

[Solution Key]

KING SAUD UNIVERSITY
COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS

Semester 462 / MATH-244 (Linear Algebra) / Mid-term Exam 2

Max. Marks: 25

Max. Time: $1\frac{1}{2}$ hr

Solution of Question 1: Correct choices:

(i) Let P_2 be the vector space of all real polynomials in one variable of degree ≤ 2 and $S = \{u, v\} \subseteq P_2$. If E denotes the set of all linear combinations of the vectors in S , then the set E is equal to:
 (a) $\{\alpha u + v \mid \alpha \in \mathbb{R}\}$ (b) $\{u + \beta v \mid \beta \in \mathbb{R}\}$ (c) P_2 (d) a vector space.

(ii) If $W = \{w_1, w_2, w_3, w_4\}$ spans the vector space V , then:
 (a) $\dim(V) = 3$ (b) $\dim(V) = 4$ (c) $\dim(V) > 4$ (d) $\dim(V) \leq 4$.

(iii) Consider the vector space \mathbb{R}^2 with ordered basis $B = \{(1,0), (1,2)\}$. If $v \in \mathbb{R}^2$ with the coordinate vector $[v]_B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, then:
 (a) $v = (1,0)$ (b) $v = (3,4)$ (c) $v = (1,2)$ (d) $v = (2,2)$.

(iv) Which of the following matrices cannot be a transition matrix?
 (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 0 & 3 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 2 \\ 1 & 0 & 1 \end{bmatrix}$

(v) If A is an invertible matrix of order 3, then $\text{rank}(A)$ is equal to:
 (a) 0 (b) 1 (c) 2 (d) 3.

Question 2:

Consider the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 2 \end{bmatrix}$.(a) Find a basis B_1 for the null space $N(A)$.Solution: $B_1 = \{(-1, -1, 1)\}$ is a basis for $N(A)$.(b) Find a basis B_2 for the column space $\text{col}(A)$.Solution: $B_2 = \{(1, 2, 1), (2, 4, 1)\}$ is a basis for $\text{col}(A)$.(c) Find nullity and rank of the matrix A .Solution: From Part (a), $\text{nullity}(A) = 1$. From Part (b), $\text{rank}(A) = 2$.(d) Show that $B_1 \cup B_2$ is a basis for the vector space \mathbb{R}^3 .Solution: Since $B_1 \cup B_2 = \{(-1, -1, 1), (1, 2, 1), (2, 4, 1)\}$ is linearly independent and $\dim(\mathbb{R}^3) = 3$, $B_1 \cup B_2$ is a basis for \mathbb{R}^3 .

Question 3:

Consider a vector space E of dimension 3. Let $B = \{u_1, u_2, u_3\}$ and $C = \{v_1, v_2, v_3\}$ be two ordered bases for E suchthat the transition matrix $cP_B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ from B to C . Then, compute:(a) Transition matrix bP_C from C to B .Solution: $\begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & -1 & 1 & 1 \\ 0 & 1 & 0 & | & 1 & -1 & 0 \\ 0 & 0 & 1 & | & 1 & 0 & -1 \end{bmatrix} \Rightarrow bP_C = cP^{-1}B = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$.(b) Coordinate vectors $[v_1 - v_2]_C$, $[v_1 - v_2]_B$ and $[v]_C$, where $v = v_1 - 2u_2 + v_3$.Solution: $v_1 - v_2 = v_1 + (-1)v_2 + 0v_3 \Rightarrow [v_1 - v_2]_C = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$.

$$[v_1 - v_2]_B = bP_C [v_1 - v_2]_C = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$$

 $cP_B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ gives $u_2 = v_1 + v_3$. Then, $v = v_1 - 2u_2 + v_3 = -v_1 - v_3$. Hence, $[v]_C = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$.

***!