HIGHWAY ENGINEERING CE431

Geometric Design

CHAPTER

Dr. Walied A. Elsaigh welsaigh@ksu.edu.sa Assistant Professor of Civil Engineering Rabi 1-1434H

HIGHWAY ENGINEERING CE431

Illegal use

www.shutterstock.com · 90921176

Minimum length of sag vertical curve as controlled by sight distance underneath a structure (bridge)

C = Vertical clearance to the critical edge of the structure

Minimum Passing Sight Distance

Minimum Passing Sight Distance (continued)

Elements Of Safe Passing Sight Distance For Two-lane Highways

Speed Group (mph)''	30-40	40-50	50-60	60-70
Average Passing Speed (mph)	34.9	43.8	52.6	62.0
Initial maneuver:				
<i>a</i> = average acceleration (mphps)"	1.40	1.43	1.47	1.50
$t_1 = time (sec)''$	3.6	4.0	4.3	4.5
d_I = distance traveled (ft)'	145	215	290	370
Occupation of left lane:				
$t_2 = time (sec)''$	9.3	10.0	10.7	11.3
d_2 = distance traveled (ft)	475	640	825	1030
Clearance length:				
d_3 = distance traveled (ft)	100	180	250	300
Opposing vehicle:				
d_4 = distance traveled (ft)	315	425	550	680
Total distance, $d_1 + d_2 + d_3 + d_4$ (ft)	1035	1460	1915	2380

Minimum Passing Sight Distance (continued)

Sight Distance on Horizontal Curves

Sight Distance on Horizontal Curves (continued)

- For S < L
- (S/2)/ θ = 100/D , θ = SD/200
- $M = R R \cos \theta = R [1 \cos (SD/200)]$
- $S = (200/D) Cos^{-1} [(R-M)/R]$

- Other approximate equations:
- M = L (2S-L)/8R for $S \ge L$
- $M = S^2 / 8R$ for $S \le L$

shutterstock · 91781912

www.shutterstock.com · 120828502

CHAPTER 13

SURVEYS, PLANS, AND ESTIMATES

Aerial Photograph (stereographic)

Aerial Photograph (Oblique)

CHAPTER 15

HIGHWAY MATERIALS

Moisture - Density Relationship ->95%. MOD means? Sheld = X * 0.95 X AsH To Compaction. -> How we get Sfield ? Use sand replacement test OR Troxilars (nuclear devices) Why need to determine optimum moisture content? Because it is the content that Provides maximum density?? why Stield < Xiab ?