Surface Area

Mongi BLEL

King Saud University
March 25, 2024

Consider a surface S defined by $z=f(x, y)$, for (x, y) in a closed region $R \in \mathbb{R}^{2}$. We assume that $f(x, y) \geq 0$ and f is continuously differentiable. We assume also that no normal vector to S is parallel to the $x y$-plane. $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \neq(0,0)$ for all $(x, y) \in R$. The surface area of S is

$$
A=\iint_{R} \sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}} d x d y
$$

Example

Consider the surface $z=1-x^{2}-y^{2}$, for $z \geq 0$.
We have $\frac{\partial f}{\partial x}=-2 x$ and $\frac{\partial f}{\partial y}=-2 y$. Then

$$
\begin{aligned}
A & =\iint_{x^{2}+y^{2}<1} \sqrt{1+4 x^{2}+4 y^{2}} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r \sqrt{1+4 r^{2}} d r d \theta \\
& =2 \pi \frac{1}{12}\left[\left(1+4 r^{2}\right)^{\frac{3}{2}}\right]_{0}^{1}=\frac{\pi \cdot\left(5^{\frac{3}{2}}-1\right)}{6}
\end{aligned}
$$

Example

Consider the sphere $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=R^{2}\right\}$.
The area of S is the double of the area of the surface of the upper half sphere $S^{\prime}=\left\{(x, y, z) \in \mathbb{R}^{3}: z=\sqrt{1-x^{2}-y^{2}}\right\}$.
We have $\frac{\partial z}{\partial x}=-\frac{x}{\sqrt{R^{2}-x^{2}-y^{2}}}$ and $\frac{\partial z}{\partial y}=-\frac{y}{\sqrt{R^{2}-x^{2}-y^{2}}}$.
The area is

$$
\begin{aligned}
A & =2 \iint_{x^{2}+y^{2}<R^{2}} \sqrt{1+\frac{x^{2}+y^{2}}{R^{2}-x^{2}-y^{2}}} d x d y \\
& =2 R \int_{0}^{2 \pi} \int_{0}^{R} \frac{r}{\sqrt{R^{2}-r^{2}}} d r d \theta=4 \pi R^{2}
\end{aligned}
$$

Example

Consider the surface $S=\left\{(x, y, z) \in \mathbb{R}^{3}: z=13-4 x^{2}-4 y^{2}\right\}$ on the domain $z=1, x>0$ and $y<0$.
We have $\frac{\partial z}{\partial x}=-8 x$ and $\frac{\partial z}{\partial y}=-8 y$. Then the area of S is

$$
\begin{aligned}
A & =\iint_{x^{2}+y^{2}<3, x>0, y<0} \sqrt{1+16\left(x^{2}+y^{2}\right)} d x d y \\
& =\int_{0}^{\frac{\pi}{2}} \int_{0}^{\sqrt{3}} \sqrt{1+16 r^{2}} r d r d \theta \\
& =\frac{\pi}{2} \frac{1}{48}\left[\left(1+16 r^{2}\right)^{\frac{3}{2}}\right]_{0}^{\sqrt{3}}=\frac{\pi}{2}
\end{aligned}
$$

Exercises

Exercise 1 :

Find the area of the surface S if S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that is inside the cylinder $x^{2}+y^{2}=2 y$.

