

Summary of Math-107

(All material only in 12 pages)

Prepared by:

Lecturer: Fawaz bin Saud Al-Otaibi

Directional derivatives for functions of two variables.

system of Lincar equations. Agumented matrix, Row Echelon, Reduced Row Echelon Canss-Gerdan Elimibation : - level be 1000 -Causs - Elimination 2 june i bell as trivial solution -> alt dials 1.15 Teeps It : A homeogeneous linear system with more unknowns that equations has infinitely many solutions. جاوم جورارت طرتع عجل جارس ألعليات الصعت ۱ ۵ ² وجاوی - جو را ۲ ا لارليم: (i) Ritori (ii) $aR_i + R_i$ (iii) aR: م تنا متص طبيعتم من خلال آخ من . تستحديمي : System و المصغومات والمصدد ات المتغير الذي ليسين في عموره "واحد متقدم " يكون هو الحر tors, t, sep النظام له حل سوا تُر موجيد أم عدد لإنهاعي سر الحلول Consistent system -> الشلم ليس له حل in consistent system -> فتط بدالدات فتر الجنري م Homegenons system _____

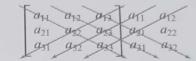
Matrices. AB mxr rxn ito ije mxn Procosti trcA) = A je a is zon بج ويعي: $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_{3 \times 1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad --$ A.I=A, I.A=A If A.B=I or BA=I => A is invertible (nonsingular) and A'=B $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow \overline{A} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ (AB) = BA $A \cdot A \cdots A$ $(\overline{A}) = (\overline{A}) = \overline{A} \cdot \overline{A} \cdots A$ $(kA) = \frac{1}{k}A$ $(A\pm B)^{t} = A^{t}\pm B^{t}, (AB)^{t} = B^{t}A^{t}, (kA) = kA^{t}$ $P(x) = x^{2} + 3x + 4 \Rightarrow P(A) = A^{2} + 3A + 4I$ $(A^{t})^{-1} = (A^{-1})^{t}$ Row operations to find $\overline{A} = [A|I] ... [I|A']$ Solution of system $A = b by \overline{A}$: $\overline{X} = \overline{A} b$ If A=A=A > A is symmetric (503) : Jiio)

الممسوحة ضوئيا بـ CamScanner

Determinant : (| A | or det(A)) A sie is avis and and طرقه إيجاد الحددة (allielis) Arrows * (You reduction) Direct multiplication (i) RitaR; ⇒ contions Cofactors $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ $|A| = q C_{1} + q C_{1}$ $|A| = a_{11} \begin{vmatrix} a_{21} & a_{23} \\ a_{21} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{32} \\ a_{21} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{21} & a_{23} \end{vmatrix}$ Mij = | . . | = 128 لاستغير نشريم (= iii) a Ri +Ri (iii) minor $\begin{array}{c|c} + a & a_1 & a_2 \\ \hline 13 & a & a_1 \\ \hline 31 & 32 \\ \hline cofactors \\ \hline cofactors \\ \hline + - + \\ \hline + - + \\ \hline cofactors \\ \hline + - + \\ \hline cofactors \\ \hline + - + \\ \hline \hline cofactors \\ \hline \end{array}$ الحرق تحو ملها لمحلشة عليا Note: $\begin{vmatrix} a & c & o \\ o & b & o \\ o & b & o \\ o & c & \end{vmatrix} = abc, \begin{vmatrix} a_{11} & 0 & o \\ a_{1} & a_{22} & 0 \\ a_{1} & a_{22} & 0 \\ a_{1} & a_{22} & 3 \\ a_{11} & a_{22} & a_{11} \\ a_{12} & a_{12} & a_{13} \\ a_{12} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{12} & a_{13} \\ a_{12} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{12} & a_{13} \\ a_{12} & a_{13} & a_{12} & a_{13} \\ a_{13} & a_{13} & a_{13} \\ a_{13} & a_{13}$ Properties of determinant: ا ذا منعه جنف أ وعود كله أ مسعا / (7 x عرد تابت مان المحددة = معر 1) KA = K A > n is degree اذ فنه جنعان او عمودان متساوران +A) 8) او أحد صحا منها عغاً للآخر، فإن الحددة = معر 2) | A±B | ≠ | A | ± | B | 3) $|AB| = |A| \cdot |B|$ 9) A. adj (A) = adj (A). A = |A|. In 4) $\left| \tilde{A} \right| = \frac{1}{|A|}$ 10 XXXXX $10) |A^{n}| = |A|^{n}$ 5) A is invertible <> |A| = 0 Cramer 'S. Rule (4, Tan Eliter) $(A^{t}) = |A|$ Finding A by cofactors: $x = \frac{|A_1|}{|A|}, y = \frac{|A_2|}{|A|}, z = \frac{|A_3|}{|A|}$ $A = \int_{A} adj(A)$ A -> Cylauf Fieron $aof_{1}(A) = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & 32 & 33 \end{pmatrix}$ دستبدل المرد الاول في A بالتواب - A A -> " A غ في الثاني = 1 $|A \rightarrow \mu A \neq i i i i n$ 4

The method illustrated in Example 6 can be easily adapted to prove the following general result.

THEOREM 2.1.2 If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then det(A) is the product of the entries on the main diagonal of the matrix; that is, det(A) = $a_{11}a_{22}\cdots a_{nn}$.


A Useful Technique for Evaluating 2×2 and 3×3 Determinants

WARNING The arrow technique works only for determinants of 2×2 and 3×3 matrices. It *does not* work for matrices of size 4×4 or higher.

Vis

Determinants of 2×2 and 3×3 matrices can be evaluated very efficiently using the pattern suggested in Figure 2.1.1.

▶ Figure 2.1.1

In the 2×2 case, the determinant can be computed by forming the product of the entries on the rightward arrow and subtracting the product of the entries on the leftward arrow. In the 3×3 case we first recopy the first and second columns as shown in the figure, after which we can compute the determinant by summing the products of the entries on the rightward arrows and subtracting the products on the leftward arrows. These procedures execute the computations

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$
$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$
$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

which agrees with the cofactor expansions along the first row.

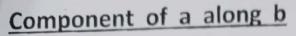
 $|a_{11} \ a_{12}|$

EXAMPLE 7 A Technique for Evaluating 2 × 2 and 3 × 3 Determinants

$$\begin{vmatrix} 3 & 1 \\ 4 & -2 \end{vmatrix} = \begin{vmatrix} 3 & 1 \\ -2 & 3 \end{vmatrix} = (3)(-2) - (1)(4) = -10$$

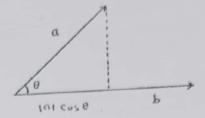
$$\begin{vmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 2 \\ 7 & -8 & 9 \end{vmatrix}$$

Philippe Vectors and surfaces ch 10 P.P2 = 12 - P, , P, 8 P2 Points Dr. id re (line) d = IPQ × PRI REde in it 20 porte: QCXO => QXB in opposite Volume of box: (axb).C. airection Volume of box: (axb).C P, 8P2 Points : (hox silie ? 5 3 5 al) $d(r_1)r_2) = \sqrt{(x_1 - x_1)^2 + (x_2 - y_1)^2 + (z_2 - z_1)^2}$ 2,120102,037 - Parameter $midpoint: \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$ 11 (n2, m, 22) eq of line l= a= < 91, 92, 92 7 8 6= < b, b, b, > $x = x_1 + a_1 t, y = y_1 + a_2 t, z = z_1 + a_3 t, t \in \mathbb{R}$ $a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3 \rightarrow 2b_3$ (Parametric equations) $||\vec{q}|| = |\vec{a} \cdot \vec{a}|$ Angles between two lines ly she 0 الزادية بيني ثم و قط $\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| (\cos(6))$ is the angle between a p B, where 2/12, 3 5º 112 as b are orthogonal (=) a. b = o (**9** and 7-9) $Com \vec{a} = \vec{a} \cdot \vec{b} \quad (Component of a)$ $\vec{b} \quad (Component of a)$ à= <aliazaz à 1 plane normal Work = PG. PR (14:100 - 19 1) ·P(X, , Y, , 3) orthogonal eq of plane: direction angles: (d, B, Y) $q_1(x-x_1) + q_2(y-y_1) + q_3(z-z_1) = 0$ $\cos \chi = \frac{\alpha_1}{\|\vec{\alpha}\|}, \cos\beta = \frac{\alpha_2}{\|\vec{\alpha}\|}, \cos\beta = \frac{\alpha_3}{\|\vec{\alpha}\|}$ plane: ax+by+c2td=0 > Ka,b, C> 1 plane Vector Predut (Cross Product): > Vector Plane 1 & Plane 2 - Derallel f a // b a x b = a, a a a a (coss) b + Plane 2 Dorthogonal of a + b Symmetric equis of line: $\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{2 - z_0}{a_3}$ b b2 b3 (axb) La and (axb) Lb distance from Point Po (Xu) Yu, Zu) to Plane axtby+cz+d=e is d: ||axb||=||a||1b||5m(G) d= \ax. + by. + ct. + d \ all b ax b= coror parallelog Am a2+b2+c2) 2 Ory line 2 179× PR = 1 11 PQ × PR 1 Raz 9 - time P $|(P, \overline{a}_1 \times P_2 \overline{a}_2) \cdot P_1 P_2|$ G. Elister = 11 PQ XPRI $d = \frac{\|P_1 \hat{a}_1 \times P_2 \hat{a}_2\|}{\|P_1 \hat{a}_1 \times P_2 \hat{a}_2\|}$


الممسوحة ضوئيا بـ CamScanner

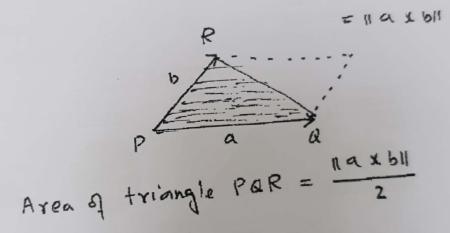
بإضاعات من مذكرة د. خواجه

Ex ly a = 2-6, -3,67, find the vector that has (i). The same direction as a Ytusice the magnitude of a, (ii) the opposite direction of a and one - third magnitude of a, (iii) the same direction of a and magnitude 2.


Sub.
(i)
$$b = 2a = 2 < -6, -3, 67$$

(ii) $b = -\frac{1}{3}a = -\frac{1}{3} < -6, -3, 67$
(iii) $u = \frac{a}{nall} = \frac{1}{36+4+36} < -6, -3, 67 = \frac{1}{9} < -6, -3, -67$
 $b = 2u = \frac{2}{3} < -6, -3, -67$

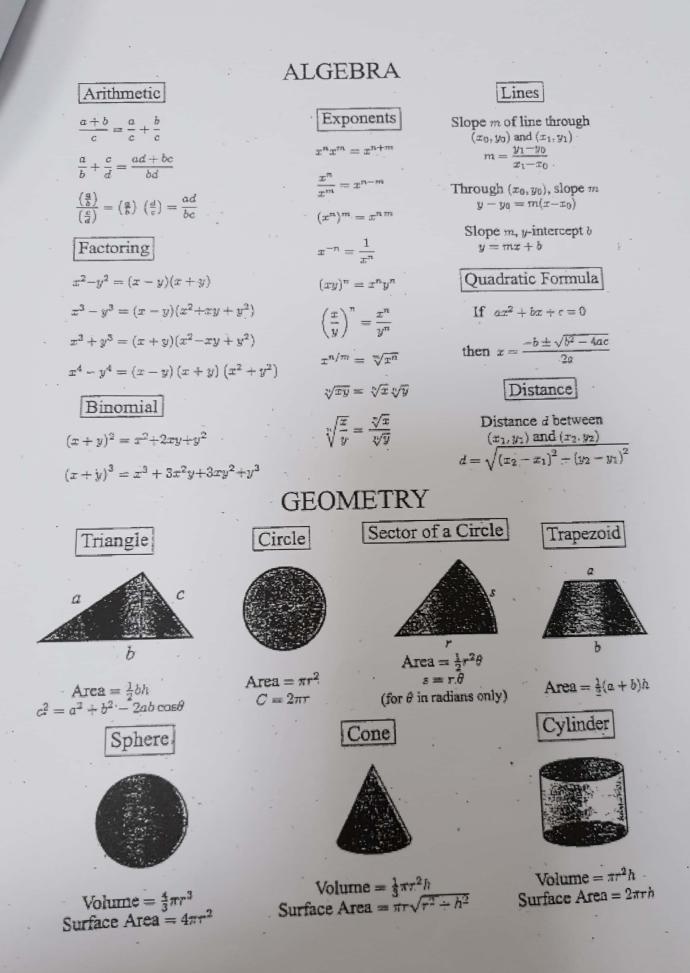
Note. 2. If
$$a = \langle a_1, a_2, a_3 \rangle$$
 and $b = \langle b_1, b_2, b_3 \rangle$ are parallely
then $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$


Let a and b vectors in Vs with b =0.

The component of a along b
=
$$\operatorname{Comp}_{h}^{a} = \frac{a \cdot b}{\|h\|} = a \cdot \frac{b}{\|h\|}$$

Projection of a on b

$$= \left(\begin{array}{c} C_{\mu\nu} \mu \\ b \end{array} \right) \left(\begin{array}{c} b \\ \overline{b} \end{array} \right) = \left(\begin{array}{c} a \cdot b \\ \overline{b} \end{array} \right) \left(\begin{array}{c} b \\ \overline{b} \end{array} \right) = \left(\begin{array}{c} a \cdot b \\ \overline{b} \end{array} \right) \left(\begin{array}{c} b \\ \overline{b} \end{array} \right)$$



100

Scalar Triple Product

Note.5

$$(a \times b) \cdot c = a \cdot (b \cdot c) = \begin{vmatrix} a_1 & a_2 & a_3 \end{vmatrix}$$

 $\begin{vmatrix} b_1 & b_2 & b_3 \end{vmatrix}$
 $\begin{vmatrix} c_1 & c_2 & c_3 \end{vmatrix}$

الممسوحة ضوئيا بـ CamScanner

10.6 SURFACES :

Thace equiftrace Kind Sketch of identify (due) (- +)
20 $\frac{19}{12} - \frac{1}{12} = 0$ $\frac{1}{12} = 0$ $\frac{1}$
2) 22-trace y=0
trace in one of the following Name of
Plane: X=K, X=K Surface.
$ \begin{array}{c} y = k \\ z = k \\ z = k \\ z = k \end{array} $
i l'ssek
بجد الانتياء من اكبرول علاء نذهب الرسمة في D : 3D :
x
4
$\begin{array}{c} \chi = k \\ y = k \end{array} : 2D \stackrel{\circ}{} (\stackrel{\circ}{} \stackrel{\circ}{ } \stackrel{\circ}{} \stackrel{\circ}{} \stackrel{\circ}{} \stackrel{\circ}{} \stackrel{\circ}{$
$\frac{2}{2-k} = \frac{2}{1 - 2} \frac{1}{1 - 2} \frac{1}$
X-h=4p(y-K), Parabola <1 (y-K) [X-h] =1 hyperbola
$V(h)K) \stackrel{r}{=} a^2 b^2 C(h)K), V_1(h, Kt^{\alpha})$
$\frac{(x-h)}{u^2} + \frac{(y-k)}{b^2} = 1$ ellipse $\frac{(x-h)}{t} + \frac{(y-k)}{b^2} = \frac{(x-h)}{t} + \frac{(y-k)}{b^2} = \frac{(x-h)}{t} + \frac{(y-k)}{b^2} = \frac{(x-h)}{t} + \frac{(y-k)}{t} = \frac{(y-k)}{t} + \frac{(y-k)}{t} = (y-k$
$a_7b \Rightarrow C(h,k), V(h+a,k)$ $r^2 w^2 = 0$ Origin Point
(y-k) + (y-k) =) ellipse x + y = wy we no trace
$a_{7}b = C(h, K), V, (h, K+a)$ $V_{2}(h, K-a)$

f(urve C: x = f(t), y = g(t), z = h(t))CN 11 : parametric eg of tangent line Length of $C = L = \int [x(t+)]^2 + [f(t+)]^2 + [\tilde{f}(t+)]^2 dt$ cand c. htt at p(xo)20,3) can, 29, 9) = Fito tangent p & tangent eine $x = x_{a} + a, t$ $y = y_{a} + a_{2} t$, ten? $z = z_{a} + a_{2} t$ Velocity: V(+) = F(+) / r(+) is position Specific vector Speed : N(t) = || F(t) || (Xuy, 2) -> t=? acceleration: a(t) = Y'(t) = V(t)eg of normal place Force: F = m.a. acceleration mass acceleration of cir(t) at provers 9(1, x)+9(1-2)+9(2-3)=0 Unite fongent vector: T(t) = V(t) 291, 92, 93>= F(H) - Plane Principal Unite normal Vector : N(+) = <u>T(+)</u> IT(+) (Xuy, 2)-st=? ST (P X X X) Curvature: $K = \frac{|y'|}{[1+(y')^2]^2}$ radius of curvature: evéges P=K $\frac{\text{Curvature:}}{(1 \times 10^{-5} \times 10^{-5})} K = \frac{11 \times 10^{-5} \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5} \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5} \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5} \times 10^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5}]} K = \frac{11 \times 10^{-5}}{[(1 \times 10^{-5})^{-5}]} K = \frac{11 \times 10^{-5}}}{[(1 \times 10^{-5})^{-5}]} K = \frac{11 \times 10^{-5}}$ Center of curvature: ور توعی در ج (h,k) $C = \chi = f(t), J = g(t)$ $K = \| \tilde{T}(t) \|$ $h = x - \frac{y'(i + (y)^2)}{y^2}$ z=h(t) (in 3D) $\alpha_{\perp} = \frac{\dot{nt} \cdot \ddot{rt}}{\|\dot{r}(t)\|}$ $K = y + 1 + (y)^{2}$ Tungential Component of acceleration $q_{j} = \frac{\|\mathbf{r}(t) \times \mathbf{r}(t)\|}{\|\mathbf{r}(t)\|}$ formal component The inperiod of acceleration P(Xo, Yo, Zo) on C $K = \frac{\| r'(t) \times v''(t) \|}{\| r'(t) \|^3}$ uprature: SW 2 Eb1 + 20 205 z = x = f(0, y = g(t))تآخد واحدة المراحط النعظ $\mathcal{F} = h(t)$ c Blow if y i with c mode of و توجر 25

Ch 12 : imit : lim fin, s) (xy) > (a,b) F(x, J) =0 $\frac{1}{2}$. adis ball او (1) ذختا رصار برلالة م والماية برلالة م F(x, 1, 2) = 0 - and I = W wy ! (it) > i R DZ = - Fx Kal= escivity (أ) بتمرية الساندوية م) (الحمر) Dit = - E te (1) x it as 10 1 1 Directional derivative of F $l_{in}f(x,y) = f(a,b): \overline{u}(s)$ at p(2,13) in the direction of u u= y i + uz j (unite vector) (a,b) abeilie heref ~ 6 (X,y) -> (9,b) $D_{1}f(x, j) = f_{x}(x, j) u_{1} + f_{y}(x, j) u_{2}$ Partial derivatives Gradient of F = $\nabla F(x,y) = f_x \cdot i + f_y \cdot j$ $f_x = \frac{\partial f}{\partial x}$, $f_y = \frac{\partial f}{\partial y}$ $f_{XX} = \frac{3^2 f}{3y^2}, f_{Yy} = \frac{3^2 f}{3y^2}$ max value of Duf is : 117fl 3f. LECXC max rate of increase of f $f_{yx} = (f_y)_{x}, f = (f_x)_{y}$ in direction of ∇f min value of Duf is= - 1 VFU Increment of #: min rate of increase of f a direction of - V.F. $\Delta w = f(x + \Delta x, y + \Delta y) - f(x, y)$ $= f_{(X,Y)} \Delta x + f_{Y}(X,Y) \Delta Y + E_{1} \Delta x + E_{2} \Delta y$ equation of tangent Plane: Z=f(x,y) E1-0, E2->0 2-20= fx(x,y) (x-x)+fy(x,y) (y-y) differential Local extrema of f: 1- Find Critical Point = fx=0 and fy=0 $dw = f_{x}(n, j) dx + f_{y}(n, j) dy$ 2- Find D(x,y) = fxx fyy - (fxy) 3 - D(abil) - 1 < 0 => saddle Ponts Chain rule: w = f(u, v), u = g(x, y), v = h(x, y)fxx >0 fxx<0 local min local max W - 4 - X W - Y - X NC - WC + XC WC = XC JW = JW. Ju + JV.

ch12 (alt) agrange multipliers. Lieal extremal of f(2, y) subject to constraint 9(4)=0 $\nabla f = \lambda \nabla g \Longrightarrow f_x = \lambda g_x$ $f_y = \lambda g_y$ $f_y = \lambda g_y$ وَتَعَا رَبْم سِير فَتَمَ (r,x) : (3D) 2 5 0 2 5 0 2 5 ((2)) : $\int f_{x} = \lambda g_{x}$ $f_{y} = \lambda g_{y}$ $f_{y} = \lambda g_{y}$ $f_{y} = \lambda g_{y}$ $f_{z} = \lambda g_{z}$ $f_{z} = \lambda g_{z}$ (والحد لله الزي ينعنه تبتم الصالحات)