published his theory indicating that:  

“Every stationary process can be expressed as a linear combination of uncorrelated random 

variables with mean zero and constant variance 𝜎2” 

3.3.1 Definition of the general linear process 

The random process {𝑦𝑡} is called general  linear process  if it is possible to express it in the form: 

𝑦𝑡 = 𝜇 + 𝜀𝑡 + 𝜓1𝜀𝑡−1 + 𝜓2𝜀𝑡−2 +⋯ , 𝑡 = 0, ±1,±2,… 

Where {𝜀𝑡} is the white noise process, 𝜇 is a constant, and {𝜓𝑡} is a sequence of fixed vales. The 

process {𝑦𝑡}is stationary if one of the following conditions is satisfied: 

1- The constants 𝜓1, 𝜓2, … are finite. 

2- The constants 𝜓1, 𝜓2, … are not finite, but they are asymptotic and fulfill the condition 

∑ 𝜓𝑖
2 < ∞∞

i=0  , this ensures the variance to be finite. If the process {𝑦𝑡} is stationary then 

𝜇 is considered the mean of the process, otherwise it is just considered a reference point. 

In most of the course we will assume 𝜇 = 0, this will not affect our discussions of the 

different models we will consider), and in case 𝜇 ≠ 0  

we will assume that 𝑦𝑡 represent the original series after subtracting the constant 𝜇. 
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3.4 Invertibility formula 

Under certain conditions - we will see later – we can express the general linear process as a 

weighted sum of the history of the process 𝑦𝑡−1, 𝑦𝑡−2, … and the current disturbance value 𝜀𝑡. 

This formula is known as the π weights formula, it takes the following form: 

𝑦𝑡 = 𝜀𝑡 + 𝜋1𝑦𝑡−1 + 𝜋2𝑦𝑡−2 +⋯,   

And in short as: 

(1 − 𝜋1B − 𝜋2B
2 − 𝜋2B

2 −⋯)𝑦𝑡 = 𝜀𝑡 

Or, 

𝜋(𝐵)𝑦𝑡 = 𝜀𝑡                              (1)  

Where,  

𝜋(𝐵) = (1 − 𝜋1B − 𝜋2B
2 − 𝜋2B

2 −⋯) 

𝜋(𝐵) = 1 −∑ 𝜋𝑖B
i

∞

𝑖=1
 

The constants 𝜋1, 𝜋2, …represent the weights or important for the variables representing history 

of the process 𝑦𝑡−1, 𝑦𝑡−2, … . If the number of the weights that is not equal to zero is limited then 

we get what we call the autoregressive models of certain order, such as AR(1), and AR(2), these 

models can be stationary or not, we will discuss this later. 

 

3.5 White noise formula 

In the same manner, we can express the general linear process as a weighted sum of the  current 

and past values of the disturbances 𝜀𝑡, 𝜀𝑡−1, 𝜀𝑡−2, …. . This formula is known as the ψ weights 

formula, it takes the following form: 

𝑦𝑡 = 𝜀𝑡 + ψ
1
𝜀𝑡−1 + 𝜓2𝜀𝑡−2 +⋯,   

and in short as: 

𝑦𝑡 = (1 + ψ
1
B + ψ

2
B2 + ψ

2
B2 +⋯)𝜀𝑡 

Or, 
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𝑦𝑡 = ψ(𝐵)𝜀𝑡                          (2)  

Where,  

ψ(𝐵) =∑ ψ
𝑖
Bi  ;    ψ

0
= 1  

∞

𝑖=0
 

The constants ψ
1
,ψ

2
, … represent the weights or importance of the variables representing the 

past disturbances. If the number of the weights that is not equal to zero is limited then we get 

what we call the moving average models of certain order, such as MA(1), and MA(2). The 

polynomial ψ(𝐵) is called the transfer function, or the linear filter that associates the random 

process {𝑦𝑡} with the white noise process {𝜀𝑡}. The function ψ(𝐵) is considered as a generating 

function for the constants ψ
𝑖
, because the coefficient of Bi in the expansion of  ψ(𝐵) represent the 

weights ψ
𝑖
. 

Also, the relation between the two polynomials ψ(𝐵) and 𝜋(𝐵) can be found by substituting 𝜀𝑡 

from (1)  into (2): 

𝑦𝑡 = ψ(𝐵) 𝜋(𝐵)𝑦𝑡 

Which means,  

𝑦𝑡 = ψ(𝐵) 𝜋(𝐵)𝑦𝑡 

And thus, 

𝜋(𝐵) = ψ−1(𝐵) 

 

 

Example:      

For the model  𝑦𝑡 = 𝜀𝑡 + 0.5 𝑦𝑡−1, find the first 3 𝜋 weights , first ψ weights. 

solution:  

Using  the formula 𝑦𝑡 = 𝜀𝑡 + 𝜋1𝑦𝑡−1 + 𝜋2𝑦𝑡−2 +⋯,  we find: 

𝜋1 = 0.5  ; 𝜋2 = 𝜋3 = 0 

And for ψ weights, we find: 
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𝑦𝑡 = 𝜀𝑡 + 0.5 𝑦𝑡−1                      (i) 

Also,    

𝑦𝑡−1 = 𝜀𝑡−1 + 0.5 𝑦𝑡−2              (ii) 

 

And,                                                      𝑦𝑡−2 = 𝜀𝑡−2 + 0.5 𝑦𝑡−3              (iii) 

𝑦𝑡−3 = 𝜀𝑡−3 + 0.5 𝑦𝑡−4              (iv) 

Substitute from (ii) into (i), we find: 

𝑦𝑡 = 𝜀𝑡 + 0.5 [𝜀𝑡−1 + 0.5 𝑦𝑡−2  ] 

𝑦𝑡 = 𝜀𝑡 + 0.5 𝜀𝑡−1 + (0.5)
2 𝑦𝑡−2         (v)       

In the same manner, substitute from (iii) into (v), we get: 

𝑦𝑡 = 𝜀𝑡 + 0.5 𝜀𝑡−1 + (0.5)
2 𝜀𝑡−2   + (0.5)

3 𝑦𝑡−3        (vi)        

Also,  

𝑦𝑡 = 𝜀𝑡 + 0.5 𝜀𝑡−1 + (0.5)
2 𝜀𝑡−2   + (0.5)

3 𝜀𝑡−3  + (0.5)
4 𝑦𝑡−4            

And comparing the last equation with the ψ weights formula, we find: 

ψ
1
= 0.5, ψ

2
= (0.5)2 = 0.25, ψ

3
= (0.5)3 = 0.125 

 

Example:      

For the model  𝑦𝑡 = 𝜀𝑡 − 0.3 𝜀𝑡−1, find the first 3 𝜋 weights , first ψ weights. 

solution:  

Comparing with the 𝜋 weights formula: 

𝑦𝑡 = 𝜀𝑡 + ψ
1
𝜀𝑡−1 + 𝜓2𝜀𝑡−2 +⋯,   

We find that: 

ψ
1
= −0.3  ;ψ

2
= ψ

3
= 0 

To find the 𝜋 weights, we rewrite the model as: 

𝜀𝑡  = 𝑦𝑡 + 0.3 𝜀𝑡−1         (i) 

So that,  
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𝜀𝑡−1 = 𝑦𝑡−1 + 0.3 𝜀𝑡−2           (ii) 

𝜀𝑡−2 = 𝑦𝑡−2 + 0.3 𝜀𝑡−3              (iii) 

     𝜀𝑡−3 = 𝑦𝑡−3 + 0.3 𝜀𝑡−4              (iv) 

Substituting from (ii) into (i), we get: 

𝜀𝑡 = 𝑦𝑡 + 0.3 [𝑦𝑡−1 + 0.3 𝜀𝑡−2  ] 

𝜀𝑡 = 𝑦𝑡 + 0.3 𝑦𝑡−1 + (0.3)
2 𝜀𝑡−2         (v)       

In the same manner, substituting from (iii) into (v), we find: 

𝜀𝑡 = 𝑦𝑡 + 0.3 𝑦𝑡−1 + (0.3)
2 𝑦𝑡−2   + (0.3)

3 𝜀𝑡−3        (vi)        

And,  

𝜀𝑡 = 𝑦𝑡 + 0.3 𝑦𝑡−1 + (0.3)
2 𝑦𝑡−2   + (0.3)

3 𝑦𝑡−3  + (0.3)
4 𝜀𝑡−4            

Thus, 

𝑦𝑡 = 𝜀𝑡 − 0.3 𝑦𝑡−1 − (0.3)
2 𝑦𝑡−2  − (0.3)

3 𝑦𝑡−3  − (0.3)
4 𝜀𝑡−4            

And comparing the last equation with the 𝜋 weights formula, we find: 

𝜋1 = −0.3, 𝜋2 = − (0.3)2 = −0.09, 𝜋3 = − (0.3)
3 = −0.027 

 

3.6  Autoregressive Processes 

We mentioned earlier that any invertible linear process can be expressed as: 

𝑦𝑡 = 𝜀𝑡 + 𝜋1𝑦𝑡−1 + 𝜋2𝑦𝑡−2 +⋯,   

In fact, many of the demographic, economic, environmental, engineering and other applications 

can be represented in this form using a limited number of constants 𝜋 as follows :    

𝑦𝑡 = 𝜀𝑡 + 𝜋1𝑦𝑡−1 + 𝜋2𝑦𝑡−2 +⋯𝜋𝑝𝑦𝑡−𝑝   ;   𝑡 = 0,±1, ±2,…       

We call any process that can be represented in this form as the Auto-regressive process of order 

𝐩, and in the literature it is written in the following format: 

𝑦𝑡 = 𝜀𝑡 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯𝜙𝑝𝑦𝑡−𝑝   ;   𝑡 = 0,±1,±2,…       
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It is denoted as AR(p), the constants 𝜙1, 𝜙2, …𝜙𝑝 are the main parameters of the model, and 

they fulfill the invertibility conditions, that is because the number of non-zero 𝜋𝑖  weights is 

limited.  

These models might be stationary or not stationary, depending on the values of the parameters 

𝜙1, 𝜙2, …𝜙𝑝. The order of the models in most of the applications does not exceed 2, however in 

some applications we might need to have larger orders, especially in those where we use the AR 

models as approximations of other models such as MA models. Thus in this course we will 

concentrate on autoregressive models of order one and two (AR(1), AR(2)), and just mention 

some general remarks on the model AR(P). 

3.6.1 Auto-regressive model of order one AR (1) 

This model takes the form of regressing the value of the series at time 𝑡 (i.e 𝑦𝑡 ),  on the value of 

the series at time 𝑡 − 1 (i.e 𝑦𝑡−1 ) and the current value of the disturbance 𝜀𝑡, that the AR(1) 

model takes the form: 

𝑦𝑡 = 𝜀𝑡 + 𝜙1𝑦𝑡−1 ;   𝑡 = 0,±1,±2,…       

 

Where 𝜀𝑡 is the white noise process, 𝜙1 is a constant value representing the main parameter of 

the model, and usually we assume {𝜀𝑡} to follow normal distribution with mean zero, and 

constant variance, that is 𝜀𝑡 ~𝑖𝑖𝑑 𝑁(0, 𝜎
2) . The AR(1) process always fulfill the invertibility 

condition no matter what the value of 𝜙1, this is because: 

𝜋1 = 𝜙1, 𝜋𝑖 = 0, 𝑖 > 1 

i.e. the number of non-zero 𝜋𝑖  terms is limited. The AR(1) model can be written in the form: 

𝜙(𝐵)𝑦𝑡 = 𝜀𝑡 

 

Where 𝜙(𝐵) = 1 − 𝜙1𝐵 is called the autoregressive operator, or the model characteristic 

function. 
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3.6.1.1 stationarity condition 

We mean by the stationarity conditions, the conditions that the model must satisfy in order to 

write the model in the white noise formula that we have discussed before. We will denote the 

past values of the series as:  

𝑦𝑡−1 = 𝜙1 𝑦𝑡−2 + 𝜀𝑡−1 

𝑦𝑡−2 = 𝜙1 𝑦𝑡−3 + 𝜀𝑡−2 

⋮ 

𝑦𝑡−𝑘 = 𝜙1 𝑦𝑡−𝑘−1 + 𝜀𝑡−𝑘 

 

and substituting 𝑦𝑡−1 in the AR(1) formula, we get: 

𝑦𝑡 = 𝜀𝑡 + 𝜙1[𝜙1𝑦𝑡−2 + 𝜀𝑡−1]  = 𝜀𝑡 + 𝜙1𝜀𝑡−1 + 𝜙1
2𝑦𝑡−2 

substituting 𝑦𝑡−2 in this form, we get: 

𝑦𝑡 = 𝜀𝑡 + 𝜙1𝜀𝑡−1 + 𝜙1
2 𝜀𝑡−2 + 𝜙1

3𝑦𝑡−3 

and continue this process 𝑘 times we get: 

𝑦𝑡 = 𝜀𝑡 + 𝜙1𝜀𝑡−1 + 𝜙1
2 𝜀𝑡−2 +⋯+ 𝜙1

𝑘−1 𝜀𝑡−𝑘+1 + 𝜙1
𝑘𝑦𝑡−𝑘 

or,  

𝑦𝑡 =∑𝜙1  
𝑗
𝜀𝑡−𝑗 + 𝜙1

𝑘𝑦𝑡−𝑘 

𝑘−1

𝑗=0

 

Form the previous formula, we notice that if |𝜙1| < 1, and 𝑘 ⟶ ∞, then the term 𝜙1
𝑘𝑦𝑡−𝑘 will tend 

to zero, thus it will be possible to write the AR(1) model in the white noise formula: 

𝑦𝑡 =∑𝜙1  
𝑗
𝜀𝑡−𝑗 

𝑘−1

𝑗=0

 

And comparing this formula with the white noise formula, we notice that the coefficients in this 

formula takes the form 𝜓𝑗 = 𝜙1  
𝑗

, with the condition that |𝜙1| < 1. Notice that if 

 |𝜙1| > 1, then it is not possible to write the AR(1) model in the white noise formula, so we 

conclude that the stationarity condition for the AR(1) model is that |𝝓𝟏| < 𝟏. 
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3.6.1.2 Green function  

Usually we call the 𝜓𝑗  weights which are associated with the terms 𝜀𝑡−𝑗 in the Autoregressive 

model as Green function. This function plays an important role in describing the dynamic 

memory of the time series models, as it shows how the system 𝑦𝑡 is affected by the 

disturbances 𝜀𝑡−1, 𝜀𝑡−2, …, or in other words, how the system remember the disturbances or 

shocks that it suffered in the past. For example, the weight 𝜓3 represent the weight that will 

be given to the disturbance 𝜀 that joined the system before three time units, i.e. at time 𝑡 − 3, 

and in general the weight 𝜓𝑗  represent the weight represent the weight that will be given to 

the disturbance 𝜀 that joined the system before 𝑗 time units, i.e. at time 𝑡 − 𝑗. 

In AR(1) model we found that 𝜓𝑗 = 𝜙1  
𝑗
, |𝜙1| < 1 , and we notice that as the value of 𝜙1 

increases, the ability of the system to remember 𝜀𝑡−𝑗 will increase, i.e. the ability of the system 

in remembering the disturbances that happened in the past will increase.  For example if 𝜙1 =

0.8, then the weight given to 𝜀𝑡−4 is 𝜓4 = (0.8)4 = 0.4096 which is relatively a large value. 

Whereas, if 𝜙1 = 0.2, then the weight given to 𝜀𝑡−4 is 𝜓4 = 0.0016 that is the system has 

almost forgotten the disturbance 𝜀𝑡−4 . 

The Green function determines how fast the system revert to equilibrium state, if 𝜙1 is small, 

then the system revert quickly to the equilibrium state, but , if 𝜙1 is large, then the system 

revert slowly to the equilibrium state. 

 Equivalent stationarity condition of AR (1) model  

Stationarity condition for AR(1) model can be checked in a more general way by inspecting the 

characteristic equation of the model 𝜙(𝐵) = 1 − 𝜙1𝐵 , and if |𝜙1| < 1 then the root of the 

characteristic equation 𝜙(𝐵) = 0 must lie outside the unit circle, i.e. root must satisfy 

  |𝐵| > 1. 

3.6.1.3 Autocorrelation function of AR (1) model   

We will assume that the model satisfies the stationarity condition, |𝜙1| < 1, the model has the 

form: 
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𝑦𝑡 = 𝜙1𝑦𝑡−1+ 𝜀𝑡        

Where 𝜀𝑡 ~𝑖𝑖𝑑 𝑁(0, 𝜎
2), the white noise process. 

taking expectations for both sides: 

𝐸(𝑦𝑡) = 𝜙1𝐸(𝑦𝑡−1) + 0 

since the process is stationary, then 𝐸(𝑦𝑡) = 𝐸(𝑦𝑡−1), thus: 

𝐸(𝑦𝑡)(1 − 𝜙1) = 0 ⇒ 𝐸(𝑦𝑡) = 0 

also, the variance of 𝑦𝑡 is: 

𝑣𝑎𝑟(𝑦𝑡) = 𝜙1
2𝑣𝑎𝑟(𝑦𝑡−1)+ 𝑣𝑎𝑟(𝜀𝑡)        

and since the process is stationary, then 𝑣𝑎𝑟(𝑦𝑡) = 𝑣𝑎𝑟(𝑦𝑡−1) = 𝛾(0), so: 

𝛾(0)(1 − 𝜙1
2) = 𝜎2 

or,  

𝛾(0) =
𝜎2

(1 − 𝜙1
2)
 ,   |𝜙| < 1 

the auto-covariance at lag on 1 is: 

𝛾(1) = 𝑐𝑜𝑣 (𝑦𝑡, 𝑦𝑡−1) = 𝑐𝑜𝑣(𝜙1𝑦𝑡−1+ 𝜀𝑡 , 𝑦𝑡−1)  

                    = 𝜙1𝑐𝑜𝑣(𝑦𝑡−1 , 𝑦𝑡−1) + 𝑐𝑜𝑣(𝑦𝑡−1 ,  𝜀𝑡) 

                                     = 𝜙1𝛾(0) + 0 

and the auto-covariance at lag on 2 is: 

                   𝛾(2) = 𝑐𝑜𝑣 (𝑦𝑡, 𝑦𝑡−2) = 𝑐𝑜𝑣(𝜙1𝑦𝑡−1+ 𝜀𝑡 , 𝑦𝑡−2)       

                             = 𝜙1𝛾(1) 

in general, at lag 𝑘, it has the form: 

𝛾(𝑘) = 𝜙1𝛾(𝑘 − 1),     𝑘 = 1,2, …  
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Dividing both sides by 𝛾(0), we get the auto-correlation function of the AR(1) model: 

𝜌(𝑘) = 𝜙1𝜌(𝑘 − 1),     𝑘 = 1,2, …  

And by continually substituting we get: 

𝜌(𝑘) = 𝜙1
2𝜌(𝑘 − 2) = 𝜙1

3𝜌(𝑘 − 3) = ⋯ = 𝜙1
𝑘𝜌(0) = 𝜙1

𝑘  

Which indicate that this model remembers everything happened in the past, or we say that it has 

an infinite memory, however we notice that this memory decrease in an exponential manner as 

the time lag between current observation 𝑦𝑡 and observation 𝑦𝑡−𝑘 increases. 

To show the behavior of the auto-correlation function for the AR(1) model, we plot this function 

for some values of 𝜙1. 
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(b) ACF for AR(1) model with 

𝜙1 = 0.5 

 

(a) ACF for AR(1) model with 

(b)  𝜙1 = −0.5 

 

We notice from figure (a) that the auto-correlation takes the form of a declining sine-wave form 

because the parameter value is negative, and from figure (b) the auto-correlation takes the form 

of a declining exponential form because the parameter value is positive. Also, we note that this 

decline will be slow at the non-stationarity boundaries 𝜙1 = ±1, for example at 𝜙1 = ±0.9, the 

ACF will take the form: 
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(b) ACF for AR(1) model with 

𝜙1 = 0.9 

(a) ACF for AR(1) model with 

𝜙1 = −0.9 

Note: The general form of the AR(1) model when the model mean is not equal to zero , i.e. when 

𝐸(𝑦𝑡) = 𝜇 is: 

𝑦𝑡 − 𝜇 = 𝜙1(𝑦𝑡−1 − 𝜇) + 𝜀𝑡  

or,  

𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1 + 𝜀𝑡  

where 𝛿 = 𝜇(1 − 𝜙1). 

The AR(1) model could be interpreted for example, as if assume 𝑦𝑡 represent the number of 

population of a certain country at some year, then this number is a fraction 𝜙1 (fraction of those 

who are still alive) multiplied by the population number in the previous year 𝑦𝑡−1, added to them 

a random component 𝜀𝑡 (representing the new citizens of the country). Another example, 𝑦𝑡 

might represent number of unemployed people at a certain month, January for example, then this 

number is a fraction 𝜙1 (fraction of those who are still unemployed) multiplied by the number of 

unemployed in the previous month 𝑦𝑡−1, added to them a random component 𝜀𝑡 (representing 

the new unemployed looking for job). 
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3.6.1.4 Partial autocorrelation function for AR (1) model  

To find the partial autocorrelation function for the AR(1) model, we use the definition we have seen 

before (see page ...): 

𝜙00 = 1 ,    

𝜙11 = ρ1 = 𝜙1 =  𝜙,    

𝜙22 =
|
1 ρ1
ρ1 ρ2

|

|
1 ρ1
ρ1 1

|
=

|
1 𝜙

𝜙 𝜙2
|

|
1 𝜙
𝜙 1

|
=
𝜙2 −𝜙2

1 − 𝜙2
= 0 

 Thus for any time lag 𝑘 , we can find the partial autocorrelation function (PACF): 

𝜙kk =

|

1           𝜌1  …   𝜌1
𝜌1          1 …   𝜌2
⋮          ⋮  …    ⋮

𝜌𝑘−1    𝜌𝑘−2  …   𝜌𝑘

|

|

1           𝜌1  …   𝜌𝑘−1
𝜌1          1 …   𝜌𝑘−2
⋮          ⋮  …    ⋮

𝜌𝑘−1    𝜌𝑘−2  …    1

|

 

 

=

|

1           𝜙 …    𝜙

𝜙          1 …   𝜙2

⋮          ⋮  …    ⋮
𝜙𝑘−1    𝜙𝑘−2  …   𝜙𝑘

|

|

1             𝜙 …   𝜙𝑘

𝜙             1 …   𝜙𝑘−1

⋮               ⋮      …    ⋮
𝜙𝑘−1    𝜙𝑘−2  …    1

|

=  
0

|

1             𝜙 …   𝜙𝑘

𝜙             1 …   𝜙𝑘−1

⋮               ⋮      …    ⋮
𝜙𝑘−1    𝜙𝑘−2  …    1

|

= 0 

The determinant of the numerator equals zero because the columns are not independent, where 

we notice that the last column equals 𝜙 multiplied by the first column. So, the PACF for the AR(1) 

model have the form: 

𝜙𝑘𝑘 = {
1,         𝑘 = 0
𝜙,        𝑘 = 1
0,         𝑘 ≥ 2
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The behavior of the PACF for the AR(1) model is as follow: 
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(b) PACF for AR(1) model when 

𝜙 > 0 

(a) PACF for AR(1) model when 

𝜙 < 0 

 

3.6.2  AR (2) Model 

This model takes the form: 

𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1+𝜙2𝑦𝑡−2 + 𝜀𝑡 

 

 

Where 𝜀𝑡 is the white noise process, i.e. 𝜀𝑡 ~𝑖𝑖𝑑 𝑁(0, 𝜎
2),  and 𝜙1 , 𝜙2 are  constant values 

representing the model parameters. 

Now applying the backshift operator, we can rewrite the model in form: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2)𝑦𝑡  = 𝛿 + 𝜀𝑡 

𝑦𝑡 = (1 − 𝜙1𝐵 − 𝜙2𝐵
2)−1 𝛿 + (1 − 𝜙1𝐵 − 𝜙2𝐵

2)−1 𝜀𝑡             (1) 

Returning to the general linear process: 

𝑦𝑡 = 𝜇𝑌 +∑𝜓𝑗

∞

𝑗=0

𝜀𝑡−𝑗 

𝑦𝑡 = 𝜇𝑌 + (1 + 𝜓1𝐵 + 𝜓2𝐵
2  + 𝜓3𝐵

3 +⋯)𝜀𝑡 

𝑦𝑡 = 𝜇𝑌 + 𝜓(𝐵)𝜀𝑡                                      (2) 
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So, from (1) and (2) the Ψ(B) function for AR(2) model is: 

𝜓(B) = (1 − 𝜙1𝐵 − 𝜙2𝐵
2)−1 

Multiplying both sides by (1 − 𝜙1𝐵 − 𝜙2𝐵
2), we get: 

𝜓(B)(1 − 𝜙1𝐵 − 𝜙2𝐵
2) = 1 

That is,  

(1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯) (1 − 𝜙1𝐵 − 𝜙2𝐵

2) = 1 

And for this equality to hold, the 𝐵𝑗 coefficients for 𝑗 ≥ 0, must be equal, as follow: 

𝐵1: 𝜓1 − 𝜙1 = 0                      ⟹ 𝜓1 = 𝜙1 

                                       𝐵2: 𝜓2 − 𝜙1𝜓1 − 𝜙2 = 0      ⟹ 𝜓2 = 𝜙1𝜓1 + 𝜙2 = 𝜙1
2 + 𝜙2 

                  𝐵3: 𝜓3 − 𝜙1𝜓2 − 𝜙2𝜓1 = 0 ⟹ 𝜓3 = 𝜙1𝜓2 + 𝜙2𝜓1 

                   𝐵4: 𝜓4 − 𝜙1𝜓3 − 𝜙2𝜓2 = 0  ⟹ 𝜓4 = 𝜙1𝜓3 + 𝜙2𝜓2 

 

Thus, in general the general form of the 𝜓𝑗  weights for the AR(2) model has the form: 

𝜓𝑗 = 𝜙1𝜓𝑗−1 + 𝜙2𝜓𝑗−2  , 𝑗 ≥ 2  

And for the AR(2) to be stationary, the 𝜓𝑗  weights must converge, thus we must put some 

conditions on 𝜙1 and 𝜙2 to satisfy this: 

As we remember, the stationarity condition for AR(1) was that |𝜙| < 1 or equivalently, the 

solution of the characteristic equation (1 − 𝜙𝐵) = 0, which is 𝐵 = |
1

𝜙
| should be greater than one. 

However, for AR(2), we have a quadratic equation: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2) = 0 

So we must look at two solutions 𝐺1
−1 and 𝐺2

−1, and are usually called the solutions of the 

characteristic equation, now: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2) = (1 − 𝐺1𝐵)(1 − 𝐺2𝐵) = 0 

𝐺1
−1 and 𝐺2

−1 can be real or complex numbers. So, the stationarity conditions for the AR(2) 

process is that |𝐺1
−1| > 1 and |𝐺2

−1| > 1. 

Note: note that  |𝑥| means the absolute value for   𝑥 if it is a real number, but it means   √𝑎2 + 𝑏2 

if it is a complex number, i.e. one that can be written in the form 𝑥 = 𝑎 + 𝑖𝑏. 
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Examples: 

1- Suppose that we have an AR(2) model with parameters 𝜙1 = 0.8 and 𝜙2 = −0.15, so the 

characteristic equation has the form: 

(1 − 0.8𝐵 + 0.15𝐵2) = (1 − 0.5𝐵)(1 − 0.3𝐵) = 0 

So, the solution is 𝐺1
−1 =

1

0.5
= 2 and 𝐺2

−1 =
1

0.3
= 3.33, and both are greater than one in 

absolute value, so this model is stationary. 

2- Suppose that we have an AR(2) model with parameters 𝜙1 = 1.5 and 𝜙2 = −0.5, so the 

characteristic equation has the form: 

(1 − 1.5𝐵 + 0.5𝐵2) = (1 − 𝐵)(1 − 0.5𝐵) = 0 

So, one root is 𝐺1
−1 = 1, which is not greater than one, so this model is not stationary. 

3- Suppose that we have an AR(2) model with parameters 𝜙1 = 1 and 𝜙2 = −0.5, so the 

characteristic equation has the form: 

(1 − 𝐵 + 0.5𝐵2) = 0 

 

Which means that 𝑎 = 1 and 𝑏 = 1, in this case the solutions are: 

|𝐺1
−1| = |𝐺2

−1| = √12 + 12 = √2 

and both are greater than in one, so this model is stationary. 

 

 An equivalent method of checking stationarity of AR(2) model is  by looking directly to the 

parameters 𝜙1 and 𝜙2: 

We say that the AR(2) process is stationary if the following conditions are satisfied: 

 −1 < 𝜙2 < 1 

 𝜙1 + 𝜙2 < 1 

 𝜙2 − 𝜙1 < 1 

And if any of them is not satisfied , then the process is not stationary. 

3.6.2.1 Autocorrelation function of AR (2) model   

For simplicity, we will assume We will assume that 𝜇 = 0 , so the general  form of the model is: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜀𝑡 
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Multiply both sides by 𝑌𝑡−𝑘 and taking expectations: 

𝛾𝑘 = 𝐸[𝑦𝑡𝑦𝑡−𝑘] = 𝜙1𝐸[𝑦𝑡−1𝑦𝑡−𝑘] + 𝜙2𝐸[𝑦𝑡−2𝑦𝑡−𝑘] + 𝐸[𝜀𝑡𝑦𝑡−𝑘] 

And since 𝑌𝑡−𝑘 depends only on  𝜀𝑡−𝑘, 𝜀𝑡−𝑘−1, …, then we have: 

𝐸[𝜀𝑡𝑦𝑡−𝑘] = {
σε
2     , k = 0

0    , k = 1,2,3
 

So that, 

𝛾0 = 𝜙1𝛾−1 + 𝜙2𝛾−2 + σε
2 

= 𝜙1𝛾1 + 𝜙2𝛾2 + 𝜎𝜀
2, 

𝛾𝑘 = 𝜙1𝛾𝑘−1 + 𝜙2𝛾𝑘−2, 𝑘 > 0 

From which we can get the auto-correlation function 𝜌𝑘:  

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2   , 𝑘 = 1,2, … 

Which is the Yule-Walker equations for this model. 

For example, for 𝑘 = 1: 

𝜌1 = 𝜙1𝜌0 + 𝜙2𝜌1 

𝜌1(1 − 𝜙2) = 𝜙1  ⟹  𝜌1 =
𝜙1

(1 − 𝜙2)
 

for 𝑘 = 2: 

𝜌2 = 𝜙1𝜌1 + 𝜙2𝜌0  ⟹ 𝜌2 =
𝜙1

2

(1 − 𝜙2)
+ 𝜙2 

i.e.  

𝜌2 =
𝜙1

2 + 𝜙2 − 𝜙2
2

(1 − 𝜙2)
 

In the same manner, we gat get the form of  𝜌𝑘 for any value 𝑘. 

3.6.2.2 Partial autocorrelation function of AR (2) model   

𝜙00 = 1 , 

𝜙11 = ρ1 =
𝜙1

(1−𝜙2)
 ,    
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𝜙22 =
|
1 ρ1
ρ1 ρ2

|

|
1 ρ1
ρ1 1

|
=
ρ2 − ρ1

2

1 − ρ12
 

Where, 𝜌2 =
𝜙1

2+𝜙2−𝜙2
2

(1−𝜙2)
 . 

𝜙33 =

|

1 ρ1 ρ1=𝜙1𝜌0+𝜙2𝜌1
ρ1 1 ρ2=𝜙1𝜌1+𝜙2𝜌0
ρ2 ρ1 ρ3=𝜙1𝜌2+𝜙2𝜌1

|

|

1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

|

=
0

|

1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

|

= 0 

Because the last column is a linear combination of the first column (they are not independent). 
So, it is possible to prove that 𝜙kk = 0    for k ≥ 3. 

Thus the PACF for AR(2) can be written as follow: 

𝜙𝑘𝑘 =

{
 
 

 
 
1,                  𝑘 = 0
ρ1,                𝑘 = 1

ρ2 − ρ1
2

1 − ρ12
,   𝑘 = 2

0,                    𝑘 ≥ 3

 

Thus, we can summarize the properties of the AR(2) model as following: 

1- If the stationarity conditions are satisfied, i.e.: 

 −1 < 𝜙2 < 1   and     𝜙2 − 𝜙1 < 1        and        𝜙1 +𝜙2 < 1 

or equivalently, the roots of the characteristic equation: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2) = (1 − 𝐺1𝐵)(1 − 𝐺2𝐵) = 0 satisfy |𝐺1

−1| > 1 and |𝐺2
−1| > 1, then: 

𝐸(𝑦𝑡) =
𝛿

(1 − 𝜙1 − 𝜙2) 
 

which is a constant value for all 𝑡. 

2- The ACF depends on the values of the roots of the characteristic equation: 

a) If the roots are real, then the ACF decline in an exponential fashion. 

b) If the roots are complex, then the ACF decline in a sin-wave fashion. 

3- The PACF has only two values not equal to zero (𝜙11and 𝜙22) , whereas the rest of the 

values equal zero. 
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To show the behavior of the PACF for the AR(2) model we take the following examples. 

1- The following figure shows the ACF and  PACF for 𝜙1 = 1,𝜙2 = −0.5 : 
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(b) PACF for AR(2) model when 

𝜙1 = 1,𝜙2 = −0.5 

(a) ACF for AR(2) model when 

𝜙1 = 1,𝜙2 = −0.5 

 

We note from figure (a) that the ACF takes the form of a decaying sine-wave, and from figure (b) 

that the PACF has only two coefficients differ from zero, and the function cut-off after two time 

lags. 

2- The following figure shows the ACF and  PACF for 𝜙1 = 0.4, 𝜙2 = 0.5  : 
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(b) PACF for AR(2) model when 

𝜙1 = 0.4, 𝜙2 = 0.5  

(a) ACF for AR(2) model when 

𝜙1 = 0.4, 𝜙2 = 0.5  

The ACF decline in an exponential format, and again the PACF cuts-off after two time lags. 
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3.6.3 Autoregressive Model of order p  

This has the following form: 

𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1+𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 

Where 𝜀𝑡~𝑊𝑁(0, 𝜎
2). 

using the backshift operator: 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯− 𝜙𝑝𝐵𝑝) 𝑦𝑡 = 𝛿 + 𝜀𝑡 

or:       

ϕ(𝐵) 𝑦𝑡 = 𝛿 + 𝜀𝑡 

These models are always invertible regardless of the values of parameters 𝜙𝑖 , this is because the 

number non-zero 𝜋𝑖 weights are limited. AR(p) models might be stationary or not depending the values 

of the coefficients 𝜙𝑖,  however, it can be shown that if the roots of the characteristic function ϕ(𝐵) =

0 fall outside the unit circle, then the model is stationary. 

The autocorrelation function of the AR (p) model can be shown to satisfy the following   difference 

equation: 

𝜌𝑘 = 𝜙1𝜌𝑘−1 + 𝜙2𝜌𝑘−2 +⋯+ 𝜙𝑝𝜌𝑘−𝑝   , 𝑘 ≥ 1 

we will not derive mathematical solution of this function, however, we will just mention the forms this 

function can take (it is very similar to the forms of the AR(1), and AR(2) cases): 

The ACF extend infinitely and consist of a mixture of decaying exponential or sine-wave functions. 

So, always the ACF function is a good indicator whether a series in practical applications can be 

modeled by autoregressive models. However, it is not enough in determining the order 𝑝 of the 

autoregression, so we have to examine the PACF, which cuts-off after the order 𝑝. 

 

3.7  Moving Average Processes 

We mentioned earlier that any stationary linear process can be written in the form: 
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𝑦𝑡 = 𝜀𝑡 +∑𝜓𝑗  𝜀𝑡−𝑗 

∞

𝑗=1

;   𝑤ℎ𝑒𝑟𝑒 ∑𝜓𝑗
2

𝑗

< ∞ 

In fact many phenomena in economics or social sciences can be represented (may be after first 

or second difference) in the same manner, however with limited number of constants 𝜓𝑗 , as 

follow: 

𝑦𝑡 = 𝜀𝑡 + 𝜓1𝜀𝑡−1 + 𝜓2𝜀𝑡−2 +⋯+𝜓𝑞𝜀𝑡−𝑞   

The processes that can be represented in this form is called the Moving Average of order 𝑞, or 

MA(q) in short. In literature, it is written in a special format, so that they can be distinguished 

from other operations: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯−𝜃𝑞𝜀𝑡−𝑞 

The constants 𝜃𝑖  are the main parameters of the model. 

The MA models are always stationary no matter what the parameters values are, since the 

number of non-zero  𝜓1 values in the linear process representation are limited: 

𝜓1 = −𝜃1,  𝜓2 = −𝜃2, … , 𝜓𝑞 = −𝜃𝑞 ;   𝜓𝑗 = 0, 𝑗 > 𝑞 

Note: Sometimes it may be necessary to express these models using the past values of the series 

𝑦𝑡−1 , 𝑦𝑡−2, … , this means that we use the invertibility  formula, in which case we must put some 

conditions on the parameters 𝜃𝑖 , these conditions are called the invertibility conditions, we will 

see this conditions when discussing the models MA(1) and MA(2). 

In most applications that arise in economics and management, engineering, environmental 

studies, the value of  𝑞 is usually less than or equal 2, so we will confine ourselves to discussing 

these two models, and just mention some properties of the general MA(q) model. 

3.7.1 Moving Average of first order  MA (1) 

We say that the process {𝑦𝑡} follow a moving average model of order one if it can be 

represented as: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1  ; 𝑡 = 0, ±1,±2,…   
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Where 𝜃1 represent the main parameter of the model, and {𝜀𝑡} is the white nose process 

𝜀𝑡~𝑖𝑖𝑑  𝑁(0, 𝜎𝜀
2). 

The MA(1) model is considered as one of the important time series analysis models that is used 

in modeling inventory, quality control, temperature, pollution percentages, and general 

economic indicators after being affected by sudden disturbances either from within the system 

such as worker strikes, or from outside the system such as wars or disasters, etc.  

As mentioned earlier that the MA(1) model is always stationary, no matter what the value of 

the parameter 𝜃1 is, since: 

𝜓1 = −𝜃1 ;   𝜓𝑗 = 0,   𝑗 > 1 

The model can be written in short as: 

𝑦𝑡 = 𝜃(𝐵)𝜀𝑡 

Where 𝜃(𝐵) = 1 − 𝜃1𝐵 is a polynomial. 

The linear filter 𝜃(𝐵) is called the moving average operator, it link the process {𝑦𝑡} as an output 

with the process {𝜀𝑡} as input. 

3.7.1.1 The autocorrelation function of MA (1) 

The model is: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1   

Taking the expectation of both sides: 

𝐸(𝑦𝑡) = 𝜀𝑡 − 𝜃1𝜀𝑡−1 = 0 

  and taking the variance of both sides: 

 

 

𝑣𝑎𝑟(𝑦𝑡) = 𝛾(0) = 𝑣𝑎𝑟(𝜀𝑡 − 𝜃1𝜀𝑡−1) 
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                                          =  𝑣𝑎𝑟(𝜀𝑡) + 𝜃1
2 𝑣𝑎𝑟(𝜀𝑡−1) 

                = 𝜎𝜀
2(1 + 𝜃1

2) 

and the auto-covariance at lag one is: 

𝛾(1) = 𝑐𝑜𝑣 (𝑦𝑡, 𝑦𝑡−1) = 𝑐𝑜𝑣(𝜀𝑡 − 𝜃1𝜀𝑡−1 , 𝜀𝑡−1 − 𝜃1𝜀𝑡−2) 

= −𝜃1𝜎𝜀
2 

and at lag two: 

𝛾(2) = 𝑐𝑜𝑣 (𝑦𝑡, 𝑦𝑡−2) = 𝑐𝑜𝑣(𝜀𝑡 − 𝜃1𝜀𝑡−1 , 𝜀𝑡−2 − 𝜃1𝜀𝑡−3) = 0  

Similarly, one can show that:  𝛾(3) = 𝛾(4) = ⋯ = 0 

So the auto-covariance function for the MA(1) model can be written as: 

𝛾(𝑘) = {
𝜎𝜀
2(1 + 𝜃1

2) , 𝑘 = 0

−𝜃1𝜎𝜀
2 , 𝑘 = 1

0    , 𝑘 = 2,3, …

 

 

Note that the expectation, variance, and  auto-covariance functions of this model do not depend 

on time 𝑡, (which is expected to be, since moving average processes are always stationary). 

Now dividing by variance 𝛾(0), we get the autocorrelation function for the MA(1) model: 

𝜌(𝑘) =

{
 

 
1 , 𝑘 = 0
−𝜃1

(1 + 𝜃1
2)
 , 𝑘 = 1

0 𝑘 = 2,3, …

 

Which means that autocorrelation function of MA(1) processes cuts-off after the first time lag, 

which means that observation one time lag apart are correlated, while at larger lags they are 

not correlated. Also, note that if the sign of 𝜃1 is negative, then 𝜌(1) is positive, which means 

that large values of the series 𝑦𝑡 tend to be followed by large values, and small values are 

followed by small values, in this case the process {𝑦𝑡} is more smooth than the white noise 

process , and this smoothness increases as 𝜃1 approaches -1, and the reverse situation occurs 

when 𝜃1 is positive. 

3.7.1.2 The Partial autocorrelation function of MA (1) 

From the definition of partial auto-correlation we have, 
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𝜙00 = 1 , 

𝜙11 = ρ1 = −(
𝜃1

1 + 𝜃1
2) , 

Using the determinants to find the  partial autocorrelation functions , we find:  

𝜙22 =
|
1 ρ1
ρ1 ρ2

|

|
1 ρ1
ρ1 1

|
=
|
1 ρ1
ρ1 0

|

|
1 ρ1
ρ1 1

|
=
0 − ρ1

2

1 − ρ12
=

−θ1
2

1 + θ1
2 + θ1

4 =
−θ1

2(1 − θ1
2)

1 − θ1
6  

(where me multiplied numerator and denominator by (1 − θ1
2)). 

For k=3 we get: 

𝜙33 =

|
1 ρ1 ρ1
ρ1 1 0
0 ρ1 0

|

|

1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

|

=
ρ1
3

1 − 2ρ13
=
−θ1

3(1 − θ1
2)

1 − θ1
8  

In general we can prove that 𝜙kk =
−θ1

𝑘(1−θ1
2)

1−θ1
2(𝑘+1)    for all k > 0. Thus the PACF for the MA(1) model 

takes the same form as the ACF for the AR models: 

i) If 0 < 𝜃 < 1 ; then the PACF follow a damped exponential function. 

ii) If −1 < 𝜃 < 0 ; then the PACF follow a damped sine-wave function. 

 

To show the behavior of the ACF and PACF for the MA(1) model we take the following 
examples. 

1- The following figure shows the ACF and  PACF for 𝜃1 = −0.7 : 
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b )  PACF for MA(1) model when 

𝜃1 = −0.7 

a) ACF for MA(1) model when 

𝜃1 = −0.7 

We note from figure (a) that the ACF cuts-off after lag 1, and from figure (b) that the PACF takes 

the form of a decaying sine-wave. Also, note that �̂�1 = 0.4698 and its sign is opposite to the sign 

of 𝜃1.  

2- The following figure shows the ACF and  PACF for 𝜃1 = 0.7 : 
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b )  PACF for MA(1) model when 

𝜃1 = 0.7 

a) ACF for MA(1) model when 

𝜃1 = 0.7 

We note from figure (a) that the ACF cuts-off after lag 1, and from figure (b) that the PACF takes 

the form of a decaying exponential function. Also, note that �̂�1 = −0.4698 and its sign is opposite 

to the sign of 𝜃1.  
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3.7.1.3 Invertibility 

We have already mentioned the  invertibility (see page 51), and explained the importance of 

writing the model in terms of the past values of the series 𝑦𝑡−1, 𝑦𝑡−2, …, also, we have mentioned 

that to be able to achieve this goal we have to put some conditions on the weights 𝜋𝑖 , the 

definition of MA(1) model is: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 

rewriting it as: 

𝜀𝑡 = 𝑦𝑡 + 𝜃1𝜀𝑡−1 

From which we can get: 

𝜀𝑡−1 = 𝑦𝑡−1 + 𝜃1𝜀𝑡−2 

𝜀𝑡−2 = 𝑦𝑡−2 + 𝜃1𝜀𝑡−3 

⋮ 

𝜀𝑡−𝑘 = 𝑦𝑡−𝑘 + 𝜃1𝜀𝑡−𝑘−1 

And by continue substituting in 𝜀𝑡 = 𝑦𝑡 + 𝜃1𝜀𝑡−1, we get: 

𝜀𝑡 = 𝑦𝑡 + 𝜃1𝑦𝑡−1 + 𝜃1
2𝑦𝑡−2 + 𝜃1

3𝑦𝑡−3 +⋯+ 𝜃1
𝑘𝑦𝑡−𝑘 + 𝜃1

𝑘+1𝜀𝑡−𝑘−1 

If we continue substitute for large number of times, i.e. letting 𝑘 → ∞, then last term (𝜃1
𝑘+1𝜀𝑡−𝑘−1) 

will not diminish to zero unless we put the condition that |𝜃| < 1, whereas, if |𝜃| > 1 then it will 

not diminish to zero, and as a consequence the observations in the MA(1) model will be affected 

by all observations in the history of the series. 

3.7. 1.4 importance of Invertibility 

Invertibility is a special characteristic concerned with the models and is completely independent 

in terms of concept and importance from stationarity. Some points about its importance are: 

1. Invertibility ensures that the value 𝑦𝑡 is affected after a specific period of time by the 

nearby observations more than being affected by observations very distant apart, in fact 

we see this effect decreases in an exponential manner. 
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2. Invertibility ensures the existence of a single model corresponding to a specific auto-

correlation function.  We have found that for MA(1) model that: 

𝜌(1) =
−𝜃1

(1 + 𝜃1
2)

 

   Cross Multiplication and rearranging terms, we get: 

𝜃1
2𝜌(1) + 𝜃1 + 𝜌(1) = 0 

or,  

𝜃1
2 +

𝜃1
𝜌(1)

+ 1 = 0 

it is a quadratic function in 𝜃1 , which has two roots their multiplication equal 1, and thus 

if 𝜃1
∗is one root, then the second will be 

1

𝜃1
∗ , this means that there are two MA(1) models 

having two different values for 𝜃1 but have the same auto-correlation function! 

3. Invertibility makes it possible sometimes to use MA(q) with a small order as an 

alternative for a model that uses a large number of previous observation: 

𝑦𝑡 = 𝜀𝑡 + 𝜃1𝑦𝑡−1 + 𝜃1
2𝑦𝑡−2 + 𝜃1

3𝑦𝑡−3 +⋯ 

 

Example: 

   If  {𝑦𝑡} is a MA(1) process with 𝜃1 = 0.5, what is the auto-correlation function for this process, 

then show that there exist another value for 𝜃1 satisfy this auto-correlation function. Which value 

satisfy the invertibility condition? 

Solution: 

𝜌1 = −(
𝜃1

1 + 𝜃1
2)  ;  𝜌𝑘 = 0, 𝑘 > 1 

So if 𝜃1 = 0.5, then: 

𝜌1 = −(
0.5

1 + 0.25
) = −0.4 

Now, if we used the other root that satisfy this equation, which is 
1

𝜃1
=

1

0.5
= 2, then: 
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𝜌1 = −(

1
0.5

1 + (
1
0.5
)
2) = −0.4 

This means that 𝜃1
∗ =

1

0.5
 gives the same value for 𝜌1  as the value 𝜃1 = 0.5, so we have two MA(1) 

models having the same auto-correlation function: 

𝜌1 = {
−0.4, 𝑘 = 1
0 , 𝑘 = 2,3, …

 

The first model MA(1) with parameter 0.5, the other with parameter 2, of course the first one 

satisfies the invertibility condition ( |𝜃| < 1).  

3.7.2 Moving Average of second order  MA (2) 

We say that the process {𝑦𝑡} follow a moving average model of order two if it can be 

represented as: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2  ; 𝑡 = 0,±1,±2,…   

Where 𝜃1, 𝜃2  represent the main parameters of the model, and {𝜀𝑡} is the white nose process 

𝜀𝑡~𝑖𝑖𝑑  𝑁(0, 𝜎𝜀
2). 

The MA(2) model is similar to the MA(1) models, but it has more ability in modeling a more 

complicated situations,  as it is  used in modeling important economic indicators after being 

affected by sudden disturbances when effects of such disturbances extend to two time lags.  

Also, the MA(2) model is always stationary, no matter what the value of the parameter 𝜃1, 𝜃2  are, 

since: 

𝜓1 = −𝜃1 ; 𝜓2 = −𝜃2  ;  𝜓𝑗 = 0,   𝑗 > 2 

The model can be written in short as: 

𝑦𝑡 = 𝜃(𝐵)𝜀𝑡 
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Where 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 is a polynomial in the operator B. 

3.7.2.1 The autocorrelation function of MA (2) 

The model is: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1  − 𝜃2𝜀𝑡−2  

Taking the expectation of both sides: 

𝐸(𝑦𝑡) = 𝜀𝑡 − 𝜃1𝜀𝑡−1  − 𝜃2𝜀𝑡−2 = 0 

  and taking the variance of both sides: 

𝑣𝑎𝑟(𝑦𝑡) = 𝛾(0) = 𝑣𝑎𝑟(𝜀𝑡 − 𝜃1𝜀𝑡−1  − 𝜃2𝜀𝑡−2) 

                               =  𝑣𝑎𝑟(𝜀𝑡) + 𝜃1
2 𝑣𝑎𝑟(𝜀𝑡−1) + 𝜃2

2 𝑣𝑎𝑟(𝜀𝑡−2) 

                                                              = 𝜎𝜀
2(1 + 𝜃1

2 + 𝜃2
2) 

and the auto-covariance at lag one is: 

                               𝛾(1) = 𝑐𝑜𝑣 (𝑦𝑡, 𝑦𝑡−1) 

     = 𝑐𝑜𝑣(𝜀𝑡 − 𝜃1𝜀𝑡−1  − 𝜃2𝜀𝑡−2 , 𝜀𝑡−1 − 𝜃1𝜀𝑡−2  − 𝜃2𝜀𝑡−3) 

                                        = −𝜃1𝜎𝜀
2 + 𝜃1𝜃2𝜎𝜀

2 

                                       = −𝜎𝜀
2𝜃1(1 − 𝜃2) 

and at lag two: 

                             𝛾(2) = 𝑐𝑜𝑣 (𝑦𝑡, 𝑦𝑡−2)  

                                       = 𝑐𝑜𝑣(𝜀𝑡 − 𝜃1𝜀𝑡−1  − 𝜃2𝜀𝑡−2 , 𝜀𝑡−2 − 𝜃1𝜀𝑡−3  − 𝜃2𝜀𝑡−4) 

                                        = −𝜃2𝜎𝜀
2 

Similarly, one can show that:  𝛾(3) = 𝛾(4) = ⋯ = 0 

So the auto-covariance function for the MA(1) model can be written as: 

𝛾(𝑘) =

{
 
 

 
 𝜎𝜀

2(1 + 𝜃1
2 + 𝜃2

2), 𝑘 = 0 

−𝜎𝜀
2𝜃1(1 − 𝜃2),             𝑘 = 1

−𝜃2𝜎𝜀
2,                            𝑘 = 2

0,                              𝑘 = 2,3, …
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Note that the expectation, variance, and  auto-covariance functions of this model do 

not depend on time 𝑡, (which is expected to be, since moving average processes are 

always stationary). Now dividing by variance 𝛾(0), we get the autocorrelation 

function for the MA(2) model: 

𝜌(𝑘) =

{
 
 

 
 

 
−𝜃1(1 − 𝜃2)

(1 + 𝜃1
2 + 𝜃2

2)
,             𝑘 = 1

−𝜃2

(1 + 𝜃1
2 + 𝜃2

2)
,            𝑘 = 2

0,                              𝑘 = 2,3, …

 

Which means that autocorrelation function of MA(2) processes cuts-off after the two time lags, 

thus we say that MA(2) models have a memory size of 2. 

3.7.2.2 The Partial autocorrelation function of MA (2) 

We will not try to derive the mathematical form of this function due to the mathematical 

complications, however, we will just mention the properties and form of this function: 

1- If the roots of the quadratic function 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 = 0 are real, then the PACF 

will be in form of a decaying exponential function. 

2- If the roots of the quadratic function 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 = 0 are complex, then the 

PACF will be in form of a decaying sine-wave function. 

 

 

To show the behavior of the ACF and PACF for the MA(2) model we take the following 
examples for some values of 𝜃1 and 𝜃2: 

 

 

1. The following figure shows the ACF and  PACF for 𝜃1 = 0.7 , 𝜃2 = −0.1   : 
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b )  PACF for MA(2) model when 

𝜃1 = 0.7 , 𝜃2 = −0.1   

a) ACF for MA(2) model when 

𝜃1 = 0.7 , 𝜃2 = −0.1   

We note from figure (a) that the ACF cuts-off after lag 2, and from figure (b) that the PACF takes 

the form of a decaying exponential form.  

2) The following figure shows the ACF and  PACF for 𝜃1 = 1, 𝜃2 = −0.7 : 
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b )  PACF for MA(2) model when 

𝜃1 = 1, 𝜃2 = −0.7 

a) ACF for MA(2) model when 

𝜃1 = 1, 𝜃2 = −0.7 

We note from figure (a) that the ACF cuts-off after lag 2, and from figure (b) that the PACF takes 

the form of a decaying sine-wave function.  
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3.7.2.3 Invertibility 

We will not derive invertibility conditions for the MA(2) model, however we will just mention 

these conditions: 

 −1 < 𝜃2  < 1 

 𝜃1 + 𝜃2 < 1 

 𝜃2 − 𝜃1 < 1 

Which as we can see are very similar to the stationarity conditions of the AR(2) model. 

Example: If the model that best fits the process {𝑦𝑡} is 𝑦𝑡 = 𝜀𝑡 + 0.8𝜀𝑡−1 − 0.15𝜀𝑡−2, where {𝜀𝑡} is 

the white noise process, does this model satisfy the invertibility conditions? Explain your answer. 

Solution:     

From the model equation, we see that the model parameters are 𝜃1 = −0.8,   𝜃2 = 0.15 .  Now 

applying the invertibility conditions:  

(i) |𝜃2| = |0.15| < 1 

(ii) 𝜃1 + 𝜃2 = −0.8 + 0.15 = −0.65 < 1 

(iii) 𝜃2 − 𝜃1 = 0.15 − (−0.65) = 0.95 < 1 

Therefore, all invertibility conditions, and the process is invertible. 

3.7.3 Moving Average of order  𝒒  

This model can be written on the form: 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−𝑞  ; 𝑡 = 0,±1,±2,… 

Where 𝜀𝑡~𝑊𝑁(0, 𝜎
2), and the constants 𝜃1, 𝜃2, … 𝜃𝑞 are the model parameters. These models 

are always stationary. The models MA (𝑞) can be invertible or non-invertible depending on 

the  constants 𝜃𝑖  , but generally it can be shown that this process is invertible if the roots of 

the equation: 

𝜃(𝐵) = (1−𝜃1𝐵−𝜃2𝐵
2 −⋯−𝜃𝑞𝐵

𝑞) = 0 
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all lie outside the unit circle. 

And for autocorrelation function for the MA (𝑞) models, it can be shown to have the following 

form: 

𝜌𝑘 = {

−𝜃𝑘 + 𝜃1𝜃𝑘+1 +⋯++𝜃𝑞−𝑘𝜃𝑞

(1 + 𝜃1
2 +⋯+ 𝜃𝑞

2)
; 𝑘 = 1,2, … , 𝑞

0 ; 𝑘 > 𝑞

 

We will not derive this mathematical equation, however we will show the pattern it can take, 

which is very similar to the MA(1), and MA(2) case. The ACF cuts-off after 𝑞 time lags, this 

indicate that these processes have a memory of size 𝑞, also we can prove that there are 2𝑞 models 

with different parameters that have the same ACF , however, only one of them satisfy the 

invertibility condition. As for the partial auto-correlation function it has the same pattern as 

MA(2) model, i.e. : 

If the roots of the quadratic function 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞 = 0 are real, then the 

PACF will be in form of a decaying exponential function. 

1- If the roots of the quadratic function 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞 = 0 are 

complex, then the PACF will be in form of a decaying sine-wave function. 

 

3.8 Autoregressive- Moving Average Processes 

We say that {𝑦𝑡} follow an Autoregressive-Moving average process of order (𝑝, 𝑞), in short 

ARMA(𝑝, 𝑞) model, if it has the following form: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 +⋯+𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡−𝜃1𝜀𝑡−1 −⋯−𝜃𝑞𝜀𝑡−𝑞 

  Where 𝜀𝑡~𝑊𝑁(0, 𝜎
2), and the constants𝜙1, 𝜙2, …𝜙𝑝, 𝜃1, 𝜃2, … 𝜃𝑞 are the model parameters. We 

can express this process in the form: 

                                                                             𝜙(𝐵)𝑦𝑡 = 𝜃(𝐵)𝜀𝑡                                                           (1)    

Or,  
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(1−𝜙1𝐵−𝜙2𝐵
2 −⋯−𝜙𝑝𝐵

𝑝)𝑦𝑡 = (1−𝜃1𝐵−𝜃2𝐵
2 −⋯−𝜃𝑞𝐵

𝑞)𝜀𝑡 

Where: 

𝜙(𝐵) : the auto-regressive operator, a polynomial in powers of B. 

𝜃(𝐵) : the moving average operator, a polynomial in powers of B. 

Now, notice form (1) that: 

𝑦𝑡 =
𝜃(𝐵)

𝜙(𝐵)
𝜀𝑡 

Which is in the form of the general linear process: 

                                                                     𝑦𝑡 = ψ(𝐵)𝜀𝑡                                                                           (2) 

That is 𝑦𝑡 can be written as an infinite moving average process, and in this case we require the roots of 

the characteristic equation 𝜙(𝐵) = 0, to lie outside the unit circle as a stationarity condition for this 

model. 

Note also, that (1) can be put in the form: 

𝜀𝑡 =
𝜙(𝐵)

𝜃(𝐵)
 𝑦𝑡 

That is 𝜀𝑡 can be written as an infinite auto-regressive process, and in this case we require the roots of 

the characteristic equation 𝜃(𝐵)=0, to lie outside the unit circle as an invertibility condition for this 

model. 

By noting both (1) and (2) we find that: 

Π(𝐵) = ψ−1(𝐵) 

or,   

Π(𝐵)ψ(𝐵) = 1 

The weights 𝜓𝑗 and 𝜋𝑗 can be found by equating the coefficients of 𝐵𝑗 in both sides of equations (2) 

and (3), we will see this for the model ARMA(1,1). 
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3.8.1 ARMA (1,1) model 

We say that {𝑦𝑡} is an ARMA(1,1) process if it can be represented as: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜀𝑡−𝜃1𝜀𝑡−1 

  Where 𝜀𝑡~𝑊𝑁(0, 𝜎
2), and the constants 𝜙1, 𝜃1 are the model parameters. 

This model can be put in the form: 

𝜙(𝐵)𝑦𝑡 = 𝜃(𝐵)𝜀𝑡                         

or,  

(1−𝜙1𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

The ARMA(1,1) process is stationary if |ϕ1| < 1, in this case it can be expressed as an infinite 

moving average process, as follow: 

𝑌𝑡 = ψ(𝐵)𝜀𝑡 

where,  

ψ(𝐵) =
(1−𝜃1𝐵)

(1−𝜙1𝐵)
 

⟹ (1−𝜙1𝐵)ψ(𝐵) = (1−𝜃1𝐵) 

and thus, 

(1−𝜙1𝐵)(1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯) = (1−𝜃1𝐵) 

equating the coefficients of 𝐵𝑗 in both sides, we have; 

𝐵1: 𝜓1 − 𝜙1 = −𝜃1       ⟹ 𝜓1 = 𝜙1−𝜃1  

𝐵2: 𝜓2 −𝜙1𝜓1 = 0      ⟹ 𝜓2 = 𝜙1𝜓1 = 𝜙1(𝜙1−𝜃1)  

𝐵3: 𝜓3 −𝜙1𝜓2 = 0       ⟹ 𝜓3 = 𝜙1𝜓2 = 𝜙1
2𝜓1 = 𝜙1

2(𝜙1−𝜃1)  

Thus it is possible to get the general expression for the  𝜓𝑗  weights for the ARMA(1,1) process 

as: 

𝜓𝑗 = 𝜙1𝜓𝑗−1 = 𝜙1
𝑗−1 (𝜙1−𝜃1),   𝑗 > 0 
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The ARMA(1,1) process is invertible if |θ1| < 1, in this case it can be expressed as an infinite auto-

regressive process, as follow: 

𝑌𝑡 = Π(𝐵)𝜀𝑡 

where,  

Π(𝐵) =
 (1−𝜙1𝐵)

(1−𝜃1𝐵)
 

⟹ (1−𝜃1𝐵)Π(𝐵) = (1−𝜙1𝐵) 

and thus, 

(1−𝜃1𝐵)(1 + 𝜋1𝐵 + 𝜋1𝐵
2 +⋯) = (1−𝜙1𝐵)  

equating the coefficients of 𝐵𝑗 in both sides, we get: 

𝜋1 = 𝜙1−𝜃1  

𝜋2 = 𝜃1𝜋1 = (𝜙1−𝜃1)  

𝜋3 = 𝜃1
2𝜋2 = 𝜃1

2(𝜙1−𝜃1) 

⋮ 

  

Thus it is possible to get the general expression for the  𝜋𝑗  weights for the ARMA(1,1) process 

as: 

𝜋𝑗 = 𝜙1𝜋𝑗−1 = 𝜃1
𝑗−1 (𝜙1−𝜃1),   𝑗 > 0 

It is clear from the expression of 𝜓𝑗 and 𝜋𝑗 weights that ARMA(1,1) models can be used as an 

appropriate approximations for either MA(∞) or AR(∞), but with merit of having a limited number 

of parameters (just 2!) (parsimonious law), thus mixed models are generally used instead of the 

moving average or the autoregressive models with large orders.  

 

3.8.1.1 autocorrelation function for ARMA (1,1) model 

 
The model function is: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜀𝑡−𝜃1𝜀𝑡−1 
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Taking expectation on both sides, we find: 

𝐸(𝑦𝑡) = 𝜙1𝐸(𝑦𝑡−1) + 0 

therefore: 

𝐸(𝑦𝑡) = 0 
 

 
Taking variance of both sides: 

𝑣𝑎𝑟(𝑦𝑡) = 𝛾(0) = 𝜙1
2𝛾(0) + 𝜎𝜀

2 + 𝜃1
2 𝜎𝜀

2 − 2𝜙1𝜃1𝜎𝜀
2 

hence: 

𝛾(0) =
𝜎𝜀
2(1 + 𝜃1

2 − 2𝜙1𝜃1)

1 − 𝜙1
2  

and the auto-covariance at lag one is: 

                        𝛾(1) = 𝑐𝑜𝑣 (𝑦𝑡, 𝑦𝑡−1) 

                                  = 𝑐𝑜𝑣(𝜙1𝑦𝑡−1 + 𝜀𝑡−𝜃1𝜀𝑡−1 , 𝑦𝑡−1   ) 

                                   = 𝜙1𝛾(0) − 𝜃1𝜎𝜀
2 

Substituting the value of 𝛾(0), we get: 

𝛾(1) =
𝜎𝜀
2(𝜙1 − 𝜃1)(1 − 𝜙1𝜃1)

1 − 𝜙1
2  

and at lag two: 

                                            𝛾(2) = 𝑐𝑜𝑣 (𝑦𝑡, 𝑦𝑡−2) 

                                        = 𝑐𝑜𝑣(𝜙1𝑦𝑡−1 + 𝜀𝑡−𝜃1𝜀𝑡−1 , 𝑦𝑡−2) 

                                             = 𝜙1𝛾(1) 

Generally, we can show that: 

𝛾(𝑘) = 𝜙1𝛾(𝑘 − 1)   ; 𝑘 = 2,3, … 

So the auto-correlation coefficient at lag one is: 

𝜌(1) =
𝛾(1)

𝛾(0)
=
(𝜙1 − 𝜃1)(1 − 𝜙1𝜃1
(1 + 𝜃1

2 − 2𝜙1𝜃1)
 

and the auto-correlation coefficient at lag 𝑘 is: 
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𝜌(𝑘) =
𝛾(𝑘)

𝛾(0)
= 𝜙1𝜌(𝑘 − 1)   ; 𝑘 = 2,3, … 

or,  

𝜌(𝑘) = 𝜙1
𝑘−1𝜌(1)   ; 𝑘 = 2,3, … 

𝜌(𝑘) = {

 
(𝜙1 − 𝜃1)(1 − 𝜙1𝜃1)

(1 + 𝜃1
2 − 2𝜙1𝜃1)

,             𝑘 = 1

𝜙1
𝑘−1𝜌(1),                           𝑘 = 2,3, . .

 

So, it is clearly noted that for the ARMA(1,1) process, the ACF starts an exponential decay starting 

from 𝜌1 not from 𝜌0, as is the case in the AR(1) process. Also, note that value of 𝜌1 depends on 

both parameters 𝜙1, 𝜃1, and its sign depends on the quantity (𝜙1 − 𝜃1),  

if 𝜙1 > 𝜃1 then ρ1 > 0, and vice versa. After lag 1, the function will start to decay in exponential 

manner if 𝜙1  > 0 , or in a decaying sine-wave format if 𝜙1  < 0.  

Thus, we notice the resemblance of the ACF shape of ARMA(1,1) model to that of  the AR(1) 

model, the only difference is that decay starts after 𝜌1 not after 𝜌0. 

Example: 

If  𝑦𝑡 = 0.5𝑦𝑡−1 + 𝜀𝑡 + 0.9𝜀𝑡−1 , find the autocorrelation function and plot it, show the difference 

between this function and the AR(1) with same parameter. 

Solution: 

We have 𝜙1 = 0.5, 𝜃1 = −0.9, so using the formula of the ACF of the ARMA(1,1) model, we get: 

𝜌(1) =
(0.5 + 0.9)(1 + 0.45)

1 + 0.92 − 2(0.5)(0.91)
= 0.75 

𝜌(2) = 𝜙1
2−1𝜌(1) = (0.5)(0.75) = 0.375 

𝜌(3) = 𝜙1
3−1𝜌(1) = (0.52)(0.75) = 0.1875 

𝜌(4) = 𝜙1
4−1𝜌(1) = (0.53)(0.75) = 0.09375 

𝜌(5) = 𝜙1
5−1𝜌(1) = (0.54)(0.75) = 0.046875 

Whereas, for the AR(1) model with parameter 𝜙1 = 0.5, and using the ACF (see page 57): 
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𝜌(𝑘) = 𝜙1
𝑘𝜌(0)   ; 𝑘 = 1,2,3, … 

We get: 

  𝜌(1) = 0.5,    𝜌(2) = 0.25, 𝜌(3) = 0.125, 𝜌(4) = 0.0625  

C1

C
2

1086420

1.0

0.8

0.6

0.4

0.2

0.0

Autocorrelation function for AR(1), phi=0.5

 
C1

C
3

1086420

1.0

0.8

0.6

0.4

0.2

0.0

Autocorrelation function for ARMA(1,1), phi=0.5, theta=-0.9

 

(b) ACF for AR(1) model when 

𝜙1 = 0.5 

(a) ACF for ARMA(1,1) model when 

𝜙1 = 0.5, 𝜃1 = −0.9 

So we notice the resemblance of both function, but in ARMA(1,1), the exponential decay starts 

from 𝜌(2), whereas in AR(1) the decay starts from 𝜌(1). 

 

  

3.8.1.2 partial autocorrelation function model ARMA (1,1) 

 
We can deduce the PACF for the ARMA(1,1) model by applying the definition of partial 

autocorrelation that we have previously addressed,  

 

𝜙00 = 1 , 

𝜙11 = 𝜌1 =
(1−𝜙1𝜃1)(𝜙1−𝜃1)

1−2𝜙1𝜃1+𝜃1
2  ,    
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𝜙22 =
|
1 𝜌1
𝜌1 𝜌2

|

|
1 𝜌1
𝜌1 1

|
=
𝜌2 − 𝜙11𝜌1

2

1 − 𝜙11𝜌1
 

 

𝜙33 =
𝜌3 − 𝜙21𝜌2 − 𝜙22𝜌1
1 − 𝜙21𝜌1 − 𝜙22𝜌2

, 𝜙21 = 𝜙11 −𝜙22𝜙11 

The PACF for ARMA(1,1) either decay in an exponential manner, or in a sine-wave manner, 

exactly as the case of MA(1), except that it starts after the initial value 𝜙11 = 𝜌1.  

3.9 Integrated Autoregressive-Moving averages processes  

 
Most of the actual time series that arise in practical applications in many areas of knowledge are 

not stationary in the mean, and thus, we must use the difference transformation to make it 

stationary. Let us assume that 𝑑 is the minimum order of the differences that must be taken to 

render the series stationary.  Models that describe these processes are symbolized as 

ARIMA(𝒑, 𝒅, 𝒒) , so that to distinguish them from the stationary ARMA(𝒑, 𝒒) models. 

Thus, we say that a process {𝑦𝑡} is an ARIMA(𝒑, 𝒅, 𝒒) process if it is possible to express it in the 

form: 

𝜙(𝐵)𝛻𝑑𝑦𝑡 = 𝜃(𝐵)𝜀𝑡 

Where, 

𝜙(𝐵) = (1−𝜙1𝐵−𝜙2𝐵
2 −⋯−𝜙𝑝𝐵

𝑝), 

𝜃(𝐵) = (1−𝜃1𝐵−𝜃2𝐵
2 −⋯−𝜃𝑞𝐵

𝑞), 

𝛻𝑑 = (1 − 𝐵)𝑑 

i.e. 

 𝑦𝑡~𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) 

Usually the transformed series 𝛻𝑑𝑦𝑡 is denoted as 𝑧𝑡, i.e. is expressed as: 

𝜙(𝐵) 𝑧𝑡 = 𝜃(𝐵)𝜀𝑡 
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Where  𝑧𝑡~𝐴𝑅𝑀𝐴(𝑝, 𝑞) which is a stationary process. 

Example: 

Express the ARIMA(1,1,1) in its final form. 

 

Solution: 

The ARIMA(1,1,1) model has the form: 

(1−𝜙1𝐵)(1 − 𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 
Now putting 𝑧𝑡 = (1 − 𝐵)𝑦𝑡, we get the model: 

(1−𝜙1𝐵)𝑧𝑡 = (1−𝜃1𝐵)𝜀𝑡 

 i.e. 

𝑧𝑡 = 𝜙1𝑧𝑡−1 + 𝜀𝑡−𝜃1𝜀𝑡−1 

Substituting for 𝑧𝑡 = 𝑦𝑡 − 𝑦𝑡−1, we get: 

𝑦𝑡 − 𝑦𝑡−1 = 𝜙1(𝑦𝑡−1 − 𝑦𝑡−2) + 𝜀𝑡−𝜃1𝜀𝑡−1 

or, 

𝑦𝑡 = (1 + 𝜙1)𝑦𝑡−1 − 𝜙1𝑦𝑡−2 + 𝜀𝑡−𝜃1𝜀𝑡−1 

Which is the final form for the ARIMA(1,1,1) model. 
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Chapter 4: Parameter Estimation  

We will assume that the order of the model ARMA(p,q) have been determined, i.e., we have 

determined the values of p and q. Hence , we need to estimate the values of the parameters 𝜎𝑎
2 , 𝝓, 

and 𝜽. In what follow, we will discuss some methods for doing so. 

 

4.1 Method of Moments  

This method is considered the simplest among estimation methods, where, as we know, the 

sample moments are equated to the corresponding theoretical moments, and solving the resulting 

equations, one can get the required estimates. 

4.1.1 Autoregressive Models  

AR (1):  

As we have shown before, 𝜌1 = 𝜙1, and we estimate 𝜌1by the sample autocorrelation coefficient 

𝑟1, thus the method of moments estimate for 𝜙1 is: 

�̂�1 = 𝑟1 

  AR (2) :  

Since there are two parameters in this model that should be estimated, namely,  𝜙1 and 𝜙2, so we 

need two equations for the estimation process, in this regard we can use the Yule-   Walker (recall 

that the Yul-Walker equations have the form 𝜌𝐾 = 𝜙1𝜌𝐾−1 + 𝜙2𝜌𝐾−2 +⋯+𝜙𝑃𝜌𝐾−𝑃), so if there 

are two parameters, we need the following equations: 

𝜌1 = 𝜙1 + 𝜙2𝜌1 

𝜌2 = 𝜙1𝜌1 + 𝜙2 

Now replace 𝜌1 by 𝑟1, and 𝜌2 by 𝑟2 , and solving these equations we get: 
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�̂�1 =
𝑟1(1 − 𝑟2)

1 − 𝑟1
2  

�̂�2 =
𝑟2 − 𝑟1

2

1 − 𝑟1
2  

AR (p) :  

In this case we need to solve the following system of Yule-Walker equations: 

𝑟1 = 𝜙1 + 𝑟1𝜙2 +⋯+ 𝑟𝑝−1𝜙𝑝 

𝑟2 = 𝑟1𝜙1 + 𝜙2 +⋯+ 𝑟𝑝−2𝜙𝑝 

⋮ 

𝑟𝑝 = 𝑟𝑝−1𝜙1 + 𝑟𝑝−2𝜙2 +⋯+ 𝜙𝑝 

 

4.1.2 The Moving Average models  

Method of moments for these models is not as easy as we have seen for AR models, it might be 

even impossible for models with large orders, let us consider the MA(1) model: 

As we have shown earlier that: 

𝜌1 = −
𝜃

1 + 𝜃2
 

replacing 𝜌1 by 𝑟1, we get: 

𝑟1 = −
𝜃

1 + 𝜃2
 

From which, we will get a quadratic equation: 

𝑟1𝜃
2 + 𝜃 + 𝑟1 = 0 

In case |𝑟1| < 0.5, then the real roots of the equation are: 
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−1 ±√1 − 4𝑟1
2

2𝑟1
 

One solution satisfy the invertibility condition |𝜃| < 1 , it is possible to check that this solution is: 

𝜃 =
−1 + √1 − 4𝑟1

2

2𝑟1
 

For higher order MA models, the solutions will be more sophisticated. 

4.1.3 Estimating the white noise variance 𝝈𝒂
𝟐 

For any ARMA (p, q) model, 𝛾0 = 𝑉𝑎𝑟(𝑦𝑡) is estimated using the sample variance of the time 

series 𝑦𝑡: 

𝑆2 =
∑ (𝑍𝑡 − �̅�)

2𝑛
𝑖=1

𝑛 − 1
 

and then we use the relationship between 𝜎𝜀
2 and the parameters 𝜃 or 𝜙 to estimate 𝜎𝜀

2 for any model 

we want, for example: 

4.1.3.1 AR (p) models  

We use the following relationship that we have already obtained when discussing the AR(p) model:  

𝛾0 = 𝜙1𝛾1 + 𝜙2𝛾2 +⋯+ 𝜙𝑝𝛾𝑝 + 𝜎𝜀
2                  (∗) 

The relationship 𝜌𝑘 =
𝛾𝑘

𝛾0
⇒ 𝛾𝑘 = 𝛾0𝜌𝑘 , enable us to write (*) in the form: 

𝛾0 = 𝜙1𝛾0𝜌1 + 𝜙2𝛾0𝜌2 +⋯+ 𝜙𝑝𝛾0𝜌𝑝 + 𝜎𝜀
2 

form which: 

𝛾0 − 𝜙1𝛾0𝜌1 − 𝜙2𝛾0𝜌2 −⋯− 𝜙𝑝𝛾0𝜌𝑝 = 𝜎𝜀
2 

or: 

𝜎𝜀
2 = (1 − 𝜙1𝜌1 − 𝜙2𝜌2 −⋯− 𝜙𝑝𝜌𝑝)𝛾0 

and thereby, estimate of the white noise variance is: 

�̂�𝜀
2 = (1 − �̂�1𝑟1 − �̂�2𝑟2 −⋯− �̂�𝑝𝑟𝑝)𝑆

2  
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For example, for AR (1) model, we have, as we have already seen, one parameter estimated as �̂�1 =

𝑟1, thus the estimate of 𝜎𝜀
2 is: 

�̂�𝜀
2 = (1 − 𝑟1

2)𝑆2  

And one can estimate 𝜎𝜀
2 for any AR model, for example , for AR (2) model , the equation is 

�̂�𝜀
2 = (1 − �̂�1𝑟1 − �̂�2𝑟2)𝑆

2 

  and replace the parameter estimates �̂�1and  �̂�2 in terms of 𝑟1 and 𝑟2. 

4.1.3.2 MA (q) models 

We use the following relationship that we have already obtained when discussing the MA(q) model, 

which connects between 𝜎𝜀
2 and the parameters 𝜃1, 𝜃2, … , 𝜃𝑞 : 

𝛾0 = 𝜎𝜀
2 (1 + 𝜃1

2 +⋯+ 𝜃𝑞
2) ⟹ 𝜎𝜀

2 =
𝛾0

(1 + 𝜃1
2 +⋯+ 𝜃𝑞2)

 

Estimating 𝛾0 by the sample variance 𝑆2, we get the  following estimate of 𝜎𝜀
2 : 

�̂�𝜀
2 =

𝑆2

(1 + 𝜃1
2 + 𝜃2

2 +⋯+ 𝜃𝑞2)
 

For example, for MA (1) model:   

�̂�𝜀
2 =

𝑆2

(1 + 𝜃1
2)

 

For the mixed model ARMA (1,1), it can be shown that the equation for estimating the white noise 

variance is given the following relationship: 

�̂�𝜀
2 =

(1 − �̂�1
2) 

(1 − 2𝜃1�̂�1 + 𝜃1
2)
𝑆2  

Example: Suppose that we have observed a time series 𝑌𝑡 of size 𝑛 = 121, and we have decided that 

AR (2) model is suitable for modelling 𝑌𝑡 , also, we have estimated the sample autocorrelation 

coefficients 𝑟1 = 0.936  and 𝑟2 = 0.802. The series mean 𝜇 = 5.1069, and 𝛾0 = 𝑉𝑎𝑟(𝑦𝑡) = 𝑆2 =

1.99487. Hence, using the following relations: 

�̂�1 =
𝑟1(1−𝑟2)

1−𝑟1
2 , and �̂�2 =

𝑟2−𝑟1
2

1−𝑟1
2 , we can get the parameter estimates as follows: 
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�̂�1 =
0.936(1 − 0.802)

1 − 0.9362
= 1.50 

and, 

�̂�2 =
0.802 − 0.9362

1 − 0.9362
= −0.598 

and the estimate of the white noise variance is: 

�̂�𝜀
2 = [1 − �̂�1𝑟1 − �̂�2𝑟2]𝑆

2 

�̂�𝜀
2 = [1 − 1.50 × 0.936 − (−0.598)0.802]1.99487 = 0.388 

  So we may write the estimated model of this time series in the form: 

𝑦𝑡 − 5.1069 = 1.5(𝑦𝑡−1 − 5.1069) + 0.598(𝑦𝑡−2 − 5.1069) + 𝜀𝑡 

 where 𝜀𝑡~𝑊𝑁(0, 0.388). 

Note that the model can be written in an equivalent form as follow: 

𝑦𝑡 = −5.6074 + 1.5𝑦𝑡−1 + 0.598𝑦𝑡−2 + 𝜀𝑡 

4.2 Least Squares method 

As we have noted in the previous section that, estimation using method of moments is not a 

straightforward task if the model contains moving average terms, so we will use another method called 

the least squares method: 

4.2.1 AR (1) model: 

The model takes the form: 

𝑦𝑡 − 𝜇 = 𝜙(𝑦𝑡−1 − 𝜇) + 𝜀𝑡 

The idea of least squares is to minimize the sum of squared errors: 

𝜀𝑡 = (𝑦𝑡 − 𝜇) − 𝜙(𝑦𝑡−1 − 𝜇) 
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That is, to minimize the term: 

𝑆(𝜙, 𝜇) =∑𝜀𝑡
2

𝑛

𝑡=2

=∑[(𝑦𝑡 − 𝜇) − 𝜙(𝑦𝑡−1 − 𝜇)]
2

𝑛

𝑡=2

 

Thus, we find estimates of the parameters 𝜙 and 𝜇 by finding the corresponding values that minimize 

the term 𝑆(𝜙, 𝜇), so: 

𝜕𝑆

𝜕𝜇
=∑2[(𝑦𝑡 − 𝜇) − 𝜙(𝑦𝑡−1 − 𝜇)](−1 + 𝜙) = 0

𝑛

𝑡=2

 

And solving for 𝜇, we find: 

�̂� =
∑ 𝑦𝑡 −
𝑛
𝑡=2 𝜙∑ 𝑦𝑡−1

𝑛
𝑡=2

(𝑛 − 1)(1 − 𝜙)
 

Note that for large 𝑛,  

∑
𝑦𝑡

𝑛 − 1
≈∑

𝑦𝑡−1
𝑛 − 1

≈ �̅�

𝑛

𝑡=2

𝑛

𝑡=2

 

Thus whatever the value of 𝜙,then: 

�̂� ≈
�̅� − 𝜙�̅�

1 − 𝜙
=
�̅�(1 − 𝜙)

1 − 𝜙
= �̅� 

So we notice that the least squares method estimate  𝜇 approximately as �̅�, in case of large sample 

sizes. 

Now, to estimate 𝜙, we differentiate  𝑆(𝜙, �̅�) with respect to 𝜙 and equate it to zero,  

𝜕𝑆(𝜙, �̅�)

𝜕𝜙
= −∑2[(𝑦𝑡 − �̅�) − 𝜙(𝑦𝑡−1 − �̅�)](𝑦𝑡−1 − �̅�) = 0

𝑛

𝑡=2

 

From which we get: 

�̂� =
∑ (𝑦𝑡 − �̅�)(𝑦𝑡−1 − �̅�)
𝑛
𝑡=2

∑ (𝑦𝑡−1 − �̅�)2
𝑛
𝑡=2
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Note that in the denominator, we have one missing term, namely (𝑦𝑛 − �̅�)
2, which will make �̂� exactly 

equal 𝑟1, but for large sample sizes the effect of this missing term will be negligible, and hence the 

method of moments and least squares method produce approximately equal estimates for �̂� for large 

sample sizes. 

4.2.2  MA(1) model 

This model takes the form:      

𝑦𝑡 = 𝜀𝑡 − 𝜃𝜀𝑡−1 

We can rewrite the model in the form: 

𝜀𝑡 = 𝑦𝑡 + 𝜃𝜀𝑡−1 

and conditioning that 𝜀0 = 0, we find: 

𝜀1 = 𝑦1 

𝜀2 = 𝑦2 + 𝜃𝜀1 = 𝑦2 + 𝜃𝑦1 

𝜀3 = 𝑦3 + 𝜃𝜀2 = 𝑦3 + 𝜃𝑦2 + 𝜃
2𝑦1 

⋮ 

𝜀𝑛 = 𝑦𝑛 + 𝜃𝑦𝑛−1 +⋯+ 𝜃
𝑛−1𝑦1 

Now the value of 𝜃 is estimated by minimizing the sum of squares: 

𝑆(𝜃) =∑𝜀𝑡
2 =∑(𝑦𝑛 + 𝜃𝑦𝑛−1 +⋯+ 𝜃𝑛−1𝑦1)

2

𝑛

𝑡=1

𝑛

𝑡=1

 

Which is a non-linear equation in 𝜃, thus cannot be solved immediately, but we can use any 

numerical optimization method to solve it (for example , by the Gauss- Newton method). The same 

method is used in the case of higher order moving average models. 
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Chapter 5:  Forecasting 

 

5 .1 Introduction 

The problem of forecasting is summarized in how to employ the model that passes all diagnostic tests 

together with the observed time series at hand to predict future values that did not occur yet, i.e. the 

values 𝑦𝑡+1, 𝑦𝑡+2, … .  In other words, we want to use the current and previous observations to predict 

the observation that will occur after 𝑙 periods of time, i.e. 𝑦𝑡+𝑙 , 𝑙 = 1,2, …. We usually denote 𝑙 as 

forecast horizon or, lead time. 

Complete statistical inference for the variable 𝑦𝑡+𝑙 requires knowledge of its conditional density 

function, that is, its density function given that history of the time series is known up to time 𝑡. This is 

called the predictive distribution. Usually, we look for one suitable value to represent the center of this 

distribution in order to use it as a point estimate of the variable 𝑦𝑡+𝑙, in addition we construct a 

predictive interval around this point. 

The best value representing the center of the predictive distribution is the (average) or the expected 

value of the conditional distribution of the variable 𝑦𝑡+𝑙 given that the history of the series 

𝑦1, 𝑦2, … , 𝑦𝑡 is known. This conditional expectation is considered the best point estimate of this 

variable, because it fulfils an important characteristic which is the minimum mean square errors, 

meaning that if the model for 𝑦𝑡 is correct, then there is no other forecast produce a smaller mean 

squared errors. 

 A quick review of some of the properties of the conditional expectation: 

If X and Y are random variables having joint density function 𝑓(𝑥, 𝑦), and marginal functions 

𝑓(𝑥) and 𝑓(𝑦) respectively, then the conditional density function for the condition for 𝑌 given 𝑋 = 𝑥 

is: 

𝑓(𝑌|𝑋 = 𝑥) =
𝑓(𝑥, 𝑦)

𝑓(𝑥)
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The conditional expectation for 𝑌 given 𝑋 = 𝑥 is: 

𝐸(𝑌|𝑋 = 𝑥) = ∫ 𝑦 𝑓(𝑌|𝑋 = 𝑥)

∞

−∞

 𝑑𝑦 

Note that this is the mean of the conditional distribution, therefore all the characteristics of the mean 

function applies, for example: 

(a) 𝐸(𝑎𝑌 + 𝑏𝑍|𝑋 = 𝑥) = 𝑎𝐸(𝑌|𝑋 = 𝑥) + 𝑏𝐸(𝑍|𝑋 = 𝑥) 

(b) 𝐸(ℎ(𝑌)|𝑋 = 𝑥) = ∫  ℎ(𝑦)𝑓(𝑌|𝑋 = 𝑥)
∞

−∞
 𝑑𝑦 

Also, the mean of the conditional distribution, has the following properties: 

1- 𝐸(ℎ(𝑋)|𝑋 = 𝑥) = ℎ(𝑥) 

       Which means that knowing that 𝑋 = 𝑥, i.e. it takes a fixed value, then ℎ(𝑥) is considered   

         a constant function. 

2- 𝐸(𝐸(𝑌|𝑋)) = 𝐸(𝑦) ,  and if Y and X are independent then,  𝐸(𝑌|𝑋) = 𝐸(𝑌). 

 

5.2 Forecasting functions for ARMA models  

As we have already mentioned, one of the objectives of time-series analysis is to build mathematical 

models and use them in forecasting future values of the time series. 

Let us consider the series {𝑌𝑡} and suppose that we can write it in the form of  ARMA (p, q)  

model or the general linear model form: 

𝜙(𝐵)𝑦𝑡 = 𝜃(𝐵)𝜀𝑡 

Which can be written as: 

𝑦𝑡 =
𝜃(𝐵)

𝜙(𝐵)
𝜀𝑡 

                                                                      = 𝜓(𝐵)𝜀𝑡 

Also, suppose that we have observed the series up to time 𝑡, i.e. that we have the observations 

𝑦𝑡, 𝑦𝑡−1, …., let’s denote it as �̃� = (𝑦𝑡, 𝑦𝑡−1, … ), we will discuss how to use the available  

observations up to time 𝑡 to predict the future value of the series at time 𝑡 + 1, i.e.  𝑦𝑡+1. We denote 
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this predictor at time 𝑡 and for one step in the future as 𝑦𝑡(1), and in general for 𝑙 steps in the future 

as 𝑦𝑡(𝑙), where 𝑡 is called the time origin, and 𝑙 is called the lead time. 

5.3 Minimum Mean Square Error Forecast 

We will denote this as �̂�𝑡(𝑙), and it is given by: 

�̂�𝑡(𝑙) = 𝐸(𝑦𝑡+𝑙|𝑦𝑡, 𝑦𝑡−1, … )                                                           (∗) 

In other words, it is the conditional expectation of the studied phenomenon at time 

 𝑡 + 𝑙, provided that the values of the phenomenon until the time 𝑡 is known. We'll discuss below 

how to get the forecasts for some ARMA models. 

5.4 AR (1) Model 

As we know the general form of the AR (1) model is: 

𝑦𝑡 − 𝜇 = 𝜙(𝑦𝑡−1 − 𝜇) + 𝜀𝑡 

If we want to predict one step in the future, we replace 𝑡 with 𝑡 + 1: 

𝑦𝑡+1 − 𝜇 = 𝜙(𝑦𝑡 − 𝜇) + 𝜀𝑡+1 

Applying the definition of minimum mean square error forecast by taking the conditional 

expectation of both sides: 

�̂�𝑡(1) − 𝜇 = 𝐸[(𝑦𝑡+1 − 𝜇)|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1]  

we get: 

�̂�𝑡(1) − 𝜇 = 𝜙[𝐸(𝑦𝑡|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) − 𝜇] + 𝐸(𝜀𝑡+1|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) 

using property number (1) of the conditional expectation we get: 

𝐸(𝑦𝑡|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) = 𝑦𝑡  

and since 𝜀𝑡+1 is independent  from 𝑌𝑡, 𝑌𝑡−1, … , 𝑌1, we get from property (2): 

𝐸(𝜀𝑡+1|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) = 𝐸(𝜀𝑡+1) = 0 

thus,  

�̂�𝑡(1) = 𝜇 + 𝜙(𝑦𝑡 − 𝜇)  
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In the same way, we can find the forecast for any value 𝑙, where we replace 𝑡 with 𝑡 + 𝑙 as follows: 

𝑦𝑡+𝑙 − 𝜇 = 𝜙(𝑦𝑡+𝑙−1 − 𝜇) + 𝜀𝑡+𝑙 

Thus �̂�𝑡(𝑙) is given by the conditional expectation: 

�̂�𝑡(𝑙) = 𝜇 + 𝜙[𝐸(𝑦𝑡+𝑙−1|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) − 𝜇] + 𝐸(𝑎𝑡+𝑙|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) 

                                 = 𝜇 + 𝜙[�̂�𝑡(𝑙 − 1) − 𝜇],    𝑙 ≥ 1  

Note that the previous equation provide forecasts for lead time 𝑙 in terms of previous forecasts 

�̂�𝑡(𝑙 − 1).  Also we can use this equation to find a prediction of any value 𝑙 ,  in terms of the original 

values : 

  𝑙 = 1:      �̂�𝑡(1) = 𝜇 + 𝜙(𝑦𝑡 − 𝜇)         

𝑙 = 2:   �̂�𝑡(2) = 𝜇 + 𝜙[�̂�𝑡(1) − 𝜇] = 𝜇 + 𝜙[𝜇 + 𝜙(𝑦𝑡 − 𝜇) − 𝜇] = 𝜇 + 𝜙
2(𝑦𝑡 − 𝜇) 

𝑙 = 3:   �̂�𝑡(3) = 𝜇 + 𝜙[�̂�𝑡(2) − 𝜇] = 𝜇 + 𝜙[𝜇 + 𝜙
2(𝑦𝑡 − 𝜇) − 𝜇] = 𝜇 + 𝜙

3(𝑦𝑡 − 𝜇) 

 In general, 

�̂�𝑡(𝑙) = 𝜇 + 𝜙
𝑙(𝑦𝑡 − 𝜇),    𝑙 ≥ 1  

                                       

Example: Suppose that we have the following AR (1) model: 

𝑦𝑡 = 10 + 0.7(𝑦𝑡−1 − 10) + 𝜀𝑡 

  and that the current value of the series is equal to 10.6, then one-time period ahead forecast is given 

as: 

        �̂�𝑡(1) = 10 + 𝜙1(𝑦𝑡 − 10),            

                                    = 10 + 0.7 × (10.6 − 10) = 10.42 

 

and for two-time periods ahead, the forecast is: 

�̂�𝑡(2) = 10 + 𝜙2(𝑦𝑡 − 10), 

                                                                           = 10 + 0.72(10.6 − 10) = 10.294 
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of course, it was possible to get the forecasts in terms of previous forecasts �̂�𝑡(. ): 

                                                              �̂�𝑡(1) = 10.42 

�̂�𝑡(2) = 10 + 0.7[�̂�𝑡(1) − 10] 

                                                                       = 10 + 0.7[10.42 − 10] = 10.294  

 

Remark: We can evaluate the error of one-step ahead forecast for the AR(1) model, as follow: 

                                                         𝑒𝑡(1) = 𝑦𝑡+1 − �̂�𝑡(1)      

                                               = 𝜇 + 𝜙(𝑦𝑡 − 𝜇) + 𝜀𝑡+1 − [𝜇 + 𝜙(𝑦𝑡 − 𝜇)] = 𝜀𝑡+1 

The white noise process {𝜀𝑡} can now be reinterpreted as a sequence of one-step ahead forecast errors. 

We shall see that this is true for all ARMA models. Also,  the equation implies that 𝑒𝑡(1) is 

independent of the process history 𝑦𝑡, 𝑦𝑡−1, … up to time 𝑡. If this were not so, the dependence could 

be exploited to improve our forecast. 

                                              

                                          

5.5 MA(1) Model  

As we know the general form of the model is: 

𝑦𝑡 = 𝜇 + 𝜀𝑡 − 𝜃𝜀𝑡−1 

If we want to predict one step in the future, we replace 𝑡 with 𝑡 + 1: 

𝑦𝑡+1 = 𝜇 + 𝜀𝑡+1 − 𝜃𝜀𝑡 

Applying the definition of minimum mean square error forecast by taking the conditional expectation 

of both sides: 

�̂�𝑡(1) = 𝜇 + 𝐸(𝜀𝑡+𝑙|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) − 𝜃𝐸(𝜀𝑡|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) 
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But: 

 

𝐸(𝜀𝑡+𝑙|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) = 0 

𝐸(𝜀𝑡|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) = 𝜀𝑡 

 

so the one-step ahead forecast is: 

�̂�𝑡(1) = 𝜇 − 𝜃𝜀𝑡  

and the forecast error is: 

                         𝑒𝑡(1) = 𝑌𝑡+1 − �̂�𝑡(1)      

                                               = (𝜇 + 𝜀𝑡+1 − 𝜃𝜀𝑡) − (𝜇 − 𝜃𝜀𝑡) = 𝜀𝑡+1                               

                                        

which is the same result we obtained for the process AR (1). 

To forecast future values in the process MA (1) for values 𝑙 > 1: 

               �̂�𝑡(𝑙) = 𝜇 + 𝐸(𝜀𝑡+𝑙|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) − 𝜃𝐸(𝜀𝑡+𝑙−1|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) 

                         = 𝜇 + 𝐸(𝜀𝑡+𝑙) − 𝜃𝐸(𝜀𝑡+𝑙−1) 

                        = 𝜇 + 0 − (𝜃)0 = 𝜇 ,    𝑙 > 1 

 In other words, in the process MA (1) if we want to predict for a period greater than one , the best 

prediction this process provide us is the mean of the series. 

 

5.6 Some results for the general ARMA (p, q) process 

The relationship that gives the forecasts of this model are as follows: 

�̂�𝑡(𝑙) = 𝜇 + 𝜙1[�̂�𝑡(𝑙 − 1) − 𝜇] + 𝜙2[�̂�𝑡(𝑙 − 2) − 𝜇] + ⋯+𝜙𝑝[�̂�𝑡(𝑙 − 𝑝) − 𝜇]

−    𝜃1𝐸(𝜀𝑡+𝑙−1|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) − ⋯−𝜃𝑞𝐸(𝜀𝑡+𝑙−𝑞|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) 

Where: 
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𝐸(𝜀𝑡+𝑗|𝑦𝑡, 𝑦𝑡−1, … , 𝑦1) = {
0          , 𝑗 ≥ 1
𝜀𝑡+𝑗       , 𝑗 ≤ 0} 

For example, for ARMA (1,1): 

The model has the form, 

𝑦𝑡 = 𝜇 + 𝜙(𝑦𝑡−1 − 𝜇) + 𝜀𝑡 − 𝜃𝜀𝑡−1 

and forecasts are given by the relation: 

 

�̂�𝑡(1) = 𝜇 + 𝜙(𝑦𝑡 − 𝜇) − 𝜃𝜀𝑡 ,           (1) 

�̂�𝑡(2) = 𝜇 + 𝜙[�̂�𝑡(1) − 𝜇],                    (2) 

 

and in general: 

�̂�𝑡(𝑙) = 𝜇 + 𝜙[�̂�𝑡(𝑙 − 1) − 𝜇],    𝑙 ≥ 2           (3) 

also we can use the relations ( 1 ) to ( 3 ) to find forecasts in terms of the original values of the series 

as  follow: 

�̂�𝑡(𝑙) = 𝜇 + 𝜙
𝑙(𝑦𝑡 − 𝜇) − 𝜙

𝑙−1𝜃𝜀𝑡,    𝑙 ≥ 1  

In the same way that has been used previously, we can find the forecasting error for the one-step 

ahead forecast of the ARMA(1,1) model  as follows: 

                               𝑒𝑡(1) = 𝑦𝑡+1 − �̂�𝑡(1) 

= 𝜙(𝑦𝑡 − 𝜇) + 𝜀𝑡+1 − 𝜃𝜀𝑡 − [𝜙(𝑦𝑡 − 𝜇) − 𝜃𝜀𝑡] 

                                              = 𝜀𝑡+1 

 

which is the same result that have already been obtained for the other models. 

The forecast error for any lead time could be written as (we will not prove this): 

𝑒𝑡(𝑙) =  ∑𝜓𝑗𝜀𝑡+𝑙−𝑗

𝑙−1

𝑗=0
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And therefore any ARMA model we have: 

𝐸[𝑒𝑡(𝑙)] =∑𝜓𝑗  𝐸(𝜀𝑡+𝑙−𝑗) = 0,    𝑙 ≥ 1

𝑙−1

𝑗=0

 

This means that the average forecast error is equal to zero, i.e. they are unbiased. The forecast error 

variance is: 

𝑉𝑎𝑟[𝑒𝑡(𝑙)] = 𝜎𝜀
2∑𝜓𝑗

2 ,     ≥ 1

𝑙−1

𝑗=0

 

From which we note that the forecast error variance increases as lead time increase. 

5.7 Confidence intervals for forecasts 

If we assume that the terms of the white noise process follow the normal distribution, then it is also 

possible to show that the forecast error 𝑒𝑡(𝑙) will also follow the normal distribution, then a 

(1 − 𝛼)100% for the future value 𝑦𝑡+𝑙 is given as, 

�̂�𝑡(𝑙) ± 𝑧1−𝛼
2
√𝑣𝑎𝑟(𝑒𝑡(𝑙)) 

 

5.8 Forecast update for ARMA (p, q) models  

Suppose for instance that we study a monthly time series, and that we have observed the series until 

month number 6, and we have forecasted the values of the series for months: 7,8, and 9, that is we 

have lead time  𝑙 = 3. Assume that later we got the actual value of the series for the month 7. Then 

we can use this new value to modify our forecast for the months 8 and 9, this procedure is called 

forecast update. 

In general, we have the observations 𝑦1, 𝑦2, … , 𝑦𝑡, let the time origin is 𝑡, and lead time 𝑙, our forecast 

for (𝑙 + 1) steps ahead is denoted �̂�𝑡(𝑙 + 1), and when the observation at time 𝑡 + 1 become 

available, i.e. observation 𝑦𝑡+1, then we want to update our original value to be �̂�𝑡+1(𝑙). The equation 

for getting this update is: 

�̂�𝑡+1(𝑙) = �̂�𝑡(𝑙 + 1) + 𝜓𝑙[𝑦𝑡+1 − �̂�𝑡(1)] 
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Example: 

Suppose that the model which was applied to a time series is the AR (2), and the time origin was 𝑡 =

121, that is we have the observed time series 𝑦1, 𝑦2, … , 𝑦121 , and that we have the following 𝜓  

values, 𝜓1 = 1.563 and 𝜓2 = 1.46 and that we got the following forecasts from the model: 

 �̂�121(1) = 5.81027  , �̂�121(2) = 5.48419 ,   �̂�121(3) = 5.3215   

Suppose now that we have obtained the actual value for time 𝑡 = 122, which is 𝑦122 = 5.9, then our 

update for the forecast at time 𝑡 = 123 (i.e. 𝑙 = 1) becomes: 

𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 + 𝜓1[𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 ] 

�̂�122(1) = �̂�121(2) + 𝜓1[𝑦122 − �̂�121(1)] 

                                                           = 5.48419 + 1.563[5.9 − 5.81027]  

                                                           = 5.62444 

Also, our update for the forecast at time 𝑡 = 124 (i.e. 𝑙 = 2) becomes: 

𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 + 𝜓2[𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 ] 

�̂�122(2) = �̂�121(3) + 𝜓2[𝑦122 − �̂�121(1)] 

= 5.3215 + 1.46[5.9 − 5.81027] 

= 5.4525 
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Chapter 6:  Box-Jenkins Methodology 

 

The methodology developed by the scientists Box and Jenkins in their important book: 

" Time Series Analysis, Forecasting and control (1976) ", consist of several steps: 

1- identification 

2- estimation 

3- diagnosis 

4- forecasting 

We have already discussed the estimation step (chapter 4), and forecasting step (chapter 5), in the 

following sections we will look at identification and diagnosis steps with application to some data 

sets to be able to understand this methodology well. 

6.1 identification 

The first stage of the analysis of time series is to identify the initial model appropriate to the 

observed time series data. The meaning of identification is to choose the rank of the three parameters 

(𝑝, 𝑑, 𝑞), where 𝑑 represent the order of differencing needed to make the series stationary, 𝑝 represent 

number of past observations that should be included in the initial model. Whereas, 𝑞 represent number 

of white noise terms to be included in the initial model. 

Application of Box and Jenkins methodology requires in addition to the theoretical foundations, skill 

and experience and some amount of personal judgment of the researcher, here are some important 

points regarding the application of this methodology: 

a)  In this stage selection of the  initial 𝐴𝑅𝑀𝐴(𝑝, 𝑑, 𝑞) model  adequate for the time series 

is governed by theoretical and scientific foundations, and the skill of the researcher and his 

ability to judge how the data characteristics is compatible with the characteristics of the random 

process that may have produced this data set. 
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b) The selected model in the initial stage is not final and may be modified or improved, or even 

to reach to a completely different model in the advanced stages of study and analysis. 

c) In this stage, the researcher might arrive to different appropriate models, he has to carry these 

models with him for further stages of analysis hoping that at the end he will keep the best model 

capable of representing the characteristics of the time series data set he is analyzing. 

6.1.1 Determine the rank of differences 

We mentioned earlier (see page 20….) that most of the time series that arise in the various application 

fields might show signs of non-stationarity either in the mean, the variance or in both. 

 

In fact, non-stationarity may occur in several ways. We have earlier mentioned that judging the 

stationarity of certain time series by examining the roots of the characteristic equation ϕ(B) = 0 . If the 

roots of this equation lie outside the unit circle, it means that the series is stationarity, in which case 

the autocorrelation function decrease rapidly with increasing time lags. However, if a root is located on 

the unit circle, it means that the process or the series is not stationarity but homogeneous. This kind of 

non-stationarity is the characteristic of most of the actual time series that arise in practical 

applications. It can be converted to a stationary series using the mathematical transformations we have 

seen before (see page 44 ). 

Now, how to determine appropriate value of 𝑑 in order to convert non-stationarity series in the mean 

to a stationary one? In fact, the first thing to check before determining the value of 𝑑 is to check the 

variance stationarity of the series, by checking the time scatter plot of the  original series 𝑦𝑡. If the 

variance is not stable, it must be made stationary by taking logarithms of the original series. Usually 

logarithms succeed in stabilizing the variance, but in some cases we may need to use another 

transformation such as square root or cubic root or any other transformation. After that, to determine 

the value 𝑑 we follow the following steps: 

 Plotting time curve of the original series 𝑦𝑡, and the sample autocorrelation function (SACF) 𝑟𝑘 

(the correlogram). If the time curve does not show obvious signs of non-stationarity, and 𝑟𝑘 decrease 

rapidly to zero as time lag increase, then the series is considered stationary and we do not need to 

take any differences, i.e. let 𝑑 = 0, and move on to deciding the values of  𝑝 and 𝑞. 
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 If the time curve shows lack of stationary in the mean and the SACF decay slowly with increasing 

time lag, then we must take the first differences of the time series, and then again plot the time curve, 

and the correlogram for the series of first differences, 𝑧𝑡. If  both shows no sign of non-stationarity, 

then we let 𝑑 = 1, and move on to deciding the values of  𝑝 and 𝑞. 

 If the time curve of the series 𝑧𝑡 still shows lack of stationary in the mean, and the SACF decay 

slowly with increasing time lag, then we must take the second differences of the time series, and study 

the transformed series in the same manner as above. 

Usually small values for 𝑑, like 𝑑 = 0,1,2 are enough to make the time series stationary in most 

practical applications. Also, you should pay attention to the seriousness of taking unnecessary 

differences, although taking differences of a stationary series also produces stationary series, 

however, this process leads to: 

(1) a model that contains unnecessary additional parameters, 

(2) a more complicated auto-correlation pattern, 

(3)  increases the variance of the series. 

Example: 

 consider the following series: 

𝑦𝑡 = 𝜀𝑡 

 Where {𝜀𝑡} is the white noise process. Discuss the stationarity of the series, and then take the first 

differences of the series, and again the discuss the stationarity and the variance of the differenced series. 

solution:  

As we note the original series 𝑦𝑡 is exactly the white noise process, which, as we know, is stationary, 

and have no parameters, and has auto-correlation function equal to zero for all time lags 𝑘. 

  

Now let's take the first differences transformation of the process 𝑦𝑡: 

𝑧𝑡 = ∇𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = 𝜀𝑡 − 𝜀𝑡−1 
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Thus we see that the resulting model is the moving average model of order one, with parameter 

θ = 1, which , of course does not fulfil the invertibility condition , but it is stationary, because all 

the moving average models are stationary. Thus by this transformation we have complicated 

the model (from the simple white noise model to non invertable MA(1) model).  The variance of 

the original model is: 

𝑣𝑎𝑟(𝑦𝑡) = 𝑣𝑎𝑟(𝜀𝑡) = 𝜎𝜀
2 

and the autocorrelation function is: 

𝜌𝑘 = 0,   𝑘 ≥ 1 

Now the variance of the transformed model is: 

𝑣𝑎𝑟(𝑧𝑡) = 𝑣𝑎𝑟(𝜀𝑡) + 𝑣𝑎𝑟(𝜀𝑡−1) = 2𝜎𝜀
2 

This means that the transformation has made the variance increase to double the original variance. 

The autocorrelation function is: 

𝜌𝑘 = {
−0.5, 𝑘 = 1
0, 𝑘 > 1

 

so we note that the degree of complexity of the correlation function has increased after 

transformation. 

 

6.1.2 determine the order of the moving average and autoregressive models 

After determining the necessary differences to render the series stationarity (and before 

that determining the need to take a logarithmic, or a square-root or other transformations to stabilize 

the variance), one must determine the order of the autoregressive and the moving average parts of the 

model. The autocorrelation function and the partial autocorrelation function are the most effective tools 

in distinguishing between 𝐴𝑅(𝑝), 𝑀𝐴(𝑞) or 𝐴𝑅𝑀𝐴(𝑝, 𝑞) models and determining the order of each 

of them.  We here recall the  theoretical forms of these functions for the 𝐴𝑅(𝑝), 𝑀𝐴(𝑞) or 𝐴𝑅𝑀𝐴(𝑝, 𝑞) 

models: 

 



111 
 

Model 𝜌𝑘 𝜙𝑘𝑘 

𝐴𝑅(1) Approach zero exponentially 

or in a sinusoidal manner 

Cut off completely after the 

first time lag 

𝐴𝑅(2) Approach zero exponentially 

or in a sinusoidal manner 

Cut off completely after the 

second time lag 

𝐴𝑅(𝑝) Approach zero exponentially 

or in a sinusoidal manner 

Cut off completely after time 

lag 𝑝 

𝑀𝐴(1) Cut off completely after the 

first time lag 

Approach zero exponentially 

or in a sinusoidal manner 

𝑀𝐴(2) Cut off completely after the 

second time gap 

Approach zero exponentially or 

in a sinusoidal manner 

𝑀𝐴(𝑞) Cut off completely after a time 

gap 𝑞 

Approach zero exponentially or 

in a sinusoidal manner 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) 

Gradually approaching zero 

after (𝑞 − 𝑝) lags 

exponentially or in a 

sinusoidal manner 

Gradually approaching zero 

after (𝑝 − 𝑞) lags 

exponentially or in a 

sinusoidal manner 

 

The characteristics of the autocorrelation and the partial autocorrelation functions mentioned in the 

table above are the theoretical characteristics of the stochastic process, but, as we know, there exist 

differences between the theoretical characteristics of the stochastic process that generated the observed 

time series (what is called in the field of statistics as population), and the properties of the observed 

time series (what is called the sample) because of the sampling errors. Anyway, if the length of the 

series (sample size) is large, then we expect that the sample autocorrelation function 𝑟𝑘 will reflect 

approximately the characteristic of the theoretical autocorrelation function 𝜌𝑘, the same is true for 𝑟𝑘𝑘 

and 𝜙𝑘𝑘. 
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To explain this, let’s consider that sampling is from a MA(2) process, where in this process the 

autocorrelation function 𝜌𝑘 is characterized by complete cut off off after time lag 2, as in figure (a) 

below, however, the ample that might result from such processes might not produce an estimated 

autocorrelation function 𝑟𝑘 that cut off exactly after time lag 2, see figure (b), 
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b) sample autocorrelation function 𝑟𝑘 for 

MA(2) model 

a) theoretical autocorrelation function 

𝜌𝑘 for MA(2) model 

 

This means that the sample generated from MA(2) process might produce an estimated autocorrelation 

function with two large values at time lags one and two, together with small autocorrelations (but do 

not exactly equal zero) at other time lags, but, we might consider them equal to zero. So, how do we 

formally test that these coefficients do not significantly differ from zero? To answer this question, we 

recall the results deduced by Bartlet (see page 31), where it was shown that one can use the test statistic 

𝑧 =
𝑟𝑘

𝑆𝐸(𝑟𝑘)
 to test that the function 𝜌𝑘 cut off after a certain number of lags, 𝑞, for instance. We can infer 

this statistically by testing the significance of the coefficients of 𝜌𝑘 after lag 𝑞. The initial impression 

we got from figure (b) is that the theoretical autocorrelation function might take the form in figure (a), 

in this case, to ascertain this first impression is to test the hypothesis: 

𝐻0: 𝜌3 = 0   vs   𝐻1: 𝜌3 ≠ 0 

 If 𝐻0 is accepted, then we have to test, 

𝐻0: 𝜌4 = 0   vs   𝐻1: 𝜌4 ≠ 0 

If 𝐻0 is accepted, then we have to test 𝜌5, and so forth. 
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Usually, the results of the tests are clear by simply comparing 𝑟𝑘 with double the standard error 

without the need to calculate the test statistic 𝑧, where we reject 𝐻0: 𝜌𝑘 = 0 if: 

|𝑟𝑘| > 2𝑆𝐸(𝑟𝑘),     𝑘 = 𝑞 + 1, 𝑞 + 2, … 

 

With respect to the partial autocorrelation function, how can we test the significance of the partial 

autocorrelation coefficients, i.e., how to decide on the order of the AR(p) model? To answer this 

question we refer to the results deduced by Anderson and Quenuille (see page 37), where one can use 

the statistic 𝑧 =
𝑟𝑘𝑘

𝑆𝐸(𝑟𝑘𝑘)
= 𝑟𝑘𝑘√𝑛  which follow the standard normal distribution to test the cut off 

point for the function 𝜙𝑘𝑘 after any time lag. So, to infer statistically about the significance of the 

coefficients of 𝜙𝑘𝑘 after time lag 𝑝 + 1, we have the following hypothesis: 

𝐻0: 𝜙𝑘𝑘 = 0    vs    𝐻1: 𝜙𝑘𝑘 ≠ 0   ; 𝑘 = 𝑝 + 1, 𝑝 + 2,… 

If these coefficients do not differ significantly from zero, then we can accept the hypothesis that the 

theoretical function 𝜙𝑘𝑘 cut off after time lag 𝑝, and hence we choose the right order of the model 

AR(p). 

With regard to mixed ARMA(p,q) models, in fact the situation is more complicated to identify their 

order than  the  pure AR (p) or pure MA (q) models, but we just mention here that both the 

autocorrelation and partial autocorrelation functions decay exponentially or in the form of sine wave 

functions. 

Example: The following data illustrate the autocorrelation and partial autocorrelation functions for a 

time series with length 100 observations. Specify initial model suitable for the series: 

 

 

10 9 8 7 6 5 4 3 2 1 𝑘 

0.052 -0.09 0.1 0.1 -0.09 0.092 0.11 0.08 -0.073 0.405 𝑟𝑘 

0.03 -0.05 0.03 0.01 -0.02 0.09 -0.11 0.24 0.32 0.405 𝑟𝑘𝑘 
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Solution: The autocorrelation function 𝑟𝑘 seems to cut off after the first time lag, thus, we first conduct 

a test for the significance of 𝜌1 assuming that the stochastic process generated the data is  purely  

random , i.e. a white noise process, i.e. 𝑞 = 0, thus for all time lags 𝑘, we have, 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
=  √

1

100
= 0.1, 𝑘 > 0 

So, to test the hypothesis: 

 

the moral assumption that the random process that generated the data purely random process any 

white fuss process, this means that. Hence, each time gaps we find that: 

To test the hypothesis: 

𝐻0: 𝜌1 = 0   vs   𝐻1: 𝜌1 ≠ 0 

We use the test statistic: 

𝑧 =
𝑟1

𝑆𝐸(𝑟1)
≈
0.405

0.1
≅ 4.05 > 2 

Hence, we reject 𝐻0, and deduce that 𝜌1 is significantly different from zero, and that the stochastic 

process generated the series cannot be a pure random process. The question now arises; can we assume 

that all other autocorrelation coefficients do not differ significantly from zero? To answer this question 

we have to calculate the standard error of the process assuming the process is MA (1), i.e. 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
 (1 + 2 𝑟1

2) 

≅ √
1

100
 [1 + 2 (0.405)2] = 0.115 

2𝑆𝐸(𝑟𝑘) ≅ 2(0.115) = 0.23  ; 𝑘 > 1 
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By inspecting all estimated autocorrelation coefficients in the table, we see that |𝑟𝑘| < 0.23 for all 

values k=2,3,… , we see that autocorrelation function cuts off after the first time lag which indicate 

that the MA(1) model is a tentative possible model for the series. 

Example: The following data illustrate the autocorrelation and partial autocorrelation functions for a 

time series with length 92 observations. Specify initial model suitable for the series: 

9 8 7 6 5 4 3 2 1 𝑘 

0.01 0.02 0.01 -0.01 0.09 0.19 0.29 0.42 0.66 𝑟𝑘 

0.01 0.01 0.02 -0.03 -0.01 0.02 0.01 0.39 0.66 𝑟𝑘𝑘 

 

Solution: The partial autocorrelation function 𝑟𝑘𝑘 seems to cut off after the second time lag, thus, we 

first conduct a test for the significance of 𝜙22 assuming that the stochastic process generated the data 

is  AR(1), thus we have, 

𝑆𝐸(𝑟𝑘𝑘) ≅  √
1

𝑛
=  √

1

92
= 0.104   

So, to test the hypothesis: 

𝐻0: 𝜙22 = 0   vs   𝐻1: 𝜙22 ≠ 0 

We use the test statistic: 

|𝑧| =
𝑟22

𝑆𝐸(𝑟22)
≈
0.39

0.104
≅ 3.7 > 2 

Hence, we reject 𝐻0, and deduce that 𝜙22 is significantly different from zero, and that the stochastic 

process generated the series cannot be AR(1) process, hence we assume it is AR(2), thus the standard 

error for all time lags 𝑘 > 2 is: 

𝑆𝐸(𝑟𝑘𝑘) ≅  √
1

𝑛
=  √

1

92
= 0.104   ; 𝑘 > 2   

2𝑆𝐸(𝑟𝑘𝑘) ≅  0.208   ; 𝑘 > 2   
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By inspecting all estimated partial autocorrelation coefficients in the table, we see that 

 |𝑟𝑘𝑘| < 0.208 for all values k=2, 3…, thus there is no evidence that it does not cut off after the 

second time lag. Hence, the AR(2) model seems a tentative possible model for the series, especially 

that the autocorrelation function seems to decay exponentially.  

Example: The following data illustrate the autocorrelation and partial autocorrelation functions for a 

monthly time series of length was 400 months representing the number of car accidents occurred in a 

city: 

9 8 7 6 5 4 3 2 1 𝑘 

0.01 0.02 0.03 0.06 0.10 0.15 0.28 0.45 0.85 𝑟𝑘 

0.05 0.10 0.11 0.20 0.30 0.40 0.45 0.61 0.85 𝑟𝑘𝑘 

Specify initial model suitable for the series, if the series length was 400 months 

Solution: Obviously, both autocorrelation and partial autocorrelation functions do not seem to cut off 

after short time lags, which might indicate that mixed model is suitable for modelling the data. Note 

also that 𝑟𝑘 start decay from 𝑟1 not from 𝑟0 which might indicate that ARMA(1,1) model might be 

suitable to model the data, what support this choice is that behavior of 𝑟𝑘𝑘 seems similar to MA(1) 

behavior. 

 

6.2  Estimataion 

We have covered this topic in chapter four, (see page 89). 

6.3  Diagnostics 

Time Series model identified in the first stage depends on an important theoretical hypothesis of the 

stochastic process that generated the data set, and on the general form of the model and the random 

shocks 𝜀𝑡. This means that parameter estimates and its statistical properties and inferences have no 

meaning unless these assumptions are fulfilled, or at least cannot be rejected for the available data set. 

Thus, investigating the appropriateness of these assumptions is a corner stone of studying and analyzing 

time series. Such investigation is called model diagnostics, which can be seen as a balance between 
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theoretical assumptions the model is based on and the practical output of the estimation stage. 

Diagnostics is the third stage of Box-Jenkins methodology, after initial identification of the tentative 

model and estimation of its parameters, then comes the third stage of making sure that estimated model 

comply with theoretical assumptions, or that at least do not show a clear deviation from these 

assumptions. This stage is the most serious and important stage of the analysis, as it can assure us that 

the model is adequate and thus can be used for forecasting, or it might show that the model has to be 

modified according to these diagnostics. In general, model diagnostics depend on conducting several 

checks and tests, the most important are: 

1- stationarity analysis 

2- invertibility analysis 

3- residual analysis 

4- fitting the lower model 

5- fitting the higher model 

6.3.1 stationarity analysis 

We have mentioned before that the conditions for stationarity requires that the roots of 

the characteristic equation 𝜙(𝐵) = 0 must all be outside unity circle. Therefore, in the estimation 

stage, if the absolute value of each root is outside the unit circle then this indicates that the process 

generated the observed series is stationarity, but if the absolute value of one root is close to 1, this 

indicate the need to take additional differences, adjusting the initial model Consequently. 

Example: 

Assume that the identified and estimated model for an observed time series is ARIMA (1,0,1) , that 

is, it has the form: 

(1−𝜙1𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

If the parameter 𝜙1 does not differ significantly from the 1 , then the model can be re - written in the 

form: 

(1 − 𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

or, 
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𝑧𝑡 = (1−𝜃1𝐵)𝜀𝑡 

Where, 

𝑧𝑡 = (1 − 𝐵)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 

This process is stationary, which means that the model ARIMA (0,1,1) may be better than 

ARIMA(1,0,1) to model the time series. 

Example:  

After initial estimate of the model ARIMA (2,0,1) for time series data 𝑦𝑡, it was found that one of the 

roots of the characteristic equation 𝜙(𝐵) = 0 is near to 1. Suggest a better model for the data than the 

initial model.                                                                                

The solution: 

The original model is  (1 − 𝜙1𝐵 − 𝜙2𝐵
2)𝑦𝑡  = (1−𝜃1𝐵)𝜀𝑡 , and since one of the roots of 

 1 − 𝜙1𝐵 − 𝜙2𝐵
2 = 0 is near to 1, then the original model could be written as: 

(1 − 𝐵)(1 − 𝜙1𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

Which means that the series is not stationary, thus; 

(1 − 𝜙1𝐵)𝑧𝑡 = (1−𝜃1𝐵)𝜀𝑡  

is a stationary process, this means that the model ARIMA(1,1,1) might be a better model than the 

original ARIMA (2,0,1) model. 
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6.3.2 invertibility analysis 

We have mentioned the importance of invertibility condition for time series models (see page 74), and 

thus it is very important to examine the estimates of the moving average parameters to check that the 

invertibility conditions are satisfied. These conditions are that the roots of the equation 𝜃(𝐵) = 0 

should all be outside the unit circle. However, if one root was near to one, then this might indicate we 

have taken extra unnecessary differences. 

Example:  

Assume that the identified and estimated model is ARIMA(1,1,1) , i.e. has the form: 

(1−𝜙1𝐵)𝑧𝑡 = (1−𝜃1𝐵)𝜀𝑡 

where, 

  

                                                    𝑧𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = (1 − 𝐵)𝑦𝑡                                          (1) 

assuming  that the value of the parameter 𝜃1 does not differ significantly from zero, this indicate: 

(1−𝜙1𝐵)𝑧𝑡 = (1 − 𝐵)𝜀𝑡 

or, 

                                                    (1−𝜙1𝐵)(1 − 𝐵)
−1𝑧𝑡 = 𝜀𝑡                                             (2) 

Substituting from (1) into (2): 

(1−𝜙1𝐵)𝑦𝑡 = 𝜀𝑡 

Which means that the model ARIMA(1,0,0) may be better than the original model ARIMA(1,1,1) in 

modeling the time series. 

Example: 

After initial estimate of the model ARIMA (1,1,2) for the time series data, it was found that one of the 

roots of the equation 𝜙(𝐵) = 0 is near to 1. Propose an alternative model that might be better than the 

original one. 
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Solution: 

The original model is    (1−𝜙1𝐵)𝑧𝑡  = (1 − 𝜃1𝐵 − 𝜃2𝐵
2)  𝜀𝑡 ;                   

where 𝑧𝑡 = (1 − 𝐵)𝑦𝑡 , this means that: 

                                                        𝑦𝑡 = (1 − 𝐵)
−1𝑧𝑡                                                        (1) 

As one of the roots of the equation 1 − 𝜃1𝐵 − 𝜃2𝐵
2 = 0 is near to 1, then the original model could be 

written as : 

(1−𝜙1𝐵)𝑧𝑡 = (1 − 𝐵)(1−𝜃1𝐵)𝜀𝑡 

hence,  

                                             (1 − 𝜙1𝐵)(1 − 𝐵)
−1𝑧𝑡 = (1−𝜃1𝐵)𝜀𝑡                                  (2) 

substituting from (1) into (2): 

(1 − 𝜙1𝐵)𝑦𝑡 = (1−𝜃1𝐵)𝜀𝑡 

which means that the model ARIMA(1,0,1) might be better in fitting the data than the original 

ARIMA(1,1,2) model. 

6.3.3 Residual analysis 

If the model that was chosen in the first phase truly represents the characteristics of  the                                         

random process that generated the time series at hand, then the residuals resulting from the estimation 

phase should fulfill the theoretical assumptions postulated for the random shocks 𝜀𝑡, or at least, these 

residuals do not show serious deviations from these assumptions, the most serious one being “𝜀𝑡 are 

not correlated”. 

If we assume that 𝜀1̂, 𝜀2̂, … , 𝜀�̂� represent the residuals after fitting the initial model to the available time 

series observations, and this model was a good fit for the data, then the model residuals should not 

show any patterns or regular movements that can be predicted, in other words, the residuals should 

reflect the main characteristics of the variables 𝜀𝑡, which are: 

1- random variables 
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2- with zero mean 

3- and a constant variance 

4- and follow the normal distribution 

5- and are uncorrelated 

For checking these assumptions, we have to  plot the residuals as a time series, check the autocorrelation 

function for the residuals 𝜀�̂�, plot the histogram for the residuals, conduct some non-parametric tests 

for checking the randomness and normality of the residuals and that their mean is not significantly 

different from zero, use the modified Box-Pierce statistic and finally modelling the first differences of 

the residuals 𝜀�̂� − 𝜀�̂�−1. We will go through these steps in some detail in the following sections. 

6.3.3.1 Plotting the residuals 

The first and most important step in the residual analysis is to plot the residuals graphically, where the 

horizontal axis represents time and vertical axis represents residuals 𝜀�̂�. This is a vital and irreplaceable 

step, as it can reveal the principal features of the residuals such as the trend, the variance, and outliers 

if they exist, in such a way even the statistical tests might not be able to reveal. If the initial model was 

adequate, then this means that it can accommodate all the patterns and the regular movements in the 

time series data, leaving residuals free of any pattern, thus the residual plot should show them 

oscillating with a constant variance around the vertical line passing through zero. Also, this plot should 

be looking random and free of any information that can be used in forecasting the time series. 

time 
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  6.3.3.2 Randomness of the residuals 

The randomness of the residuals is tested by Runs test around zero, which is one of the non-parametric 

tests, the command to perform the test in MINITAB is: 

MTB > RUNS  0  Ck 

where the column Ck that contains the estimated residuals. 

6.3.3.3 Test that the residuals mean is equal to zero 

The hypothesis that we test here is: 

𝐻0: 𝐸(𝜀𝑡) = 0    𝑣𝑠   𝐻1: 𝐸(𝜀𝑡) ≠ 0         

which is a two-tailed test and we use  the test statistic  𝑢 =
 �̂�𝑡̅̅̅̅

𝑠𝑒( �̂�𝑡̅̅̅̅ )
 , which has the standard normal 

distribution. So, at significance level 𝛼 = 0.05, we consider 𝐸(𝜀𝑡) = 0, if |𝑢| < 1.96  (assuming the 

sample size is at least 30, which is satisfied in most time series data). The command to perform the test 

in MINITAB is: 

MTB > Onet Ck; 

SUBC>   Test 0  

Where the column Ck that contains the estimated residuals. 

6.3.3.4 Constant variance 

As mentioned in previous sections, plotting the residuals reveals important issues, including whether 

the residual variance is constant or not. If the variance is constant, the plot will approximately reveal 

this point. If we observe increasing or decreasing variance in the residual plot, then we must return to 

the original series and use some transformation to try to stabilize the variance, and analyze the data 

again. 

6.3.3.5 Autocorrelation function of residuals 

If the errors 𝜀𝑡 are purely random variables, then the estimated residuals 𝜀�̂�  must reflect this fact, thus 

the autocorrelation function must be free of any spikes, that is, all the autocorrelation coefficients ought 
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to be small in order to accept that the corresponding theoretical coefficients are not significantly 

different from zero. We check every autocorrelation coefficient separately, thus we have to check the 

sampling distribution of these coefficients. Anderson (1942) have shown that if the model was 

appropriate, then the autocorrelation coefficients for large and medium sample sizes are uncorrelated 

and follow normal distribution with standard deviation 𝑛−
1
2⁄ . Hence, the autocorrelation coefficient 

of the residuals at a certain lag that fall outside the interval ±2 √𝑛⁄  support that the corresponding 

theoretical coefficient is significantly different from zero.  

In spite of the simplicity of conducting this test, however the approximate variance 
1

𝑛
   is greater than 

the actual variance for the autocorrelation coefficients at small lags. Thus, if the autocorrelation 

function is free of any spikes, then this is an important indication that 𝜀𝑡 represent purely random 

variables, however it is not sufficient, as some autocorrelation coefficient at small lags might be inside 

the interval  ±2 √𝑛⁄  but actually the corresponding theoretical coefficient is not significantly different 

from zero if compared to the true standard deviation 1 √𝑛⁄  . This means that it is not sufficient to draw 

the autocorrelation coefficient with the interval limits ±2 √𝑛⁄  to conclude that 𝜀𝑡 represent 

random variables, but we have to conduct further checks and tests to assure that these variables are 

random.    

  In fact, the results and outcomes of the estimation stage and calculation of the autocorrelation 

function for the residuals remains particularly important, even if these results do not support that the 

model is appropriate because the spikes noted in the autocorrelation function might be used to adjust 

the initial model. For example, if the autocorrelation function of the residuals shows a spike at the first 

time lag, this may be an evidence for the need to add a moving average parameter to the initial 

model especially if the partial autocorrelation function of the residuals behaves in an exponential 

function shape.  Suppose for example that the initial model we have chosen for the series 𝑦𝑡  is an MA 

(1) which has the form: 

𝑦𝑡 = 𝜀𝑡−𝜃1𝜀𝑡−1 = (1−𝜃1𝐵)𝜀𝑡 

If we assume that examination of the autocorrelation function of the residuals show that the errors are 

not random, but follows the MA (1) model as well, then, 

𝜀𝑡 = 𝑎𝑡 − 𝑐𝑎𝑡−1 = (1 − 𝑐𝐵)𝑎𝑡 
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where {𝑎𝑡} is a white noise process. Substituting for 𝜀𝑡 we get: 

𝑦𝑡 = (1−𝜃1𝐵)(1 − 𝑐𝐵)𝑎𝑡 

       = 𝑎𝑡 − 𝜃1
∗𝑎𝑡−1 − 𝜃2

∗𝑎𝑡−2 

where, 

𝜃1
∗ = (𝜃1 + 𝑐)    ; 𝜃2

∗ = −𝑐𝜃1  

This means that {𝑦𝑡} follow MA(2) and not MA(1), in which case we have to go back and fit 

an MA(2) for the time series, estimate its parameters and perform diagnostic checks again to make 

sure it fits the data well. 

On the other hand, if the autocorrelation function of the residuals decreases exponentially or gradually 

approaching zero interchanging in sign, then the original initial model MA (1) may need the inclusion 

of an autoregressive parameter, especially if the partial autocorrelation function of the residuals 

completely cut off after the first time lag. In this case, the initial model is modified to the ARMA 

(1,1) model, fitting it to the time series, estimate its parameters and perform diagnostic checks again 

to make sure it fits the data well. 

6.3.3.6 Modified Box and Pierce statistic 

Checking every parameter of the autocorrelation function of the residuals is an important indication of 

the appropriateness of the model assumptions-the most important assumption is the randomness of the 

𝜀𝑡 variables. But, it is not sufficient to just perform this diagnostic for two reasons. First – which we 

have mentioned above- that there exist some difficulties at small time lags that lead mistakenly to 

consider a theoretical autocorrelation coefficient at a small time lag not significantly different from 

zero, when in fact it differs significantly from zero if we used the true variance instead of the 

approximate variance 
1

𝑛
. The second reason is that some spikes might exist especially at large time lags, 

but the model is still considered appropriate, since the randomness of the variables 𝜀𝑡 does not prevent 

existence of some large coefficients in the sample (because the estimated residuals 𝜀�̂� are considered as 

a sample from the process {𝜀𝑡}), upon which we may accept that the corresponding theoretical 

coefficients are different from zero.  
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 For these reasons it is necessary to examine the appropriateness of the model using a different 

philosophy.  Instead of checking every autocorrelation coefficient 𝑟�̂�𝑡(𝑗) separately, it is possible to 

check that a group of coefficients all together equal to zero. Suppose that we denote the first 𝑘 terms of 

the residual autocorrelation coefficients as 𝑟�̂�𝑡(1), 𝑟�̂�𝑡(2), … , 𝑟�̂�𝑡(𝑘) resulting from fitting ARMA(p,q) 

model to the series 𝑦𝑡, Box and Pierce (1970) proposed a test such that if the fitted model is appropriate 

then the statistic: 

𝑄 = 𝑛 ∑𝑟�̂�𝑡
2 (𝑗)

𝑘

𝑗=1

 

has, for large sample sizes, a 𝜒2 distribution with (𝑘 − 𝑝 − 𝑞) degrees of freedom. Thus if some 

coefficients are not sufficiently close to zero, then 𝑄 tends to be large. In general, we do not reject the 

randomness of the autocorrelation coefficients –or equivalently- the appropriateness of the model if 

calculated value of 𝑄 is less than the tabulated 𝜒𝛼
2  where, 

𝑃[𝜒(𝑘−𝑝−𝑞)
2 > 𝜒𝛼

2] = 𝛼 

𝛼 is the significance level. The value of 𝑘 is subjective and is chosen by the analyst, the power of the 

test decrease as 𝑘 increase. The statistic 𝑄 works well if the sample size is large or moderately large, 

however for small sample sizes it is power decrease. However for small sample sizes the 

approximation of 𝑄 by the 𝜒2 distribution is not good, for this reason Ljung-Box introduced a 

modified statistic in the form: 

𝑄∗ = 𝑛(𝑛 + 2) ∑
𝑟�̂�𝑡
2 (𝑗)

(𝑛 − 𝑗)

𝑘

𝑗=1

 

which has a better approximation to the 𝜒2 distribution with (𝑘 − 𝑝 − 𝑞) degrees of freedom. 

Example:  

The following table shows the first 12 autocorrelation coefficients for the residuals resulting from 

the fitting ARMA (1,1) model for a time series of length 100 observations. 

12 11 10 9 8 7 6 5 4 3 2 1 𝑘 

-0.1 0.08 0.1 0.3 -0.05 0.02 -0.03 0.01 -0.1 -0.3 0.04 0.03 𝑟�̂�𝑡(𝑘) 
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1- Test the significance that every theoretical correlation coefficient is different from zero at 

each time lag. 

2- Test the appropriateness of the model using Box-Pierce statistic. 

3- Test the appropriateness of the model using modified Ljung-Box statistic. 

Solution: 

1- We first calculate the standard deviation 
1

√𝑛
=

1

√100
= 0.1, and hence the approximate 95% 

confidence limits are ±
2

√𝑛
= ±0.2 , then comparing each correlation coefficient with this  

interval, we see that 𝜌𝜀(3) and 𝜌𝜀(9) are both significantly different from zero at significance 

level 5%. 

2- Box-Pierce statistic: 

𝑄 = 𝑛 ∑𝑟�̂�𝑡
2 (𝑗)

𝑘

𝑗=1

= 100[(0.03)2 + (0.04)2 +⋯+ (−0.01)2] = 22.28 

and since the tabulated value is 𝜒0.05,10
2 = 18.3, that is 𝑄 > 𝜒𝛼

2, then we say that there is some 

doubt about the appropriateness of the model. 

3- Modified Ljung-Box statistic: 

𝑄∗ = 𝑛(𝑛 + 2)∑
𝑟�̂�𝑡
2 (𝑗)

(𝑛 − 𝑗)

𝑘

𝑗=1

 

= 100(102) [
(0.03)2

99
+
(0.04)2

98
+⋯+

(−0.01)2

88
] = 24.33 

and since the tabulated value is 𝜒0.05,10
2 = 18.3, that is 𝑄∗ > 𝜒𝛼

2, then we say that there is 

some doubt about the appropriateness of the model. 

 

Example: The following table shows the first 10 autocorrelation coefficients for the residuals 

resulting from the fitting ARMA (0,2,1) model for a time series of length 123 observations. 

10 9 8 7 6 5 4 3 2 1 𝑘 

0.1 0.03 0.04 0.02 0.01 0.10 -0.10 -0.01 0.02 0.01 𝑟�̂�𝑡(𝑘) 
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Test the appropriateness of the model using Box-Pierce statistic. 

Solution: 

Since the model used a difference of order 2, then we lose two observations from the series, hence the 

effective number of observations is: 

𝑛∗ = 123 − 2 = 121 

Hence, 

𝑄 = 121[(0.01)2 + (0.02)2 +⋯+ (−0.1)2] = 4.0656 

the tabulated value is 𝜒0.05,9
2 = 16.9. Because 𝑄 < 𝜒𝛼

2 , we deduce that there is no non-random 

pattern in the first 10 autocorrelations  of the residuals, and hence the model is appropriate for the 

observed time series. 

6.3.4 examination of the model of the first differences of the residuals  

The idea of this test depends on the fact that if the variables 𝜀𝑡 indeed exhibit the pattern of random  

variables (i.e. white noise), then the first differences: 

𝜂𝑡 = 𝜀𝑡 − 𝜀𝑡−1                  

should follow moving average of order one model, with parameter 𝜃 = 1, thus we can find the first 

autocorrelation coefficient at time lag 1 for the first differences series 𝜂𝑡: 

𝑣𝑎𝑟(𝜂𝑡) = 𝑣𝑎𝑟(𝜀𝑡 − 𝜀𝑡−1) = 2𝜎
2 

                

𝑐𝑜𝑣(𝜂𝑡, 𝜂𝑡−1) = 𝑣𝑎𝑟(𝜀𝑡 − 𝜀𝑡−1, 𝜀𝑡−1 − 𝜀𝑡−2) = −𝜎
2 

Hence,  

𝜌𝜂(1) = 𝑐𝑜𝑟𝑟(𝜂𝑡, 𝜂𝑡−1) =
−𝜎2

2𝜎2
= −0.5 

Thus, we can use this property to test randomness of the variables 𝜀𝑡 through modelling the series of 

the first differences of the residuals �̂�𝑡. If we accept that �̂�𝑡  follow MA(1) model with parameter that 

does not differ significantly from one, and with an autocorrelation coefficient at time lag one that does 

not differ significantly from -0.5, then we can conclude that the variables 𝜀𝑡 follow a purely random 

process.   
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6.3.5 Fitting the lower order model 

 We have mentioned previously that the identification stage depends partially on personal judgment of 

the researcher, as testing the cut off points of both the autocorrelation and partial autocorrelation 

functions depend on the used significance level, where large significance levels are used for small time 

lags, and small significance levels for larger time lags. Sometimes the model might contain a parameter 

of large order, then simplification of the model, i.e. fitting the next lower model is achieved by dropping 

the largest order parameter from the model. 

Thus, it is necessary to perform some additional checks apart from the residual analysis and the 

estimation stage outcomes. We must study whether the lager order parameter is significantly different 

from zero by comparing this parameter estimate with double its standard error. If it is less than double 

of the standard error, then it is preferred to omit this parameter from the model. But before omitting the 

parameter one must investigate the correlation of the parameter estimate with all other parameter 

estimates. If we notice existence of strong correlation, then this is a good indication that the model can 

be further simplified, and thus fitting a lower order model is justified. It is important to subject the 

reduced model for all diagnostic tests and checks to make sure the other parameters could compensate 

for the effect of dropping the higher order parameter.  

6.3.6 Fitting the higher order model 

We can also answer the following question: Can the model efficiency be improved by adding an extra 

parameter? for example if the original model we have found suitable for the data is an MA(1) then, one 

can add an extra moving average parameter to this model, and hence fit an MA(2) model to the data, 

and study the improvement in the diagnostic checks of the model, also study the significance of the 

added parameter 𝜃2, and the correlation between 𝜃2 and 𝜃1. If it is found that the added parameter 𝜃2 

is not significant , or that the correlation between 𝜃2 and 𝜃1 is large, then we have to drop the added 

parameter 𝜃2, and just keep the original model MA(1), and vice versa. 

Of course, one could have added an autoregressive parameter 𝜙1 to the original model, i.e. fit the model 

ARMA(1,1) to the data and study the efficiency of adding the parameter 𝜙1 in the same manner. 

What we want to emphasize here, is that testing of omitting or adding some parameters depend to a 

high extent on the experience of the researcher and his personal judgment, that’s why we say that the 
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identification and diagnostic checks are the most important stages in the modern time series analysis, 

and are the vital steps in getting trustable forecasts. 

 

6.4 Practical example of time series analysis 

The following time series represent a count of the number homicide cases recorded in Australia during 

1915-1993, it represents the rate number of yearly homicide for every 100000. Analyze these data, 

write a full report about your findings, use the proposed model to forecast rate of homicide cases for 

the next five years. 

6.4.1 General form of a data analysis report 

Introduction: 

We have a time series data that represent rate number of yearly homicide for every 100000 recorded in 

Australia during 1915-1993. Since the data are recorded serially over the years, then we would expect 

them to be correlated over time. Thus we can study the autocorrelation structure of the data to see how 

it behave, and based on this structure we can develop a mathematical model that can describe how the 

rate number of homicide develop over time in Australia, we will also use this developed model to 

forecast the rate of homicide in the next five years, and construct a 95% confidence limits for these 

forecast. 

 

 

Data description: 

a) Figure (1) shows rate number of yearly homicide for every 100000 recorded in Australia during 

1915-1993: 
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                 Figure (1): rate number of yearly homicide for every 100000 recorded in Australia during 1915-1993 

 From figure (1) we notice that the data seems to be stationary in the mean as we do not 

notice any long term increase or decrease in the series, the series oscillate around the mean 

(the value 0.5149). We also, do not notice any seasonal component in the data, or any 

outliers. 

b) The autocorrelation function of the data: 

Figure(2) shows the autocorrelation function of the data: 
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              Figure (2): autocorrelation function of rate number of yearly homicide  

       for every 100000 recorded in Australia during 1915-1993 
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We notice that the autocorrelation function takes the form of an exponential decay function, 

this is a common feature of the autoregressive models. 

c) Figure (3) shows the partial autocorrelation function of the data: 

Lag

P
a

rt
ia

l 
A

u
to

c
o

rr
e

la
ti

o
n

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Partial Autocorrelation Function for homoscide
(with 5% significance limits for the partial autocorrelations)

 

 Figure (3): Partial autocorrelation function of rate number of yearly homicide  

       for every 100000 recorded in Australia during 1915-1993 

 

We notice that in the Partial autocorrelation function two values at time lags 𝑘 = 1,2 seems to 

differ significantly from zero, also we can imagine that the function takes the form of an 

exponential decay function. Thus, we can propose from the structure of the estimated 

autocorrelation and partial autocorrelation functions of the data that the models AR(1), AR(2), 

or ARMA(1,1) are potential models to describe the evolution of the rate number of yearly 

homicide for every 100000 recorded in Australia during 1915-1993.  

Fitting proposed models: 

(i) Autoregressive model of order one AR(1): 

We obtained the following results when fitted the AR(1) model: 

Type      Coef     SE Coef   T      P 

AR   1    0.4385   0.1024   4.28  0.000 

Constant  0.28923  0.01126  25.68 0.000 

Mean      0.51514  0.02006 
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Number of observations:  79 

Residuals:    SS =  0.771706 (backforecasts excluded) 

              MS =  0.010022  DF = 77 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   30.8   37.8   50.1   73.7 

DF             10     22     34     46 

P-Value     0.001  0.019  0.037  0.006 

 

As we note from the table, the parameter estimates are significant (i.e. they differ 

significantly from zero), thus have to be kept in the model.  Looking at the p_value for the 

estimated model parameter �̂�1 = 0.4385, which we use to test the hypothesis 𝐻0: 𝜙1 = 0 

vs 𝐻1: 𝜙1 ≠ 0, since the p_value equal to 0 (less than 5% or 1% whatever we used), then 

we reject 𝐻0 and conclude that that 𝜙1 should be kept in the model. Now looking at the 

result of Ljung-Box statistic, which is used to test the hypothesis: 

𝐻0: 𝜌1 = ⋯ = 𝜌𝐾 = 0 

                                           vs     𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 ≠ 0 

This hypothesis test that residuals of the fitted model up to time lag k are uncorrelated, hence 

in case we accept 𝐻0  we will deduce that the model is suitable to the data. But from the 

table above, we note that all p_values for any k are less than 5%, hence we reject 𝐻0 and 

deduce that the model is not appropriate for modelling all the autocorrelation structure in 

the data. We can also plot the autocorrelation and partial autocorrelation functions of the 

residuals to check this point; 
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                        Figure (4): autocorrelation and partial autocorrelation functions of the residuals of AR(1) model 

As we note from figure (4), the autocorrelation function shows that some autocorrelation in 

the residuals at lags k=2,4 still exists, which means that the model couldn’t model them 

properly. The same comment for the partial autocorrelation function, as it seems that some 

autocorrelation structure is still not accounted for by the AR(1) model, hence we move to 

the next proposed model.  

 

(ii) Autoregressive model of order two AR(2): 

We obtained the following results when fitted the AR(2) model: 

Final Estimates of Parameters 

 

Type         Coef  SE Coef      T      P 

AR   1    0.2937   0.1083   2.71  0.008 

AR   2    0.3312   0.1087   3.05  0.003 

Constant  0.19334  0.01071 18.06  0.000 

Mean      0.51535  0.02854 

 

 

Number of observations:  79 

Residuals:    SS =  0.688118 (backforecasts excluded) 

              MS =  0.009054  DF = 76 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   11.6   22.5   32.7   51.1 

DF              9     21     33     45 

P-Value     0.234  0.371  0.484  0.245 

 

As we note from the above table, all parameters included in the model are significantly different from 

zero and hence have to be retained in the model. Also, the p_values for testing the hypothesis 𝐻0: 𝜌1 =

𝜌2 = ⋯ = 𝜌𝐾 = 0 are not significant for all values of k, hence we accept 𝐻0 and deduce that the model 

is tentatively appropriate for the data. Plotting the autocorrelation and partial autocorrelation function 

for the residuals of the AR(2) model, we get: 
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Figure (5): autocorrelation and partial autocorrelation functions of the residuals of AR(2) model 

As we note from figure (5), the residuals of the AR(2) model are much better from those of AR(1) as 

they do not show any unexplained autocorrelation structure in the residuals. 

Now, we have to perform the diagnostic checks to verify whether the model residuals fulfill the 

assumptions of the white noise process 𝜀𝑡, where as  we know, 𝜀�̂� are actually estimates for the terms 

of the white noise process. The following figure shows results of diagnostic checks of the model 

residuals: 
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Figure (6): Diagnostic plots for the residuals of AR(2) model 

a) Residuals follow the normal distribution: 
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Checking figure (6), we note that the probability plot shows percentiles of the residuals that agree 

to a high extent with those of the normal distribution, also the figure shows the result of applying 

a non-parametric test for goodness of fit, the Anderson-Darling test for the hypothesis: 

𝐻0: 𝑟𝑒𝑠𝑖𝑑𝑢𝑙𝑎𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑙𝑙𝑜𝑤 𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

The P_value of the test is 0.780, which means the acceptance of 𝐻0. Also, note that the histogram 

of the data resembles to a good extent the normal histogram. 

b) Variance of the residuals is constant: 

The plot at the top right hand side of figure (6), shows residuals against the estimated fitted values, 

which indicate that the variance is constant and does not change with time.  

c) Mean of the residuals is zero: 

We can conduct a t-test for testing the hypothesis that residuals mean is zero, the MINITAB 

output provide us with the following output: 

One-Sample T: RESI3  
 
Test of mu = 0 vs not = 0 

 

 

Var   N   Mean     StDev   SE Mean          95% CI            T      P 

RESI3 79 0.0006  0.093924  0.010567  (-0.020460, 0.021615)  0.05  0.957 

    

Since the P_value of the test is 0.957, which means the acceptance of the zero mean hypothesis of the 

residuals. 

d) Randomness of the residuals: 

Using the Runs test, which is a non-parametric test for testing the hypothesis that the residuals are 

random versus that they are not random, the MINITAB provide us with the following results: 

Runs test for RESI3 

 

Runs above and below K = 0 

 

The observed number of runs = 40 

The expected number of runs = 40.4937 

39 observations above K, 40 below 

P-value = 0.911 
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Since the P_value of the test is 0.911, which means that we  accept the hypothesis of the residuals 

randomness. 

e) Residuals are uncorrelated: 

We have already mentioned the result of the Ljung-Box test, which in fact is a test for the 

uncorrelation of the residuals, and we have accepted this hypothesis. 

 Stationarity analysis: 

The estimated values of the model parameters are �̂�1 = 0.2937,   �̂�2 =  0.3312, and applying the 

stationarity conditions for this model (see page 64): 

(i) |𝜙2| < 1 ⟹ | 0.3312| < 1   

(ii) 𝜙1 + 𝜙2 < 1 ⟹ 0.2937 +  0.3312 = 0.6249 < 1 

(iii) 𝜙2 − 𝜙1 < 1 ⟹  0.3312 − 0.2937 = 0.0375 < 1 

So the estimated parameters of the model satisfy the stationarity condition. 

 Analyzing the series of first differences of the residuals: 

Looking at figure (7) that shows the estimated autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) for the first differences of the residuals, we can identify that the proper 

model for this series is the MA(1) model, as the ACF cuts off after the first time lag, whereas the PACF 

decay to zero in an exponential fashion. 
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Figure (7): autocorrelation and partial autocorrelation functions of the first differences of the residuals of AR(2)    

                    Model 

The following table shows the output of fitting MA(1) model to the first differences of the residuals 

series, i.e. to the series ∇𝜀�̂�: 
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Final Estimates of Parameters 

 

Type      Coef  SE Coef      T      P 

MA   1  0.9726   0.0291  33.42  0.000 

 

 

Number of observations:  78 

Residuals:    SS =  0.695012 (backforecasts excluded) 

              MS =  0.009026  DF = 77 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   10.7   21.8   31.5   49.9 

DF             11     23     35     47 

P-Value     0.468  0.531  0.639  0.359 

So, we see that the estimated parameter of this model is 𝜃1 = 0.9726, and to test that the corresponding 

value of 𝜃1 does not significantly differ from zero, we conduct the following test: 

𝐻0: 𝜃1 = 1     𝑣𝑠   𝐻1: 𝜃1 ≠ 1 

And use the test statistic: 

|𝑍| = |
𝜃1 − 1

𝑆𝐸(𝜃1)
| = |

0.9726 − 1

0.0291
| = 0.9416 

Comparing this value with the tabulated value of 2 (from the standard normal table) at significance 

level 5%, we can conclude that 𝜃1 does not differ than 1, Also, we see that the results of the Ljung-Box 

test support this model. 

Hence, we note that the AR(2) model has passed all diagnostic checks, and thus we conclude that it is 

suitable to model rate number of homicide cases in Australia during 1915-1993, and the form of the 

model is: 

𝑌𝑡 = 0.19334 + 0.2937 𝑌𝑡−1 + 0.3312 𝑌𝑡−2 + 𝜀𝑡  

Where, 𝑌𝑡 is rate number of homicide cases at year 𝑡, and the variance of the white noise process 𝜀𝑡 is 

estimated as MS =  0.009054. 

 

( iii)  As previously mentioned, ARMA(1,1) model was a tentative model for our data, thus we are 

going to fit it and see how good it is for modelling the rate number of homicide cases in Australia. 
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The results of applying this model to the data in MINITAB is shown in the following table: 

Final Estimates of Parameters 

 

Type          Coef   SE Coef      T      P 

AR   1      0.9384    0.0603  15.56  0.000 

MA   1      0.6959    0.1234   5.64  0.000 

Constant  0.031771  0.003197   9.94  0.000 

Mean       0.51579   0.05191 

 

 

Number of observations:  79 

Residuals:    SS =  0.649709 (backforecasts excluded) 

              MS =  0.008549  DF = 76 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   10.0   17.9   26.5   42.1 

DF              9     21     33     45 

P-Value     0.348  0.654  0.782  0.594 

 

As we note from the above table, all parameters included in the model are significantly different from 

zero and hence have to be retained in the model, as all P_values of the parameters 𝜃1, 𝜙1 and the 

constant δ are all equal to zero.  Also, the result of the Ljung-Box test  indicate that the model is 

adequate for the data since all the p_values are greater than α = 0.05. In addition, the parameter 

estimates fulfill the stationarity and invertibility conditions. 

Model diagnostics: 

The following figure shows results of diagnostic checks of the model residuals: 
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Figure (8): Diagnostic plots for the residuals of ARMA(1,1) model 

From figure (8), it is evident that the residuals follow the normal distribution , and that their 

variance is constant and do not change with time. The rest of the diagnostic checks are as follow: 

Residuals follow the normal distribution: 

(a) Mean of the residuals is zero: 

We can conduct a t-test for testing the hypothesis that residuals mean is zero, the MINITAB 

output provide us with the following output: 

 

One-Sample T: RESI1  
 
Test of mu = 0 vs not = 0 

Var  N   Mean     StDev     SE Mean         95% CI          T      P 

RES  79 0.001949  0.091246  0.010266  (-0.01848, 0.02238)  0.19  0.850 

    

Since the P_value of the test is 0.850, which means the acceptance of the zero mean hypothesis of the 

residuals. 

(b) Randomness of the residuals: 
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Using the Runs test, which is a non-parametric test for testing the hypothesis that the residuals are 

random versus that they are not random, the MINITAB provide us with the following results: 

Runs Test: RESI1  
 
Runs test for RESI1 

 

Runs above and below K = 0 

 

The observed number of runs = 38 

The expected number of runs = 40.3418 

42 observations above K, 37 below 

P-value = 0.594 

Since the P_value of the test is 0.594 which means that we  accept the hypothesis of the residuals 

randomness. 

(c) Residuals are uncorrelated: 

We have already mentioned the result of the Ljung-Box test, which in fact is a test for the 

uncorrelation of the residuals, and we have accepted this hypothesis. Plotting the ACF and PACF for 

the residuals, we get: 

 
Lag

A
u

to
c
o

rr
e

la
ti

o
n

2018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

ACF of Residuals for homoscide
(with 5% significance limits for the autocorrelations)

   
Lag

P
a

rt
ia

l 
A

u
to

c
o

rr
e

la
ti

o
n

2018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

PACF of Residuals for homoscide
(with 5% significance limits for the partial autocorrelations)

 

Figure (9): autocorrelation and partial autocorrelation functions of the residuals of ARMA(1,1) model 

 

As we note, the ARMA(1,1) succeeded in modelling all the autocorrelation structure in the data. 

  



141 
 

Lag

P
a

rt
ia

l 
A

u
to

c
o

rr
e

la
ti

o
n

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

PACF for first differences of residulas AR(2) model
(with 5% significance limits for the partial autocorrelations)

  

Figure (10): autocorrelation and partial autocorrelation functions of the first differences of the residuals of ARMA(1,1) 

Model 

 Analyzing the series of first differences of the residuals: 

Looking at figure (10) that shows the estimated autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) for the first differences of the residuals, we can identify that the proper 

model for this series is the MA(1) model, as the ACF cuts off after the first time lag, whereas the PACF 

decay to zero in an exponential fashion. 

The following table shows the output of fitting MA(1) model to the first differences of the residuals 

series, i.e. to the series ∇𝜀�̂�: 

Type      Coef  SE Coef      T      P 

MA   1  0.9816   0.0131  74.94  0.000 

 

 

Number of observations:  78 

Residuals:    SS =  0.661778 (backforecasts excluded) 

              MS =  0.008595  DF = 77 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    9.6   17.4   25.8   41.5 

DF             11     23     35     47 

P-Value     0.570  0.790  0.872  0.698 

So, we see that the estimated parameter of this model is 𝜃1 = 0.9816, and to test that the corresponding 

value of 𝜃1 does not significantly differ from zero, we conduct the following test: 

𝐻0: 𝜃1 = 1     𝑣𝑠   𝐻1: 𝜃1 ≠ 1 

And use the test statistic: 
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|𝑍| = |
𝜃1 − 1

𝑆𝐸(𝜃1)
| = |

0.9816 − 1

0.0131
| = 1.405 

Comparing this value with the tabulated value of 2 (from the standard normal table) at significance 

level 5%, we can conclude that 𝜃1 does not differ than 1, Further, we see that the results of the Ljung-

Box test support this model. 

 

Hence, we note that the ARMA(1,1) model has passed all diagnostic checks, and thus we conclude that 

it is suitable to model rate number of homicide cases in Australia during 1915-1993, and the form of 

the model is: 

𝑌𝑡 = 0.031771 + 0.9384 𝑌𝑡−1 + 𝜀𝑡 − 0.6959 𝜀𝑡−1  

Where, 𝑌𝑡 is rate number of homicide cases at year 𝑡, and the variance of the white noise process 𝜀𝑡 is 

estimated as MS =  0.008549. 

1- Since we have proposed two models that can successfully model the correlation structure 

available in the data, hence we have to use some comparison criteria to choose the best model 

of the two, from these criteria are: 

a) Akaike information criterion (AIC): 

This criterion is defined as:    𝐴𝐼𝐶(𝑚) = 𝑛 ln(�̂�𝜀
2) + 2𝑚 

b) Bayesian information criterion (BIC): 

 This criterion is defined as:  𝐵𝐼𝐶(𝑚) = 𝑛 ln(�̂�𝜀
2) + 2𝑚 ln (𝑛)    

 

Where,   𝑚 : number of estimated parameters 

               𝑛  : Is the number of available observations (if any differences are taken, then     

                         it is the total number of observations after the difference). 

              �̂�𝜀
2 : is the estimated variance of the model residuals (or the estimated variance   

                        of the white noise process) 

Now, we summarize the results in the following table: 

Model 
     𝑛 𝑚 �̂�𝜀

2 AIC BIC 

AR(2) 79 2 0.009054 -367.659 -354.1816 

ARMA(1,1) 79 2 0.008549 -372.193 -358.7155 
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Since the model to be selected is the one with the lowest value of the comparison criterion, thus we see 

from the table that both criterion select the ARMA(1,1) to model the homicide rate in Australia. 

2- Using the model to forecast the homicide rate in Australia for the next five years: 

The following figure shows the forecast the homicide rate in Australia for the next five years: 
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   Figure (11): forecast the homicide rate in Australia for the next five years using the ARMA(1,1) Model 

 

The following table shows these forecasts, together with a 95% C.I.: 

Table (1): Forecasting homicide rate for every 100000 capita in Australia for five years using    

ARMA(1,1) model 

Upper limit Forecast Lower limit Year 

0.728877 0.547620 0.366362 1994 

0.732170 0.545659 0.359149 1995 

0.734836 0.543819 0.352802 1996 

0.736991 0.542093 0.347194 1997 

0.738726 0.540472 0.342218 1998 

     *Base year (1993) where homicide rate for every 100000 capita is 0.53395 
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As we note from these results, that we expect the homicide rate to increase in 1994 to 0.547620 for 

every 100000 capita, then the rate will start to decline in an average yearly rate of 0.30 %. 
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Chapter seven: Seasonal Models 

 

As we have seen in the previous chapters, the stochastic time series models could successfully model 

the correlation structure in the data. However, in case the data show a seasonal behavior, then the model 

should incorporate a component that reflect such seasonality. 

 

7.1 Autoregressive seasonal models 

Assume for example that we have a quarterly time series, then we say that it follows a seasonal 

autoregressive model of order one if we can express the current value of the series 𝑦𝑡 as a linear function 

of the value of the series at the same season in the previous year 𝑦𝑡−𝑠 (here we assume 𝑆 = 4) plus a 

random variable term 𝜀𝑡, that is: 

𝑦𝑡 = Φ1𝑦𝑡−𝑠 + 𝜀𝑡 

 

Where Φ1 represent the seasonal autoregressive parameter, this model is denoted as SAR(1). 

In the same manner, we can add seasonal autoregressive parameters to this model to get SAR(P), which 

can be expressed as: 

(1 − Φ1𝐵
𝑠 −Φ2𝐵

2𝑠 −⋯−Φ𝑝𝐵
𝑃𝑠)𝑦𝑡 = 𝜀𝑡 

or,  

𝑦𝑡 = Φ1𝑦𝑡−𝑠 +Φ2𝑦𝑡−2𝑠 +⋯+Φ𝑃𝑦𝑡−𝑃𝑠 + 𝜀𝑡 

It can be proven that the autocorrelation function for the seasonal autoregressive model is very much 

similar to the ACF of the usual autoregressive model, except that the autocorrelation coefficients appear 

at multiples of S, i.e. at the multiples of the seasonal period. For example, for the SAR(1) model, with 

a positive parameter 𝛷1, and seasonal period length 𝑠 = 4, then the autocorrelation coefficients will 

appear at multiples of the number 4, and will gradually decline to zero, see figure (7.1). 
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                    Figure (7.1): autocorrelation function for SAR(1), s=4  

If we have SAR(1) model with seasonal period S=12, then the autocorrelation coefficients will appear 

at multiples of the number 12 (i.e. at 12, 24, 36, 48, …) . 

 

7.2 Moving average seasonal models 

we say that a stationary time series follows a seasonal moving average model of order one if we can 

express the current value of the series 𝑦𝑡 as a linear function of the value of the random shock that 

occurred at current time 𝜀𝑡 and the one occurred at the same season in the previous year 𝜀𝑡−𝑠 that is: 

𝑦𝑡 = 𝜀𝑡 − Θ1𝜀𝑡−𝑠 

It could also be written as: 

𝑦𝑡 = (1 − Θ1𝐵
𝑠)𝜀𝑡 

Where Θ1 represent the seasonal moving average parameter, this model is denoted as SMA(1). In the 

same manner, we can add seasonal moving average parameters to this model to get SMA(Q), which 

can be expressed as: 

𝑦𝑡 = (1 − Θ1𝐵
𝑠 − Θ2𝐵

2𝑠 −⋯−Θ𝑄𝐵
𝑄𝑠)𝜀𝑡 

or,  

𝑦𝑡 = 𝜀𝑡 − Θ1𝜀𝑡−𝑠 − Θ2𝜀𝑡−2𝑠 −⋯− Θ𝑄𝜀𝑡−𝑄𝑠 

It can be proven that the autocorrelation function for the seasonal moving average model is very much 

similar the ACF of the usual moving average model, except that the autocorrelation coefficients appear 
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at multiples of S, i.e. at the multiples of the seasonal period. For example, for the SMA(1) model, then 

there is only one non-zero autocorrelation value that occur at a time lag that is equal to seasonal period, 

, see figure (7.2). For SMA(Q)  models the number of non-negative  autocorrelation coefficients will 

appear at multiples of S. 
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                                               Figure (7.2): autocorrelation function for SMA(1) 

 

7.3 Autoregressive Moving average seasonal models 

It is possible to combine both the autoregressive and models in one group, such models are expressed 

as: 

Φ(𝐵𝑠)𝑦𝑡 =  Θ(𝐵
𝑠)𝜀𝑡 

Where,  

Φ(𝐵𝑠) = (1 − Φ1𝐵
𝑠 −Φ2𝐵

2𝑠 −⋯−Φ𝑝𝐵
𝑃𝑠) 

Θ(𝐵𝑠) = (1 − Θ1𝐵
𝑠 − Θ2𝐵

2𝑠 −⋯− Θ𝑞𝐵
𝑄𝑠) 

And the symbol used to denote such models is SARMA(P,Q)..  In case the series was not stationary, 

then it is possible to apply the differences operator to the series as follows: 

Φ(𝐵𝑠)  ∇𝑆
𝐷 𝑦𝑡 =  Θ(𝐵

𝑠)𝜀𝑡 

 



148 
 

Where  ∇𝑆
𝐷 represent the seasonal differences at the seasonal period 𝑆, in this case we have the model 

SARIMA(P,D,Q), where,  

P: the order of the seasonal autoregressive model  

Q: the order of the seasonal moving average model  

D: number of seasonal differences to render the series to be stationary at seasonal periods S. 

It is possible as well to get a general form of the Box-Jenkins models that incorporate both normal 

and seasonal terms, and it is sometimes called “General multiplicative Box-Jenkins models”: 

ϕ(𝐵)Φ(𝐵𝑠) ∇𝑑 ∇𝑆
𝐷 𝑦𝑡 = 𝜃(𝐵) Θ(𝐵𝑠)𝜀𝑡 

it is abbreviated as,  

SARIMA(p, d, q)(P, D, Q)s  

Example: 

Write the mathematical formula for the model SARIMA(0,0,1)(0,0,1)4. 

Solution: 

We have the following values for the order indexes, q=1 ،Q=1 ،S=4, thus the model form is: 

𝑦𝑡 = (1 − 𝜃1𝐵) (1 − Θ1𝐵
4) 𝜀𝑡 

⇒ 𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − Θ1𝜀𝑡−4 + 𝜃1Θ1𝜀𝑡−5 

 

7.3.1 some characteristics of the general multiplicative models 

There are in fact very few general characteristics for the ACF and PACF functions that could be used 

to identify the multiplicative seasonal models. Table (7.1) shows some basic characteristics for ACF 

and PACF for some multiplicative seasonal models, which are used to try to see if a specific 

multiplicative seasonal could be used to model the data. 

 

Model 𝜌𝑘 𝜙𝑘𝑘 

SARIMA(p,0,0)(P,0,0) 
Approach zero gradually 

Cut off completely after 

the time lag p+sP 
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SARIMA(0,0,q)(0,0,Q) Cut off completely after the 

time lag q+sQ 
Approach zero gradually 

SARIMA(p,0,q)(P,0,Q) 
Approach zero gradually Approach zero gradually 

 

7.4 Example: 

Data in table (7.2) represent amount of monthly produced electrical energy in the United States 

during the period of Jan. 1985 –Dec. 2014. Study this set of data, try to get a suitable mathematical 

model able to model it. Use your chosen model to forecast the amount of monthly produced electrical 

energy for the year 2015. The actual monthly production for 2015 is shown below: 

Amount of produced electricity Month 

399.96 1 

400.26 2 

401.52 3 

403.26 4 

403.94 5 

402.80 6 

401.30 7 

398.93 8 

397.63 9 

398.29 10 

400.16 11 

401.85 12 

 

 

Table (7.2): amount of monthly produced electrical energy in the United States during the period              

                                                          of Jan. 1985 –Dec. 2014 
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Month/year 

1 2 3 4 5 6 7 8 9 10 11 12 

1985 345.25 346.06 347.66 348.2 348.92 348.4 346.65 344.85 343.2 343.08 344.4 345.82 

1986 346.54 347.13 348.05 349.77 350.53 349.9 348.11 346.09 345.01 344.47 345.86 347.15 

1987 348.38 348.7 349.72 351.32 352.14 351.61 349.9 347.84 346.52 346.65 347.96 349.18 

1988 350.38 351.68 352.24 353.66 354.18 353.68 352.58 350.66 349.03 349.08 350.15 351.44 

1989 352.89 353.24 353.8 355.59 355.89 355.3 353.98 351.53 350.02 350.29 351.44 352.84 

1990 353.79 354.88 355.65 356.28 357.29 356.32 354.88 352.89 351.28 351.59 353.05 354.27 

1991 354.87 355.68 357.06 358.51 359.09 358.1 356.12 353.89 352.3 352.32 353.79 355.07 

1992 356.17 356.93 357.82 359 359.55 359.32 356.85 354.91 352.93 353.31 354.27 355.53 

1993 356.86 357.27 358.36 359.27 360.19 359.52 357.42 355.46 354.1 354.12 355.4 356.84 

1994 358.22 358.98 359.91 361.32 361.68 360.8 359.39 357.42 355.63 356.09 357.56 358.87 

1995 359.87 360.79 361.77 363.23 363.77 363.22 361.7 359.11 358.11 357.97 359.4 360.61 

1996 362.04 363.17 364.17 364.51 365.16 364.93 363.53 361.38 359.6 359.54 360.84 362.18 

1997 363.04 364.09 364.47 366.25 366.69 365.59 364.34 362.2 360.31 360.71 362.45 364.33 

1998 365.18 365.98 367.13 368.61 369.49 368.95 367.74 365.79 364.01 364.35 365.52 367.08 

1999 368.12 368.98 369.6 370.96 370.77 370.33 369.28 366.86 364.94 365.35 366.68 368.04 

2000 369.25 369.5 370.56 371.82 371.51 371.71 369.84 368.2 366.91 366.99 368.33 369.67 

2001 370.52 371.49 372.53 373.37 373.82 373.18 371.57 369.63 368.16 368.42 369.69 371.18 

2002 372.45 373.14 373.94 375 375.65 375.5 374 371.83 370.66 370.51 372.2 373.71 

2003 374.87 375.62 376.48 377.74 378.5 378.18 376.72 374.31 373.2 373.1 374.64 375.93 

2004 377 377.87 378.73 380.41 380.63 379.56 377.61 376.15 374.11 374.44 375.93 377.45 

2005 378.47 379.76 381.14 382.2 382.47 382.2 380.78 378.73 376.66 376.98 378.29 379.92 

2006 381.35 382.16 382.66 384.73 384.98 384.09 382.38 380.45 378.92 379.16 380.18 381.79 

2007 382.93 383.81 384.56 386.4 386.58 386.05 384.49 382 380.9 381.14 382.42 383.89 

2008 385.44 385.73 385.97 387.16 388.5 387.88 386.43 384.15 383.09 382.99 384.13 385.56 

2009 386.94 387.42 388.77 389.44 390.19 389.45 387.78 385.92 384.79 384.39 386 387.31 

2010 388.5 389.94 391.09 392.52 393.04 392.15 390.22 388.26 386.83 387.2 388.65 389.73 

2011 391.24 391.82 392.49 393.34 394.21 393.72 392.42 390.19 389.04 388.96 390.24 391.83 

2012 393.12 393.6 394.45 396.18 396.78 395.82 394.3 392.41 391.06 391.01 392.81 394.28 

2013 395.54 396.8 397.31 398.35 399.76 398.58 397.2 395.15 393.51 393.66 395.11 396.81 

2014 397.81 397.93 399.62 401.34 401.88 401.2 399.04 397.1 395.35 395.95 397.27 398.84 

 

Solution: 
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We start the analysis by plotting the time series for the amount of monthly produced electrical energy. 

Figure (7.3) shows this time series, it is evident that there is an upward trend in the total produced 

electricity. Also, we note the clear seasonal component, beside that we do not notice any change in 

variation of production over the years, so we do not need to use any transformation to stabilize the data 

variance. 
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                          Figure 7.3: Monthly produced electrical energy in USA during1985 –2014  

 

Surely, we will need to apply the differences operator to make the series stationary in the mean, also it 

is possible that we might need to take a seasonal difference of order 12 if the series is not stationary at 

the seasonal periods, this will be apparent when we plot the autocorrelation and partial autocorrelation 

functions. 

Identification: 

As mentioned above we need to take the ordinary differences of order 1, i.e. 𝑧𝑡 = ∇𝑦𝑡. We got the 

following ACF and PACF functions for 𝑧𝑡: 
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             Figure 7.4: Autocorrelation and partial autocorrelation functions for the series 𝑧𝑡 = ∇𝑦𝑡 

Inspection of the estimated functions, we note that the autocorrelation function decay very slowly to 

zero, also that the first partial autocorrelation coefficient (0.83) is very large, this indicate that we might 

need to apply a second difference to the series. Also, we notice that PACF coefficients at the seasonal 

periods (12, 24, 36,...) decay slowly, which again would indicate the need to take a seasonal difference 

at period s=12. 

Figure (7.4) nominate an initial model SARIMA(2,1,0)(0,0,1)12 , also following the notes in the previous 

paragraph, we applied a second difference to the data, i.e. 𝑤𝑡 = ∇2𝑦𝑡, and obtained the following ACF 

and PACF: 
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             Figure 7.5: Autocorrelation and partial autocorrelation functions for the series 𝑤𝑡 = ∇2𝑦𝑡 

 

Inspection of the estimated functions in fig. (7.5), we note that the autocorrelation function cuts off 

after the first time lag, besides that, the partial autocorrelation function decay in an exponential format, 
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this is an indication that the data might follow a moving average of order one pattern. Also, that PACF 

coefficients at the seasonal periods (12, 24, 36,...) decay exponentially, and there exist a single 

significant value at the seasonal period s=12, which again would indicate that the data might follow a 

seasonal moving average of order one pattern . Thus Figure (7.5) nominate the model 

SARIMA(0,2,1)(0,0,1)12 . 

 

Fitting the tentative models: 

(i) The model SARIMA(2,1,0)(1,0,0)12 

Fitting the model with MINITAB, we got the following output: 

Final Estimates of Parameters 

 

Type        Coef  SE Coef     T      P 

AR   1   -0.3175   0.0385   -8.25  0.000 

AR   2   -0.1331   0.0384   -3.46  0.001 

SAR  12   0.9807   0.0096  102.04  0.000 

 

 

Differencing: 1 regular difference 

Number of observations:  Original series 672, after differencing 671 

Residuals:    SS =  103.064 (backforecasts excluded) 

              MS =  0.154  DF = 668 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square  172.2  183.6  194.0  202.7 

DF              9     21     33     45 

P-Value     0.000  0.000  0.000  0.000 

 

As we can see from the output, all the model parameters are significantly different from zero, 

hence have to be retained in the model. However, when looking at the result of the Ljnug-Box 

statistic, that is used to test the hypothesis: 

𝐻0: 𝜌1 = ⋯ = 𝜌𝐾 = 0 
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                                                            𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑑𝑜 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑧𝑒𝑟𝑜 

This hypothesis tests the assertion that residuals of the model up to time lag k are uncorrelated, 

hence, upon accepting 𝐻0 we will deduce that the model is suitable to that data. However, from the 

output above we notice that the P_values for the  Ljung-Box test are all equal to zero, thus we reject 

𝐻0, and deduce that the model SARIMA(0,2,1)(1,0,0)12 could not capture all the autocorrelation 

structure of the data and thus it is unsuitable to model the data. We can also , plot the ACF and the 

PACF for the residuals of this model to check this point: 
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             Figure 7.6: Autocorrelation and partial autocorrelation functions for the residuals of the model   

                                                                SARIMA(0,2,1)(1,0,0)12 

We notice figure (7.6) that there is still some autocorrelation between the residuals of the model at 

time lag S=12 not explained by the model, also the PACF at time lags k=12, 24, 36 decay in an 

exponential fashion. Hence, we search for another model that can model the data better. 

(ii) The model SARIMA(0,2,1)(0,0,1)12  : 

Fitting this model using MINITAB, we got the following: 

 

Final Estimates of Parameters 

 

Type        Coef  SE Coef       T      P 

MA   1    0.0142   0.0415    0.34  0.733 

SMA  12  -0.5200   0.0364  -14.29  0.000 

 

 

Differencing: 2 regular differences 
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Number of observations:  Original series 672, after differencing 670 

Residuals:    SS =  386.630 (backforecasts excluded) 

              MS =  0.579  DF = 668 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24      36      48 

Chi-Square  322.0  850.2  1207.7  1616.3 

DF             10     22      34      46 

P-Value     0.000  0.000   0.000   0.000 

 

We see notice that the moving average parameter in the non-seasonal part does not significantly 

differ from zero, thus it has to be removed from the model, also, we notice that all the P_values of 

the Ljung-Box test indicate that the model is not adequate in modelling the data, this means that it 

could not model the correlation structure of the data. We, can also plot the ACF and the PACF for 

the model residuals to check upon this point: 
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          Figure 7.7: Autocorrelation and partial autocorrelation functions for the residuals of the model   

                                                                SARIMA(0,2,1)(0,0,1)12 

We notice from figure (7.7), the ACF of the residuals, there are still some high values of the 

autocorrelation coefficients at lags s=12,24,36,… . The same could be realized from the PACF at 

seasonal and non-seasonal lags. So, we deduce that the model could not model the correlation 

structure in the data properly. Hence, we search for another model that can model the data better. 

The pattern revealed at Figure (7.7) indicate that we should take a seasonal difference to the data. 

So, we propose the model SARIMA(0,1,1)(0,1,1)12. Notice that we have removed the regular 
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difference of order 2, this is because taking many (unnecessary) differences might distort the 

autocorrelation structure of the data, and when we decided to take a seasonal difference, this might 

relieve us from taking the second regular difference, we will study this model and see if it can 

convince us in modelling the data properly. 

(iii) The model SARIMA(0,1,1)(0,1,1)12  : 

Fitting this model using MINITAB, we got the following: 

Final Estimates of Parameters 

 

Type       Coef  SE Coef      T      P 

MA   1   0.3726   0.0366  10.18  0.000 

SMA  12  0.8929   0.0176  50.66  0.000 

 

 

Differencing: 1 regular, 1 seasonal of order 12 

Number of observations:  Original series 672, after differencing 659 

Residuals:    SS =  56.8926 (backforecasts excluded) 

              MS =  0.0866  DF = 657 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   11.4   24.3   36.4   50.0 

DF             10     22     34     46 

P-Value     0.329  0.333  0.359  0.317 

 

As we can see from the output, all the model parameters are significantly different from zero, hence 

have to be retained in the model. Also, the Ljnug-Box statistic, shows that all the P_values are 

greater than 𝛼 = 0.05 , hence we accept the hypothesis 𝐻0: 𝜌1 = ⋯ = 𝜌𝐾 = 0, and deduce that the 

model is suitable for the data, since it could model all the observed autocorrelation structure in the 

data. Inspecting the ACF and PACF for the residuals of the model: 
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     Figure 7.8: Autocorrelation and partial autocorrelation functions for the residuals of the model   

                                                                SARIMA(0,1,1)(0,1,1)12 

 

Which indeed indicate that the model is adequate, and that it could model all the autocorrelation in 

the data. The residuals of the model show that it is an estimate of a white noise process, since all 

autocorrelation and partial autocorrelation coefficients do not significantly differ from zero, (which 

is a property of the white noise process). 

 

Diagnostics:          

  Now, we have to perform diagnostic tests to see how these model residuals fulfill the conditions of 

the white noise process 𝜀𝑡, because the model residuals 𝜀�̂� are actually estimates of the white noise 

terms𝜀𝑡. The following figure shows results of diagnostic checks of the model residuals: 
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Figure (7.9): Diagnostic plots for the residuals of SARIMA(0,1,1)(0,1,1)12model 

a) Residuals follow the normal distribution 

From figure (7.9), the normal probability plot, shows that the percentiles lie on  a straight line, 

which indicate that the residual percentiles agrees to a large extent with those of the normal 

distribution. The figure also show the result of  a nonparametric goodness of fit test with the 

normal distribution, it is the Anderson-Darling (AD) test for testing the hypothesis: 

𝐻0:residuals follow the normal distribution 

The P_value is 0.183, which indicate that we accept 𝐻0, also note that the histogram of the 

residuals takes a shape very similar to the normal distribution. 

 

b) Variance of the residuals is constant: 

The plot at the top right side of the figure indicate that the variance of the residuals does not 

change over time. 

c) Mean of the residuals is zero: 
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We can conduct a t-test for testing the hypothesis that residuals mean is zero, the MINITAB 

output provide us with the following output: 

One-Sample T: RESI  
 
Test of mu = 0 vs not = 0 

 

 

Var  N   Mean StDev  SE Mean  95% CI              T      P 

RESI 659 0.024 0.2931  0.0114  (0.001375, 0.046210)  2.08  0.038 

    

Since the P_value of the test is 0.038, thus we reject the zero mean hypothesis of the residuals, also 

note that the 95% CI for the residual mean does not contain zero, thus we conclude that we have to 

make amendments to the model. Let us include a constant term δ to the model, Doing so, we obtained 

the following output: 

Final Estimates of Parameters 

 

Type           Coef    SE Coef      T      P 

MA   1       0.3958     0.0500   7.91  0.000 

SMA  12      0.9448     0.0291  32.46  0.000 

Constant  0.0025838  0.0009135   2.83  0.005 

 

 

Differencing: 1 regular, 1 seasonal of order 12 

Number of observations:  Original series 348, after differencing 335 

Residuals:    SS =  27.2551 (backforecasts excluded) 

              MS =  0.0821  DF = 332 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    8.0   22.8   28.6   37.9 

DF              9     21     33     45 

P-Value     0.536  0.355  0.688  0.764 

 

From the above output, we notice that all the results indicate that the model is appropriate, and that 

constant parameter δ should also be retained in the model. Now, let us perform again the test that 

residuals mean is zero: 
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One-Sample T: RESI1  

 
Test of mu = 0 vs not = 0 

 

 

Var  N    Mean    StDev  SE Mean     95% CI       T    P 

RES  659  -0.0048  0.2857  0.0156  (-0.0356, 0.0258)-0.31 0.755 

Since the P_value is 0.755, so we accept the hypothesis of zero mean for the residuals. 

(d) Randomness of the residuals: 

Using the Runs test, which is a non-parametric test for testing the hypothesis that the residuals are 

random versus that they are not random, the MINITAB provide us with the following results: 

Runs Test: RESI1  

 
Runs test for RESI1 

 

Runs above and below K = 0 

 

The observed number of runs = 174 

The expected number of runs = 168.487 

166 observations above K, 169 below 

P-value = 0.546 

Since the P_value of the test is 0.546 which means that we  accept the hypothesis of the residuals 

randomness. 

(e) Residuals are uncorrelated: 

We have already mentioned the result of the Ljung-Box test, which in fact is a test for the 

uncorrelation of the residuals, and we have accepted this hypothesis.  

 Stationarity analysis: 

Since the model contains only moving average terms, then it is stationary. 

 Invertibility analysis: 

The estimated parameters are 𝜃1 = 0.3958,   Θ̂1 = 0.9448  , thus we see that the invertibility 

conditions are satisfied:  

|𝜃1| < 1 ⟹ |0.3958| < 1  , |Θ̂1| < 1 ⟹ |0.9448 | < 1 

 Analyzing the series of first differences of the residuals: 



161 
 

Looking at figure (7.10) that shows the estimated autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) for the first differences of the residuals, we can identify that the proper 

model for this series is the MA(1) model, as the ACF cuts off after the first time lag, whereas the PACF 

decay to zero in an exponential fashion. 
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           Figure (7.10): autocorrelation and partial autocorrelation functions of the first differences of the residuals of          

                                                              SARIMA(0,1,1)(0,1,1)12 Model 

 

The following table shows the output of fitting MA(1) model to the first differences of the residuals 

series, i.e. to the series ∇𝜀�̂�: 

Final Estimates of Parameters 

 

Type    Coef     SE Coef       T      P 

MA   1  0.9846   0.0391      25.24  0.000 

 

 

Number of observations:  346 

Residuals:    SS =  29.5900 (backforecasts excluded) 

              MS =  0.0858  DF = 345 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square    7.3   21.0   27.3   35.1 

DF             11     23     35     47 

P-Value     0.773  0.579  0.822  0.899 
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So, we see that the estimated parameter of this model is 𝜃1 = 0.9846, and to test that the corresponding 

value of 𝜃1 does not significantly differ from zero, we conduct the following test: 

𝐻0: 𝜃1 = 1     𝑣𝑠   𝐻1: 𝜃1 ≠ 1 

And use the test statistic: 

|𝑍| = |
𝜃1 − 1

𝑆𝐸(𝜃1)
| = |

0.9846 − 1

0.0391
| = 0.3939 

Comparing this value with the tabulated value of 2 (from the standard normal table) at significance 

level 5%, we can conclude that 𝜃1 does not differ than 1, Further, we see that the results of the Ljung-

Box test support this model. 

 

Hence, we note that the SARIMA(0,1,1)(0,1,1)12) model has passed all diagnostic checks, and thus we 

conclude that it is suitable to model generated electricity amount in USA during January 1985- 

December 1993, and the form of the model is: 

𝑦𝑡 = 0.00227 + 𝑦𝑡−1 + 𝜀𝑡 − 0.3823𝜀𝑡−1 − 0.9058𝜀𝑡−12 + 0.3463𝜀𝑡−13  

Where, 𝑌𝑡 is generated electricity amount at year 𝑡, and the variance of the white noise process 𝜀𝑡 is 

estimated as MS =  0.0858. 

 

 

 Using the model to forecast the generated electricity amount for the next 12 months: 

The following figure shows the forecasts for the 2015 together with the observed actual 

values: 

month

Y
-D

a
ta

121086420

403

402

401

400

399

398

397

396

395

394

Variable

forecast

upper

lower

actual

Electricity production USA, forecast for year 2015, vs actual 

     
C12

Y
-D

a
ta

50403020100

404

402

400

398

396

394

392

390

Variable

C11

C9

C10

t. s. plot for electricity prod. showing last 3 years and forecast for 2015

 



163 
 

Figure (7.11): Forecast for the generated electricity amount for the year 2015 using SARIMA(0,1,1)(0,1,1)12 Model 

 

The following table also shows these forecasts together with 95% confidence limits: 

 

   Table (7.2): Forecast for the generated electricity amount for the year 2015 using   

                                        SARIMA(0,1,1)(0,1,1)12 Model 

Month Lower limit Actual value Forecast Upper limit 

1 397.369 397.81 397.931 398.493 

2 398.094 397.93 398.750 399.406 

3 398.913 399.62 399.652 400.391 

4 400.168 401.34 400.981 401.794 

5 400.734 401.88 401.615 402.496 

6 400.046 401.20 400.991 401.935 

7 398.450 399.04 399.454 400.457 

8 396.368 397.10 397.427 398.487 

9 394.878 395.35 395.991 397.103 

10 394.952 395.95 396.115 397.277 

11 396.331 397.27 397.542 398.753 

12 397.750 398.84 399.008 400.266 

                                                     

As we can see from table (7.2), the proposed model could produce forecasts that are very near to the 

actual values of the production amounts, also it was able to model seasonality in the data with high 

accuracy. Also, notice that the confidence limits contain the actual values, except the production 

amount for February, as the actual value lies outside the limits, but bearing in mind that this is a 95% 

C.I., then one would expect about 5% of the values to be outside the confidence limits, and hence this 

does not down grade the postulated model. Also, note that these limits are very narrow, indicating that 

the model is very highly reliable.       
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