

King Saud University

College of Sciences

Department of Mathematics

[Solution Key] Math-244 (Linear Algebra); Mid-term Exam; Semester 2 (1442)

Max. Marks: 30

Time: 2 hours

Note: Attempt all the five questions!

Question 1: [Marks: 3+3]

a) Let $\mathbf{A} = \begin{bmatrix} -1 & 1 & 3 & 0 \\ 1 & 2 & 3 & -2 \\ 0 & -1 & -2 & 7 \\ 2 & 1 & 0 & 6 \end{bmatrix}$. Then:

i) Find the reduced row echelon form of the matrix \mathbf{A} .

ii) Use the reduced row echelon form to show that the matrix \mathbf{A} is not invertible.

b) Let $\mathbf{X} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$. Find the value of λ such that $\mathbf{X}^8 - 4\lambda\mathbf{I} = \mathbf{0}$.

Solution: a) / i). $\mathbf{A} = \begin{bmatrix} -1 & 1 & 3 & 0 \\ 1 & 2 & 3 & -2 \\ 0 & -1 & -2 & 7 \\ 2 & 1 & 0 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (RREF).

ii). RREF of $\mathbf{A} \neq \mathbf{I} \Rightarrow \mathbf{A}$ is not invertible.

b). $\mathbf{X}^2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \Rightarrow \mathbf{X}^8 = (\mathbf{X}^2)^4 = \begin{bmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{bmatrix} \Rightarrow \begin{bmatrix} 16 - 4\lambda & 0 & 0 \\ 0 & 16 - 4\lambda & 0 \\ 0 & 0 & 16 - 4\lambda \end{bmatrix} = \mathbf{X}^8 - 4\lambda\mathbf{I} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \lambda = 4$.

Question 2: [Marks: 3+3]

a) Let $\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. Find the matrix \mathbf{Y} such that $(2\mathbf{X} + \mathbf{Y})^{-1} = \text{adj}(\mathbf{X})$.

b) Let $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 & bc & a \\ 1 & ca & b \\ 1 & ab & c \end{bmatrix}$. Show that $\det(\mathbf{B}) = -\det(\mathbf{A})$.

Solution: a) $(2\mathbf{X} + \mathbf{Y})^{-1} = \text{adj}(\mathbf{X}) = |\mathbf{X}|\mathbf{X}^{-1} \Rightarrow 2\mathbf{X} + \mathbf{Y} = (|\mathbf{X}|\mathbf{X}^{-1})^{-1} = -\mathbf{X} \Rightarrow \mathbf{Y} = -3\mathbf{X} = \begin{bmatrix} -3 & -3 & -3 \\ -3 & 0 & -3 \\ 0 & -3 & -3 \end{bmatrix}$.

b). $\det(\mathbf{B}) = \begin{vmatrix} 1 & bc & a \\ 1 & ca & b \\ 1 & ab & c \end{vmatrix} = \frac{1}{abc} \begin{vmatrix} a & abc & a^2 \\ b & bca & b^2 \\ c & cab & c^2 \end{vmatrix} = \frac{1}{abc} \begin{vmatrix} a & b & c \\ abc & abc & abc \\ a^2 & b^2 & c^2 \end{vmatrix} = \frac{abc}{abc} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ a^2 & b^2 & c^2 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = -\det(\mathbf{A})$.

Question 3: [Marks: 3+3].

a) Find the value/s of α such that the following linear system

$$x + y + \frac{\alpha}{3}z = 1$$

$$x + y + z = 1$$

$$x + \alpha y + z = 2$$

has: (i) no solution (ii) unique solution (iii) infinitely many solutions.

b) Solve the following homogeneous linear system. Why this system cannot be solved by Cramer's Rule?

$$x - 2y + 3z = 0$$

$$3x + y - 2z = 0$$

$$2x - 4y + 6z = 0$$

Solution: a) Since $\begin{bmatrix} 1 & 1 & \frac{\alpha}{3} & 1 \\ 1 & 1 & 1 & 1 \\ 1 & \alpha & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \alpha-1 & 0 & \alpha-3 \\ 0 & 0 & \alpha-3 & 0 \end{bmatrix}$,

- (i) the system has no solution for $\alpha=1$;
- (ii) the system has unique solution for $\alpha \in \mathbb{R} - \{1, 3\}$;
- (iii) the system has infinitely many solutions for $\alpha=3$.

b). Matrix of coefficients = $A = \begin{bmatrix} 1 & -2 & 3 \\ 3 & 1 & -2 \\ 2 & -4 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3 \\ 0 & 7 & -11 \\ 0 & 0 & 0 \end{bmatrix}$. So, solution set of the given system $\left\{ \left(\frac{1}{7}t, \frac{11}{7}t, t \right) \mid t \in \mathbb{R} \right\}$. Since $\det(A) = 0$, the Cramer's rule is not applicable.

Question 4: [Marks: 3+3]

- a) Show that $\{1-x, 1-x^2, 1+x+x^2\}$ is a basis of the vector space P_2 of all polynomials in real variable x with degree ≤ 2 .
- b) Let $S = \{(1, 0, 1, 1), (1, -1, 2, 1), (1, -2, 3, 1)\}$ generates the vector subspace F of the Euclidean space \mathbb{R}^4 . Find a basis of F contained in S and show that $(0, -2, 7, 6) \notin F$.

Solution: a) Since $\{1, x, x^2\}$ is a basis of the vector space P_2 , $\dim(P_2) = 3$. Next, $\{1-x, 1-x^2, 1+x+x^2\}$ is linearly independent because $\alpha(1-x) + \beta(1-x^2) + \gamma(1+x+x^2) = 0$ implies $\alpha = \beta = \gamma = 0$. So, $\{1-x, 1-x^2, 1+x+x^2\}$ is a basis of the vector space P_2 .

b). $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -2 & -2 \\ 1 & 2 & 3 & 7 \\ 1 & 1 & 1 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (REF). Hence, $\{(1, 0, 1, 1), (1, -1, 2, 1)\}$ is a basis of F and $(0, -2, 7, 6) \notin F$.

Question 5: [Marks: 3+3]

- a) Let $B = \{(2, 1), (1, 0)\}$ and $C = \{(1, -2), (0, 1)\}$ be bases of the Euclidean space \mathbb{R}^2 and $v = (1, 2)$. Find the coordinate vector $[v]_B$ and the transition matrix cP_B . Then use the transition matrix to find $[v]_C$.

b) Let $A = \begin{bmatrix} 1 & 1 & 0 & 2 & 3 \\ 2 & 1 & 1 & 1 & 0 \\ -1 & -2 & 1 & 0 & 1 \\ -2 & -2 & 0 & 1 & 4 \end{bmatrix}$. Find:

(i) a basis of $\text{col}(A)$ (ii) $\text{rank}(A)$ (iii) $\text{nullity}(A)$.

Solution: a) $[v]_B = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and $cP_B = \begin{bmatrix} 2 & 1 \\ 5 & 2 \end{bmatrix}$. Hence, $[v]_C = cP_B [v]_B = \begin{bmatrix} 2 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$.

b). $A = \begin{bmatrix} 1 & 1 & 0 & 2 & 3 \\ 2 & 1 & 1 & 1 & 0 \\ -1 & -2 & 1 & 0 & 1 \\ -2 & -2 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -2 & -4 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ (REF). Hence:

- (i) $\{(1, 2, -1, -2), (1, 1, -2, -2), (2, 1, 0, 1)\}$ is a basis of $\text{col}(A)$;
- (ii) $\text{rank}(A) = 3$;
- (iii) $\text{nullity}(A) = 2$.