6- Correlation

The correlation coefficient (a value between -1 and +1) tells you how strongly two variables are related to each other. We can use the CORREL function or the Analysis Toolpak add-in in Excel to find the correlation coefficient between two variables.

- A correlation coefficient of +1 indicates a perfect positive correlation. As variable X increases, variable Y increases. As variable X decreases, variable Y decreases.

- A correlation coefficient of -1 indicates a perfect negative correlation. As variable X increases, variable Z decreases. As variable X decreases, variable Z increases.

- A correlation coefficient near 0 indicates no correlation.

To use the Analysis Toolpak add-in in Excel to quickly generate correlation coefficients between multiple variables, execute the following steps.

1. On the Data tab, click Data Analysis.

Note: can't find the Data Analysis button? Click here to load the Analysis ToolPak add-in.

2. Select Correlation and click OK.

3. For example, select the range A1:C6 as the Input Range.

- 4. Check Labels in first row.
- 5. Select cell A9 as the Output Range.
- 6. Click OK.

Result.

Conclusion: variables A and C are positively correlated (0.91). Variables A and B are not correlated (0.19). Variables B and C are also not correlated (0.11). You can verify these conclusions by looking at the graph.

7-Regression

This example teaches you how to perform a regression analysis in Excel and how to interpret the Summary Output.

In this study a random sample of service call records for a computer repair operation were examined and the length of each call (in minutes) and the number of components repaired or replaced were recorded. The data is given below.

Units
1
2
3
4
4
5
6
6
7
8
9
9
10
10

Below you can find our data. The big question is:

is there a relation between Minutes (Output) and Units (Input). In other words: can we predict Minutes if we know the unites?

1. On the Data tab, click Data Analysis.

Note: can't find the Data Analysis button? Click here to load the Analysis ToolPak add-in.

2. Select Regression and click OK.

- 3. Select the Y Range (A2:A15). This is the predictor variable (also called dependent variable).
- 4. Select the X Range(B2:B15). These are the explanatory variables (also called independent variables). These columns must be adjacent to each other.
- 5. Check Labels.
- 6. Select an Output Range.
- 8. Click OK.

Excel produces the following Summary Output (rounded to 3 decimal places).

Minutes	Units									
23	1	SUMMARY	OUTPUT							
29	2									
49	3	Regression	Regression Statistics							
64	4	Multiple R	0.994							
74	4	R Square	0.987							
87	5	Adjusted R	0.986							
96	6	Standard E	5.392							
97	6	Observation	14.000							
109	7									
119	8	ANOVA								
149	9		df	SS	MS	F	ignificance l	F		
145	9	Regressior	1.000	27419.509	27419.509	943.201	0.000			
154	10	Residual	12.000	348.848	29.071					
166	10	Total	13.000	27768.357						
		C	Coefficients andard Err		t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	Ipper 95.0%
		Intercept	4.162	3.355	1.240	0.239	-3.148	11.472	-3.148	11.472
		Units	15.509	0.505	30.712	0.000	14.409	16.609	14.409	16.609

Results

The regression line is: y = Minutes=4.162+15.509*Units. In other words, for increasing the units by one, the Time Minutes increases by 15.509, while there is 4.162 minutes does not depend on the unites.