Course Specifications

Course Title:	Discreet Mathematics
Course Code:	153 Math
Program:	Bachelor's in Applied Computing
Department:	Department of Natural \& Engineering Sciences
College:	Applied Studies and Community Service
Institution:	King Saud University
Credit Hours:	(3+0+2)
Lecture Time:	Tuesday 2.45-6.20 pm Wednesday 2.45- 5.05 pm
Faculty Member	Obaid Algahtani Ahmed Alsayed

Table of Contents

A. Course Identification 3
6. Mode of Instruction (mark all that apply) 3
B. Course Objectives and Learning Outcomes 3

1. Course Description 3
2. Course Main Objective 3
3. Course Learning Outcomes 4
C. Course Content 4
D. Teaching and Assessment 5
4. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods 5
5. Assessment Tasks for Students 6
E. Student Academic Counseling and Support 6
F. Learning Resources and Facilities 6
1.Learning Resources 6
6. Facilities Required 7
G. Course Quality Evaluation 7
H. Specification Approval Data 7

A. Course Identification

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	50	\%50
2	Blended	50	\%50
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	80
2	Laboratory/Studio	
3	Tutorial	20
4	Others (specify)	
	Total	100

B. Course Objectives and Learning Outcomes

1. Course Description

Basic concepts of elementary logic: statements and statement forms, connectives, logical equivalence, truth tables; converse, inverse and contrapositive of a conditional statement. Tautologies and contradictions. Universal and existential statements. Boolean algebras: general definitions, Boolean functions, complete sum of products form, complete product of sums form. Karnaugh maps, minimal sum of products forms and minimal product of sums form. Gates and design of logic circuits. Graph theory: basic definitions and examples, paths, cycles, connected graphs, subgraphs. Regular, complete and bipartite graphs. Isomorphism of simple graphs. Trees, spanning trees. Counting Systems: Permutations and Combinations, Binomial Theorem. Sets Theorem

2. Course Main Objective

Learn specific math concepts and their applications in computer science

3. Course Learning Outcomes

CLOs		$\begin{aligned} & \hline \text { Aligned } \\ & \text { PLOs } \end{aligned}$
1	Knowledge and Understanding	
1.1	Summarize the basic concepts of mathematical logic.	1
1.2	Representing groups and performing operations on them.	2
1.3	Learn the basic properties of Boolean algebra and Boolean functions.	3
1...	Know the important typical applications of graph theory.	4
2	Skills:	
2.1	Summarize some basic concepts in graph theory, and some types of special graphs.	5
2.2	Summarize some concepts related to trees, spanning trees, and algorithms.	6
2.3	Draw and graphically represent trees	7
2...		
3	Values:	
3.1	Understand the value of mathematics in computer science	8
3.2		
3.3		
3...		

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to Number Systems - Binary System (Binary to Decimal Conversion - Decimal to Binary Conversion - Arithmetic: addition, subtraction, multiplication) - Octal Number System (Conversions and Arithmetic) - Hexadecimal Number System (Conversions and Arithmetic)	17
2	Logic - Proposition calculus and connectives - Truth tables - Propositional Equivalence	17
3	Sets Set operations	17
4	Boolean Algebra - Boolean Functions - Representation Boolean Functions - Logic Gates - Minimization of Circuit	17
5	Basic Concepts of Graph Theory - Graph Terminology and Special Types of Graphs	17

		Connectivity
\ldots	Total	

Course Academic Calendar

Week	Basic and support material to be covered
(1)	Introduction to Number Systems: Binary System (Binary to Decimal Conversion
(2)	Introduction to Number Systems: Decimal to Binary Conversion - Arithmetic: addition, subtraction, multiplication),
(3)	Introduction to Number Systems:, Octal Number System (Conversions and Arithmetic), Hexadecimal Number System (Conversions and Arithmetic)
(4)	Logic: Proposition calculus and connectives,,
(5)	Logic: Truth tables, Propositional Equivalence.
(6)	Sets: Set operations
(7)	Boolean Algebra: Boolean Functions, Representation Boolean Functions,
(8)	
(9)	Boolean Algebra: Logic Gates ,Minimization of Circuit
(10)	Basic Concepts of Graph Theory: Graph Terminology and Special Types of Graphs ,Connectivity

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Summarize the basic concepts of mathematical logic.	Lecture	Quiz
1.2	Representing groups and performing operations on them.	Discussion	Paper Creativity
	Learn the basic properties of Boolean algebra and Boolean functions.	collaborative work	Paper Creativity
	Know the important typical applications of graph theory.	Brainstorming	Paper Creativity
2.0	Skills		
2.1	Summarize some basic concepts in graph theory, and some types of special graphs.	participatory learning	Paper Creativity
2.2	Summarize some concepts related to trees, spanning trees, and algorithms.	participatory learning	Paper Creativity
...	Draw and graphically represent trees		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
3.0	Values		
3.1	Understand the value of mathematics in computer science	Project	Paper Creativity
3.2			
...			

2. Assessment Tasks for Students

\#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Quizzes, Homework, Projects	End of Lecture	\%35
2	Midterm Examination	MD1	\%25
3	Final Exam	End of Semester	\%40
4			100
5			
6			
7			
8			

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :
Students were given academic guidance, support and feedback at the end of each lecture and exam

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	- K. Rosen, Discrete Mathematics and Its Applications, 7th edition - R.P. Grimaldi; Addison-Wesley. Discrete and combinatorial mathematics: an applied introduction معروف ســحـان، أحمد شــراري (YY ()). الرياضــيات المتقطعة. دار الخريجي لللشــر . والثوزيع، الرياض
Essential References Materials	
Electronic Materials	1. http://www.wikihow.com/Convert-from-Binary-to-Decimal 2. http://www.cci- compeng.com/Unit_1_Representing_Data/1309_Fractions.htm 3. http://syedatnsu.tripod.com/chap1.pdf 4. Digital logic and computer design, Morris mano:
Other Learning Materials	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	
Technology Resources (AV, data show, Smart Board, software, etc.)	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)
Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

Attendance Policy:

Absence from lectures and/or tutorials shall not exceed 25\%. Students who exceed the 25% limit without an accepted medical or emergency excuse shall not be allowed to take the final examination and shall receive a grade of " DN " for the course.

H. Specification Approval Data

Council/ Committee	
Reference No.	
Date	

