Surface Integrals

Mongi BLEL

King Saud University

March 25, 2024

- 1) Surface Integrals
- 2 Flux Integrals

Theorem (Evaluation Theorem)

Consider a surface S in \mathbb{R}^3 defined by z=g(x,y) for (x,y) on a region $R_{x,y}\subset\mathbb{R}^2$, where g has continuous first partial derivatives, then

$$\iint_{S} f(x, y, z) dS = \iint_{R_{x,y}} f(x, y, g(x, y)) \sqrt{1 + g_{x}^{2} + g_{y}^{2}} dA,$$

where
$$g_x = \frac{\partial g}{\partial x}$$
 and $g_y = \frac{\partial g}{\partial y}$.

Example

Evaluate the integral $\iint_S f(x, y, z) dS$, where $f(x, y, z) = x^2 + yz$ and S the upper half sphere $x^2 + y^2 + z^2 = R^2$.

$$\iint_{S} f(x,y,z)dS = \iint_{D(0,R)} \left(x^{2} + y\sqrt{R^{2} - x^{2} - y^{2}}\right) \sqrt{1 + \frac{x^{2}}{R^{2} - x^{2} - y^{2}}} + \frac{y^{2}}{R^{2} - x^{2} - y}$$

$$= \int_{0}^{2\pi} \int_{0}^{R} \left(r^{2} \cos^{2}\theta + r \sin\theta \sqrt{R^{2} - r^{2}}\right) \frac{Rr}{\sqrt{R^{2} - r^{2}}} dr d\theta$$

$$= R \int_{0}^{2\pi} \int_{0}^{R} \frac{r^{3}}{\sqrt{R^{2} - r^{2}}} \cos^{2}\theta dr d\theta = \frac{2\pi}{3} R^{4}.$$

Definition

A surface S is called orientable if a unit normal vector \mathbf{n} can be defined at every non boundary point of S and \mathbf{n} is continuous over the surface.

For a surface defined by f(x, y, z) = c,

$$\mathbf{n} = \pm \frac{\nabla f}{\|\nabla f\|}.$$

In particular if the surface is defined by z = g(x, y),

$$\nabla f = (-g_x, -g_y, 1), \ dS = \sqrt{1 + g_x^2 + g_y^2}, \ \mathbf{n} dS = \nabla f dA.$$

Flux of a Vector Field

Consider \mathbf{F} a vector field which can represents the velocity of some fluid in the space. The flux of the fluid across S measures how much fluid is passing through the surface S.

Consider the unit normal vector \mathbf{n} to the surface at a point, the number $\mathbf{F}.\mathbf{n}$ represents the scalar projection of F onto the direction of \mathbf{n} . So it measures how fast the fluid is moving across the surface. Thus, the total flux across S is $\int_{S} \mathbf{F}.\mathbf{n} dS$.

Theorem

Let $\mathbf{F}(x,y,z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ be a continuous vector field defined on an oriented surface S defined by z = g(x,y) on a region $R_{x,y}$. The surface integral of F over S (or the flux of F over S) is:

$$\int_{S} F.ndS = \iint_{R_{x,y}} (-Mg_x - Ng_y + P)dA$$

if the surface is oriented upward and

$$\int_{S} \mathbf{F}.\mathbf{n} dS = \iint_{R_{x,y}} (Mg_{x} + Ng_{y} - P) dA$$

if the surface is oriented downward.

Example

Compute the flux of the vector field $\mathbf{F}(x,y,z)=(x,y,0)$ over the portion of the paraboloid $z=x^2+y^2$ below z=4 (oriented with upward-pointing normal vectors).

Solution First, observe that at any given point, the normal vectors for the paraboloid $z=x^2+y^2$ are $\pm(2x,2y,-1)$. For the normal vector to point upward, we need a positive z-component. In this case,

$$u = -(2x, 2y, -1) = (-2x, -2y, 1)$$

is such a normal vector. A unit vector pointing in the same direction as u is then

$$\mathbf{n} = \frac{1}{\sqrt{4x^2 + 4y^2 + 1}}(-2x, -2y, 1).$$

We have
$$dS = ||u|| dA = \sqrt{4x^2 + 4y^2 + 1} dA$$
. Then

$$\iint_{S} \mathbf{F.n} dS = \iint_{R} (x, y, 0) \cdot \frac{(-2x, -2y, 1)}{\sqrt{4x^{2} + 4y^{2} + 1}} \sqrt{4x^{2} + 4y^{2} + 1} dA$$

$$= \iint_{R} (x, y, 0) \cdot (-2x, -2y, 1) dA = \iint_{R} (-2x^{2} - 2y^{2}) dA.$$

The region $R_{x,y}$ is the disc D(0,2), then

$$\iint_{S} \mathbf{F}.\mathbf{n}dS = \int_{0}^{2\pi} \int_{0}^{2} -2r^{3}drd\theta = -16\pi.$$

Exercises

Exercise 1: Evaluate
$$\int_D (2, -3, 4) \cdot \mathbf{n} dS$$
, where D is given by $z = x^2 + y^2$, $-1 \le x \le 1$, $-1 \le y \le 1$, oriented up.

Exercise 2_c:

Evaluate $\int_D (x, y, 3) \cdot \mathbf{n} dS$, where D is given by z = 3x - 5y, $1 \le x \le 2, 0 \le y \le 2$, oriented up.

Exercise 3:

Evaluate $\int_D (x, y, -2) \cdot \mathbf{n} dS$, where D is given by $z = 1 - x^2 - y^2$, $x^2 + y^2 < 1$, oriented up.

Exercise 4_a:

Evaluate $\int_D (xy, yz, zx) \cdot \mathbf{n} dS$, where D is given by $z = x + y^2 + 2$, $0 \le x \le 1, x \le y \le 1$, oriented up.

Exercise 5_a:

Evaluate $\int_{D}^{T} (e^{x}, e^{y}, z) \cdot \mathbf{n} dS$, where D is given by $z = xy, 0 \le x \le 1, -x \le y \le x$, oriented up.

Exercise 6:

Evaluate $\int_D (xz, yz, z) \cdot \mathbf{n} dS$, where D is given by $z = a^2 - x^2 - y^2$, $x^2 + y^2 \le b^2$, oriented up.

Example

Compute the flux of $F = (x, y, z^4)$ across the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$, in the downward direction.

We write the cone as a vector function: $\gamma = (v \cos u, v \sin u, v)$, $0 \le u \le 2\pi$ and $0 \le v \le 1$. Then $\gamma_u = (-v \sin u, v \cos u, 0)$, $\gamma_v = (\cos u, \sin u, 1)$, and $\gamma_u \times \gamma_v = (v \cos u, v \sin u, -v)$. The third coordinate -v is negative, which is exactly what we desire, that is, the normal vector points down through the surface.

Then

$$\int_{0}^{2\pi} \int_{0}^{1} \langle (x, y, z^{4}), (v \cos u, v \sin u, -v) \rangle \, dv \, du$$

$$= \int_{0}^{2\pi} \int_{0}^{1} xv \cos u + yv \sin u - z^{4}v \, dv \, du$$

$$= \int_{0}^{2\pi} \int_{0}^{1} v^{2} \cos^{2} u + v^{2} \sin^{2} u - v^{5} \, dv \, du$$

$$= \int_{0}^{2\pi} \int_{0}^{1} v^{2} - v^{5} \, dv \, du = \frac{\pi}{3}.$$