
Test Bank - Chapter 3 Mass Relationships in Chemical Reactions

- 1) One atomic mass unit (1 amu) is defined as:
- A. the mass of one proton
- B. the mass of one hydrogen atom
- C. one-twelfth the mass of a carbon-12 atom
- D. the mass of one mole of atoms divided by Avogadro's number
- E. the mass of one neutron
- 2) How many entities are in 0.100 mol of H₂O?
- A. 6.02×10^{24}
- B. 6.02×10^{22}
- C. 1.66×10^{23}
- D. 1.00×10^{23}
- E. 6.02×10^{20}
- 3) The mass (g) of 2.50 mol of carbon is:
- A. 120.1 g
- B. 48.04 g
- C. 2.50 g
- D. 30.03 g
- E. 0.208 g
- 4) Which statement about Avogadro's number is correct?
- A. the mass (in grams) of one atom of carbon-12
- B. equals the number of atoms in 12.0 g of ¹²C
- C. equals 1 mole of electrons only
- D. defined as 6.022×10^{22}
- E. the number of grams in one mole of any substance
- F. the amount of a substance having exactly 6.022×10²³ constituent particles of that substance
- G. both B and F
- 5) Which gives the correct molar mass unit?
- A. amu·mol⁻¹
- B. g·mol⁻¹
- C. mol·g⁻¹
- D. kg·mol⁻¹
- E. g∙atom⁻¹
- 6) Which quantity does a mass spectrometer directly measure for ions?
- A. mass only
- B. charge only
- C. mass-to-charge ratio (m/z)
- D. number of electrons lost
- E. percent abundance only

7) The molecular (molar) mass of glucose ($C_6H_{12}O_6$) is closest to: A. 150.13 g·mol ⁻¹ B. 180.16 g·mol ⁻¹ C. 132.12 g·mol ⁻¹ D. 360.32 g·mol ⁻¹ E. 90.08 g·mol ⁻¹
8) A chemist observes peaks at m/z 35 and 37 for chlorine-containing ions. These peak correspond to: A. ³⁵ Cl and ³⁷ Cl isotopes (different masses) B. different charge states of the same isotope only C. ³⁶ Cl and ³⁸ Cl isotopes D. fragments with different numbers of electrons only E. impurity peaks unrelated to chlorine
9) The molar mass (g·mol ⁻¹) of CaCO ₃ is closest to: A. 84.01 g·mol ⁻¹ B. 100.09 g·mol ⁻¹ C. 56.08 g·mol ⁻¹ D. 40.08 g·mol ⁻¹ E. 64.06 g·mol ⁻¹
10) Percent carbon in ethanol (C_2H_6O , atomic masses C=12.01, H=1.008, O=16.00) is approximately: A. 40.0% B. 52.1% C. 66.7% D. 12.0% E. 27.3%
11) A compound is found to be 40.00% C, 6.71% H, and 53.29% O by mass. The empirical formula is: A. CHO B. $C_2H_4O_2$ C. CH_2O D. $C_4H_8O_4$ E. C_2H_2O
12) If the empirical formula of a substance is CH_2 and its molar mass is 56.0 g·mol ⁻¹ , the molecular formula is: A. CH_2 B. C_2H_4 C. C_4H_8 D. C_8H_{16} E. C_3H_6
13) Which is the correct percent composition of carbon in glucose (C ₆ H ₁₂ O ₆)?

```
A. ≈ 40.0%
B. ≈ 66.7%
C. ≈ 33.3%
D. ≈ 25.0%
E. ≈ 50.0%
14) Which of the following experimental results would be used to determine an empirical
formula?
A. Vapor density at STP
B. Combustion products masses (CO<sub>2</sub> and H<sub>2</sub>O) from a known mass of sample
C. Color of compound in solution
D. Conductivity of melted sample
E. Boiling point elevation
15) A 1.00 g sample gives 2.20 g CO<sub>2</sub> and 0.900 g H<sub>2</sub>O on combustion data. The empirical
formula of the sample is closest to:
A. C<sub>2</sub>H<sub>6</sub>O
B. C<sub>3</sub>H<sub>6</sub>O
C. C<sub>8</sub>H<sub>16</sub>O<sub>3</sub>
D. CH<sub>2</sub>O
E. C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>
16) Balance and interpret: combustion of propane, C_3H_8 + O_2 \rightarrow CO_2 + H_2O. If 2.00 mol C_3H_8
are burned, how many moles of CO<sub>2</sub> are formed?
A. 2.00 mol
B. 3.00 mol
C. 4.00 mol
D. 6.00 mol
E. 10.0 mol
17) How many grams of CO<sub>2</sub> are produced when 10.0 g of carbon (C = 12.01) is completely
converted to CO<sub>2</sub>?
A. 9.09 g
B. 22.01 g
C. 36.64 g
D. 44.01 g
E. 12.01 g
18) For the reaction 2H_2 + O_2 \rightarrow 2H_2O, what mass of H<sub>2</sub>O is formed from 2.00 g H<sub>2</sub> (excess
O<sub>2</sub>)?
A. 1.00 g
B. 9.00 g
C. 17.87 g
D. 36.00 g
E. 2.00 g
19) How many grams of NaCl are present in 0.250 mol NaCl? (Na ≈ 22.99, Cl ≈ 35.45)
```


- C. Both mass and number of atoms of each element
- D. Neither mass nor atoms only charge is conserved
- E. Energy only
- 26) A 0.2000-g sample of an organic compound on combustion produced 0.2931 g CO_2 and 0.1200 g H_2O . What is the empirical formula of the compound?
- A. C₂H₄O
- B. CHO
- C. CH₂O
- D. C₂H₆O₂
- E. C₃H₆O
- 27) Consider the reaction: 2 Al + 3 CuCl₂ \rightarrow 2 AlCl₃ + 3 Cu. If you start with 10.0 g Al and 50.0 g CuCl₂, which is the limiting reagent?
- A. Al
- B. CuCl₂
- C. Both in exact stoichiometric amounts
- D. Neither (both are in large excess)
- E. Cannot be determined without temperature
- 28) What is the percent by mass of sulfur in $Al_2(SO_4)_3$?
- A. 12.0%
- B. 28.11%
- C. 32.0%
- D. 7.25%
- E. 42.5%
- 29) A compound has empirical formula CH_2 and measured molar mass $\approx 84.12 \text{ g} \cdot \text{mol}^{-1}$. What is its molecular formula?
- A. CH₂
- B. C₂H₄
- C. C₃H₆
- D. C₄H₈
- E. C₆H₁₂
- 30) Two lab routes to make product X:

Route 1: A (100 g) + B (50 g) \rightarrow X (90 g) + waste (60 g)

Route 2: C (120 g) \rightarrow X (110 g) + waste (10 g)

Which route has the higher atom economy?

- A. Route 1
- B. Route 2
- C. Both equal
- D. Impossible to tell without percent yield
- E. Atom economy is the same as percent yield so compare actual yields
- 31) Reaction: 2 Fe + 3 Cl₂ \rightarrow 2 FeCl₃. Start with 10.0 g Fe and 15.0 g Cl₂. If the actual isolated mass of FeCl₃ is 18.0 g, what is the percent yield?

- A. 54.3%
- B. 78.7%
- C. 88.2%
- D. 95.0%
- E. 102%
- 32) A mass spectrum of element Z shows two isotopes at m/z 35 (relative abundance 75%) and 37 (relative abundance 25%). The average atomic mass on the periodic table you'd expect (amu) is closest to:
- A. 35.0
- B. 35.25
- C. 35.50
- D. 36.00
- E. 37.00
- 33) A synthesis reports 90% yield for the desired product but an atom economy of only 30%. Which statement best explains this?
- A. The process is efficient and generates little waste.
- B. Most of the mass of reactants ends up in by-products even though the desired product forms efficiently.
- C. The theoretical yield is wrong.
- D. The reaction must be reversible.
- E. Percent yield and atom economy are identical metrics.
- 34) A student uses an outdated atomic mass table giving chlorine atomic mass 35.50 instead of the modern 35.45 and uses it in all stoichiometric calculations. This will cause:
- A. Random error in results
- B. Systematic error (bias) in calculated masses and yields
- C. Improved precision but worse accuracy
- D. No effect because atomic masses are exact
- E. Only affect results involving hydrogen

Answer Key:

1) C	2) B	3) D	4) G	5) B	6) C
7) B	8) A	9) B	10) B	11) C	12) C
13) A	14) B	15) C	16) D	17) C	18) C
19) B	20) C	21) A	22) A	23) B	24) D
25) C	26) C	27) B	28) B	29) E	30) B
31) B	32) C	33) B	34) B		