Spherical Coordinates

Mongi BLEL
King Saud University
March 25, 2024

Example

Consider the points M and N of coordinates (10, $\frac{\pi}{2}, \frac{\pi}{6}$) and ($6, \frac{\pi}{3}, \frac{\pi}{6}$) respectively in spherical coordinates:
(1) The rectangular coordinates of M are: $(0,5,5 \sqrt{3})$. The rectangular coordinates of N are: $\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}, 3\right)$.
(2) The cylindrical coordinates of M are: $\left(5, \frac{\pi}{2}, 5 \sqrt{3}\right)$. The cylindrical coordinates of N are: $\left(3, \frac{\pi}{2}, 3\right)$.

Example

Change the rectangular coordinates $(1, \sqrt{3}, 0)$ to
(1) the spherical coordinates
(2) the cylindrical coordinates.
$\rho^{2}=x^{2}+y^{2}+z^{2}=4$, then $\rho=2$.
$\theta=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1} \sqrt{3}, \theta=\frac{\pi}{3}$.
$\varphi=\cos ^{-1}\left(\frac{z}{\rho}\right)=\frac{\pi}{2}$.
Thus the spherical coordinates are: $\left(2, \frac{\pi}{3}, \frac{\pi}{2}\right)$.
for the cylindrical coordinates, we have $r^{2}=x^{2}+y^{2}=4$, then $r=2$.
The cylindrical coordinates are $\left(2, \frac{\pi}{3}, 0\right)$.

Example

Change the cylindrical coordinates $\left(4,-\frac{\pi}{2}, 6\right)$ to
(1) the rectangular coordinates
(2) the spherical coordinates.
for the rectangular coordinates, we have $x=r \cos \theta=0$.
$y=r \sin \theta=-2$ and $z=6$.
For the spherical coordinates, we have $\rho^{2}=x^{2}+y^{2}+z^{2}=4+36$, then $\rho=2 \sqrt{10}$.
$\theta=-\frac{\pi}{2}, z=6=\rho \cos \varphi$, then $\varphi=\cos ^{-1} \frac{3}{\sqrt{10}}$.
Thus the spherical coordinates are: $\left(2 \sqrt{10},-\frac{\pi}{2}, \cos ^{-1} \frac{3}{\sqrt{10}}\right)$.

Example

(1) Describe the graph of the equation $\rho=\sec \varphi=6$. $\rho \sec \varphi=6 \Longleftrightarrow \rho=6 \cos \varphi \Longleftrightarrow \rho^{2}=6 z$. Hence $x^{2}+y^{2}+z^{2}=\rho^{2} \Longleftrightarrow x^{2}+y^{2}+(z-3)^{2}=9$. This is the equation of the sphere of radius 3 and center $(0,0,3)$.
(2) Describe the graph of the equation $\rho=6 \sin \varphi \cos \theta$. We know that $x=\rho \sin \varphi \cos \theta$, then $\frac{x}{\rho}=\sin \varphi \cos \theta$. Then $\rho^{2}=6 x$. This is the equation of the sphere of radius 3 and center ($3,0,0$).

Example

Change the equations to spherical coordinates:
(1) $x^{2}+y^{2}=4 z$
(2) $x^{2}-4 z^{2}+y^{2}=0$
(1) $x^{2}+y^{2}=4 z \Longleftrightarrow \rho^{2} \sin ^{2} \varphi=4 \rho \cos \varphi$, which is equivalent to: $\rho=4 \frac{\cos \varphi}{\sin ^{2} \varphi}$.
(2) $x^{2}-4 z^{2}+y^{2}=0 \Longleftrightarrow \rho^{2} \sin ^{2} \varphi=4 \rho^{2} \cos ^{2} \varphi \Longleftrightarrow$ $\tan ^{2} \varphi=4$.

Example

Let B_{R} the ball of center $(0,0,0)$ and radius R.

$$
\begin{aligned}
\iiint_{B_{R}} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z & =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R} \rho^{3} \sin \varphi d \rho d \theta d \varphi \\
& =4 \pi \int_{0}^{R} \rho^{3} d \rho=\pi R^{4}
\end{aligned}
$$

Example

Consider the solid delimited by the plane xoy, the cylinder $x^{2}+y^{2}=x$ and the sphere $x^{2}+y^{2}+z^{2}=1$.
The solid is defined by: $\left\{\begin{array}{c}x^{2}+y^{2}+z^{2} \leq 1 \\ x^{2}+y^{2} \leq x \\ z \geq 0 .\end{array}\right.$
In cylindrical coordinates, we have $\left\{\begin{array}{c}\rho^{2}+z^{2} \leq 1 \\ \rho^{2} \leq \rho \cos \theta \\ z \geq 0 .\end{array}\right.$
Then $\rho \in[0,1]$ and if ρ is fixed, θ is in $\left[-\cos ^{-1} \rho, \cos ^{-1} \rho\right]$ and $z \in\left[0, \sqrt{1-\rho^{2}}\right]$. Then the volume of the solid is given by:

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{-\cos ^{-1} \rho}^{\cos ^{-1} \rho} \int_{0}^{\sqrt{1-\rho^{2}}} \rho d z d \theta d \rho \\
& =\int_{0}^{1} 2 \rho \sqrt{1-\rho^{2}} \cos ^{-1} \rho d \rho=\frac{2}{3}\left(\frac{\pi}{2}-\frac{2}{3}\right)
\end{aligned}
$$

Example

Compute $\iiint_{D} f(x, y, z) d x d y d z$, for $D=\left\{x^{2}+y^{2}+z^{2} \leq R^{2}\right\}$, $f(x, y, z)=\frac{1}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}} \quad(a>R>0)$,

Exercises

Exercise 1 :

Set up an integral for the volume of the region bounded by the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$ and the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$. Using the conversion formulas from rectangular coordinates to spherical coordinates, we have:
For the cone: $z=\sqrt{3\left(x^{2}+y^{2}\right)}$ or $\rho \cos \varphi=\sqrt{3} \rho \sin \varphi$, or $\tan \varphi=\frac{1}{\sqrt{3}}$. the $\varphi=\frac{\pi}{6}$.
For the sphere: $z=\sqrt{4-x^{2}-y^{2}}$ or $\rho=2$, then

$$
V=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{6}} \int_{0}^{2} \rho^{2} \sin \varphi d \rho d \varphi d \theta=\frac{16 \pi}{3}\left(1-\frac{\sqrt{3}}{2}\right)
$$

Exercise 2 :

Let E be the region bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the sphere $z=x^{2}+y^{2}+z^{2}$.
Use the conversion formulas to write the equations of the sphere and cone in spherical coordinates.
For the sphere:
$x^{2}+y^{2}+z^{2}=z \Longleftrightarrow \rho^{2}=\rho \cos \varphi \Longleftrightarrow \rho=\cos \varphi$.
For the cone:

$$
\begin{aligned}
z=\sqrt{x^{2}+y^{2}} & \Longleftrightarrow \rho \cos \varphi=\sqrt{\rho^{2} \sin ^{2} \varphi\left(\cos ^{2} \phi+\sin ^{2} \phi\right)} \\
& \Longleftrightarrow \rho \cos \varphi=\rho \sin \varphi \\
& \Longleftrightarrow \cos \varphi=\sin \varphi .
\end{aligned}
$$

Then $\varphi=\frac{\pi}{4}$.

Then the integral for the volume of the solid region E becomes:

$$
V=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\cos \varphi} \rho^{2} \sin \varphi d \rho d \varphi d \theta=\frac{\pi}{8}
$$

Evaluate the triple integrals $\iiint_{E} f(x, y, z) d x d y d z$.
(1) $f(x, y, z)=1-\sqrt{x^{2}+y^{2}+z^{2}}, E=\{(x, y, z)$:
$\left.x^{2}+y^{2}+z^{2} \leq 9, y \geq 0, z \geq 0\right\}$,
Using the spherical coordinates, we get:

$$
\iiint_{E} f(x, y, z) d x d y d z=\int_{0}^{3} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi}(1-\rho) d \theta d \varphi d \rho=-\frac{3 \pi^{2}}{4} .
$$

(2) $f(\rho, \theta, \varphi)=\rho \sin \varphi(\cos \theta+\sin \theta), E=\{(\rho, \theta, \varphi): 1 \leq \rho \leq$ $\left.2,0 \leq \theta \leq \pi, 0 \leq \varphi \leq \frac{\pi}{2}\right\}$,
$\iiint_{E} f(\rho, \theta, \varphi) d \rho d \theta d \varphi=\int_{1}^{2} \int_{0}^{\pi} \int_{0}^{\frac{\pi}{2}} \rho \sin \varphi(\cos \theta+\sin \theta) d \varphi d \theta d \rho=$
(3) $f(x, y, z)=2 x y ; E=\left\{(x, y, z): \sqrt{x^{2}+y^{2}} \leq z \leq\right.$
$\left.\sqrt{1-x^{2}-y^{2}}, x \geq 0, y \geq 0\right\}$,
(4) $f(\rho, \theta, \varphi)=\rho \cos \varphi ; E=\{(\rho, \theta, \varphi): 0 \leq \rho \leq 2 \cos \varphi, 0 \leq \theta \leq$ $\left.\frac{\pi}{2}, 0 \leq \varphi \leq \frac{\pi}{4}\right\}$,
(0) In the following exercises, find the volume of the solid E whose boundaries are given in rectangular coordinates. $E=$ $\left\{(x, y, z): \sqrt{x^{2}+y^{2}} \leq z \leq \sqrt{16-x^{2}-y^{2}}, x \geq 0, y \geq 0\right\}$, $E=\left\{(x, y, z): x^{2}+y^{2}+z^{2}-2 z \leq 0, \sqrt{x^{2}+y^{2}} \leq z\right\}$,
(0) Convert the integral into an integral in spherical coordinates:
(1) $\int_{-4}^{4} \int_{-\sqrt{16-y^{2}}}^{\sqrt{16-y^{2}}} \int_{-\sqrt{16-x^{2}-y^{2}}}^{\sqrt{16-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right)^{2} d z d y d x$,
(2) $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{16-x^{2}-y^{2}}} d z d y d x$.

Exercise 3 :

Compute the center of mass of an object that occupies the upper hemisphere of $x^{2}+y^{2}+z^{2}=1$ and has density $\rho(x, y)=x^{2}+y^{2}$.

Exercise 4 :
Compute the center of mass of an object that occupies the surface $z=x y, 0 \leq x \leq 1,0 \leq y \leq 1$ and has density $\rho(x, y)=\sqrt{1+x^{2}+y^{2}}$.

Exercise 5 :

Compute the center of mass of an object that occupies the surface $z=\sqrt{x^{2}+y^{2}}, 1 \leq z \leq 4$ and has density $\rho(x, y)=x^{2} z$.

Exercise 6 :

Compute the centroid of the surface of a right circular cone of height h and base radius R, not including the base.

