PHYSICS 201

$3^{\text {rd }}$ HOMEWORK

Dr. V. Lempesis

Hand in: Tuesday $26{ }^{\text {th }}$ of November 2013

Student Name :

\qquad

Student ID:

1. Simplify $(\mathbf{u}+\mathbf{v}) \times(\mathbf{u}-\mathbf{v})$.

Solution:

$$
\begin{aligned}
& (\mathbf{u}+\mathbf{v}) \times(\mathbf{u}-\mathbf{v})=\underbrace{\mathbf{u} \times \mathbf{u}}_{=0}-\mathbf{u} \times \mathbf{v}+\mathbf{v} \times \mathbf{u}-\underbrace{\mathbf{v} \times \mathbf{v}}_{=0}=-\mathbf{u} \times \mathbf{v}+\mathbf{v} \times \mathbf{u} \\
& =\mathbf{v} \times \mathbf{u}+\mathbf{v} \times \mathbf{u}=2(\mathbf{v} \times \mathbf{u})
\end{aligned}
$$

2. Verify Cauchy-Schwartz inequality in the following case:

$$
\mathbf{u}=(-3,1,0), \mathbf{v}=(2,-1,3)
$$

Solution:

$$
\begin{gathered}
\|\mathbf{u}\|=\sqrt{(-3)^{2}+1^{2}+0^{2}}=\sqrt{10}, \quad\|\mathbf{v}\|=\sqrt{(2)^{2}+(-1)^{2}+3^{2}}=\sqrt{14} \\
\mathbf{u} \cdot \mathbf{v}=(-3) \cdot 2+1 \cdot(-1)+0 \cdot 3=-6-1=-7 \\
|\mathbf{u} \cdot \mathbf{v}|=7 \\
|\mathbf{u} \cdot \mathbf{v}|=7 \\
\|\mathbf{u}\| \cdot\|\mathbf{v}\|=\sqrt{10} \sqrt{14}=\sqrt{140} \\
|\mathbf{u} \cdot \mathbf{v}|<\|\mathbf{u}\| \cdot\|\mathbf{v}\|
\end{gathered}
$$

3. Find a unit vector in the opposite direction of the vector $\mathbf{v}=(-12,-5)$.

Solution: A vector in the opposite direction is the $-\mathbf{v}=(12,5)$. A unit vector in the direction of this vector is given by:

$$
\begin{aligned}
& \mathbf{u}_{-\mathbf{v}}=-\mathbf{v} /\|-\mathbf{v}\|=(12,5) / \sqrt{12^{2}+5^{2}}= \\
& (12,5) / \sqrt{169}=(12,5) / 13=\left(\frac{12}{13}, \frac{5}{13}\right)
\end{aligned}
$$

4. Prove that for two vectors $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{N}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{N}\right)$ we have: $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$.

Solution:

$$
\begin{aligned}
& \mathbf{v}+\mathbf{w}=\left(v_{1}, v_{2}, \ldots, v_{N}\right)+\left(w_{1}, w_{2}, \ldots, w_{N}\right)=\left(v_{1}+w_{1}, v_{2}+w_{2}, \ldots, v_{N}+w_{N}\right)= \\
& \left(w_{1}+v_{1}, w_{2}+v_{2}, \ldots, w_{N}+v_{N}\right)=\mathbf{w}+\mathbf{v}
\end{aligned}
$$

5. Which of the following vectors of R^{6} is parallel to vector $\mathbf{v}=(-2,1,0,3,5,1)$:
a) $(0,0,0,0,0,0)$
b) $(0,1,2,3,10,1)$ c) $(-4,2,0,6,10,2)$

Solution: Correct answer is c) since $(-4,2,0,6,10,2)=2(-2,1,0,3,5,1)$
6. Calculate the product $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$ for the vectors:

$$
\begin{aligned}
& \mathbf{u}=3 \mathbf{i}-2 \mathbf{j}-5 \mathbf{k}, \mathbf{v}=\mathbf{i}+4 \mathbf{j}-4 \mathbf{k}, \mathbf{w}=3 \mathbf{j}+2 \mathbf{k} \\
& \mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 4 & -4 \\
0 & 3 & 2
\end{array}\right|=\mathbf{i}\left|\begin{array}{cc}
4 & -4 \\
3 & 2
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
1 & -4 \\
0 & 2
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
1 & 4 \\
0 & 3
\end{array}\right|= \\
& \mathbf{i}(8+12)-\mathbf{j}(2-0)+\mathbf{k}(3-0)=20 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k} \\
& \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=3 \cdot 20+(-2) \cdot(-2)+(-5) \cdot 3= \\
& 60+4-15=49
\end{aligned}
$$

