Chapter 7
Q7.1
Table 7.14: y = Number of Deaths from leukemia and other cancers classified by radiation dose received from
the Hiroshima atomic bomb.
Radiation dose (rads)

Deaths 0 1-9 10—-49 50-99 100-—199 200+
Leukemia 13 5 5 3 4 18
Other cancers 378 200 151 47 31 33
Total cancers 391 205 156 50 35 51

Let:

n; = Total cancers

y; = Number of deaths from leukemia

n; —y; = Number of deaths from other cancers

x; = radiation dose (lower limit of radiation dose interval)
i=12,..,N

N = 6 (Number of different values of radiation dose x; )
P, = % = Proportion of deaths from leukemia

Xi Yi | Wi~ Vi n | b=

0 13 378 391 | 0.0332

1 5 200 205 | 0.0244

10 5 151 156 | 0.0321

50 3 47 50 0.0600

100 4 31 35 0.1143

200 | 18 33 51 0.3529
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Binary Fitted Line Plot
P(Leukemia) = exp(-3.489 + 0.01441 x)/(1 + exp(-3.489 + 0.01441 x))
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e The suggested model is the logistic regression model given by:
n.
In (—1 —lni) = By + B2x; i
Y; ~ Bin(ny, ;)

=12,..,N

e Minitab Calculations:



Minitab Output:
Binary Logistic Regression: y versus x

Method
Link function Logit
Rows used 5]

Response Information

variable Wwvalue Count Ewvent Name

y Event 48 Leukemia
Non-event 840

n Total 888

Deviance Table

Source DF Seq Dev Contribution Adj Dev Adj Mean Chi-Square P-Value

Regression 1 52.9188 99.21% 53.9188 53.9188 53.92 6.8ea
X 1 52.9188 99,21% 53.9188 53.0188 53.92 B6.00a

Error 4 8.4321 8.79% 8.4321 @.188e

Total £ 54,3589 180 .80%

Model Summary
Deviance Deviance
R-59 R-5q(adj) AIC
99,21% 97.37% 323.54

Coefficients
Term Coef SE Coef 95% CI Z-Value P-Value VIF
Constant -3.489 8.284 ( -2.889, -32.089) -17.18 8.e08
X 9.91441 ©.08182 (©.81885, ©.81797) 7.92 9.808 1.88
Odds Ratios for Continuous Predictors
0dds Ratio 95% CI
e 1.8145 (1.8189, 1.8181)
Regression Equation
P(Leukemia) = exp(¥Y')/(1 + exp(¥Y"))
¥' = -3.489 + 9.81441 x

Goodness-of-Fit Tests

Test DF chi-Square P-Value
Deviance 4 B8.43 8.98@
Pearson 4 9.42 8.981
Hosmer-Lemeshow 2 B8.42 2.818

e From this output we have:
By = —3.489,se(f,) = 0.204,95% C.I for B, is (—3.889, —3.089)

B, = 0.01441,se(p,) = 0.00182,95% C.I for S, is (0.01085,0.01797)
Deviance : D = 0.4321 (withdf =N—-p=6—-2=4)
Pearson Chi - Square Statstics: X? = 0.4232 (wWithdf = N—p=6—-2=4)

e Variance-covariance matrix of g = (51) IS:

3
T 0.0416415 —0.0002357

Cov(B) =1_0.0002357  0.0000033
e The fitted equation of the model is:

A

TT; A A
In (1 ‘ﬁ ) = b1 + Brx; = —3.489 + 0.01441x;
- I
e The estimates of probabilities are:
eB1+Bax; o —3-489+0.01441x;

T = 1 + ePatBo T 1+ o-3489+001441x;
o Thecritical value is x& y_p) = X5.0s,s) = 948773 at @ = 0.05.
Since D = 0.4321 < x§ 5,4y = 9:48773 (and X? = 0.42 < x§ g5 (sy = 9-48773), we conclude that the model
fits the data well.

e The following table contains some calculations:



Vi n epj epj N

Xi M Vi b= n; T DevianceDll?esiduaI Pearson FI,RgesiduaI Vi
0 391 13 0.0332 0.029628 0.4143 0.4222 11.584
1 205 5 0.0244 0.030045 -0.4899 -0.4743 6.159
10 156 5 0.0321 0.034064 -0.1399 -0.1386 5.314
50 50 3 0.0600 0.059052 0.0284 0.0284 2.953
100 35 4 0.1143 0.114260 0.0005 0.0005 3.999
200 51 18 0.3529 0.352761 0.0027 0.0027 17.991
sum :zgéggi 224:8% i e5f=3.432057 et 224:8%

e The following figures show:
(1) The observed proportions ( P; = Z—z) plotted against the radiation dose (x;).
(x )(2) The expected proportions (estimates of the probabilities) ( 7z; ) plotted against the radiation dose
i).

Binary Fitted Line Plot
P(Leukemia) = exp(-3.489 + 0.01441 x)/(1 + exp(-3.489 + 0.01441 x))
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e The following figures show:
(1) The observed response ( y; ) plotted against the radiation dose (x;).
(2) The observed response (y;) plotted against the radiation dose (x;).
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By using R:

#Deaths by Leukemia
y<-¢(13,5,5,3,4,18)

#n=Total number of deaths by cancers
n<-c(391,205,156,50, 35,51)

#Deaths by other cancers

n_y<- n-y

#P=Proportion of deaths from Lleukemia
p=y/n

#x=radiation dose(lower Llimit of radiation dose interval)
x<-c(0,1,10,50,100,200)



Data on the table (df):

#but the data in table :
df<- data.frame(x,y,n_v,n,p)

df

i X ¥y ny n p
## 1 @ 13 378 391 0.03324888
## 2 1 5 200 205 0.02439824
## 3 18 5 151 156 ©.03205128
## 4 58 3 47 50 0.06000000
## 5 188 4 31 35 0.11428571
## 6 200 18 33 51 ©.35294118

#plot x=radiation dose vs p=Proportion of deaths from lLeukemia :
plot(x,p , xlab = "radiation dose" , ylab = "Proportion of deaths from leukemia")
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model<-glm(p~x ,family = binomial("logit"),weights = n}

summary (model)

&5

## Call:

## glm(formula = p ~ x, family = binomial("logit™), weights = n)
t#

## Coefficients:

B Estimate Std. Error z value PRCSIZIN

## (Intercept) -3.488973 0.204862 -17.098 < 2e-16 ***

## x 0.014410 ©.001817 7.932 PNISENIS ***

#HHt ---

## Signif. codes: @ "***¥' @ .pel1 '**' g.o1 '*' 8.5 "."' @.1 " ' 1
i

## (Dispersion parameter for binomial family taken to be 1)

i

Hit Null deviance: 54.35089 on 5 degrees of freedom

i

i AIC: 26.897

i

## Number of Fisher Scoring iterations: 4



Dy =5435089 df=N—-g=6—-1=5
D, =043206 df=N—-p=6—-2=4

. v fid ind Lfor B and B> :
confint.default(model ,level = 8.95)

i 2.5% 97.5 %
## (Intercept) -3.88892808 -3.08901798
B2 X 0.01084967 0.01797081

The variance-covariance matrix of b is:

~ . var(by) cov(by, bz)
1 = cov(B) = cov(b) = [cuv(bi, b,) var(b,) ]

vecov(model)

HH# (Intercept) X
## (Intercept) ©.041641483 -2.35714e-04
B ox -8.8086235714 3.30022e-086

The information matrix is:

T = COT/"(U} — [ val‘{jul) COVI:UL UZ):I

cov(U,, Us) var(U,)

Tau<-solve(vcov(model))

Tau

#HH (Intercept) X
## (Intercept) 49.31297  2879.303
## x 2879.30263 508660.621

Odds Ratio (OR):
OR = efz = 0014410 — 1 0145
exp(model$coefficients[2])

E X
## 1.914515



95% C.l of OR:

e 1= < OR < e z
001085 ~ Np  £0.01797

1.0109 < OR < 1.01813
exp(confint.default(model))

## 2.5 % 97.5 %
## (Intercept) 0.02046727 @.94554666
B X 1.01090874 1.01813326

The estimate values of the probabilities ( 7. ) ):

ebitbaxi —2.48940.0144 1x;

e
T 1 f ebithax; | + g 24891001441x;

P

Ty

#The estimates of probabilities (pi_hat) :
pi_hat<- fitted.values(model)
pi_hat

i# 1 2 3 1 5 6
## 0.02962762 0.03004473 0.03406353 0.05985247 0.11425978 0.35276092

Yi=n;+ m;

#S5ince E(Yi)=ni*pi, the fitted value of Yi (yvhat):
yhat<- n*pi_hat
yhat

23 1 2 3 4 5 6
## 11.584398 6.159169 5.313911 2.952623 3.999092 17.990807

Goodness of fit Tests:

Hypothesis:
Hy: Model fit data well vs H,:Model dose not fit data well

Test statistics:

By Deviance statistic : D=0.4321 and By Pearson Chi-squared statistics : X = 0.43

Critical Value:
The critical value is xé,w_pj = Xg.ﬂs-,(ﬁ—zj = Xg_gg,,@} = 9.48773
Decision:

SinceD = 04321 < xiw_p] ., we conclude that the model fits the data well.
Since X2 = 042 < xﬁr(h,_p) , we conclude that the model fits the data well.



1- Deviance (D):

#Test statistics (Deviance)
D<- deviance(model)
D

## [1] ©.4320565

#df=N-p , p=# of parameters =2
df D=6-2
df_D

## [1] 4

#Critacl Value:
chi_table<- qchisq(1-0.85,df D)
chi_table

## [1] 9.487729

#Decision:
if(D>chi_table)
{print("Reject HB")
}else{
print("Do not Reject H@ ")

}
## [1] "Do not Reject H@ "
orwe can find Test statistics (Deviance) by using Deviance residual

#The Deviance Residuals:
Deviance_Residuals<-residuals(model, type = "deviance™)}
Deviance_ Residuals

#H L 2 3 4 5
## 0.4142808205 -0.4899417477 -0.1399058934 0.0283527664 0.0004823665
## 6

## 0.0826939960

#test statistic (Deviance):
D by Residual<- sum(Deviance Residuals~"2)
D by Residual

## [1] ©.43208565
We conclude that the model is adequate for fitting the data based on the deviance
2- Pearson Chi-squared Statistic:

#The Pearson (Chi-Squared) Residuals:
Pearson_Residuals<- residuals(model, type = "pearson")
Pearson_Residuals

#H 1 2 3 4 5
##  0.4222166621 -0.4742527478 -0.1385560523 0.0284235278 ©.0004823824
#H 6

## 0.0026941604

#test statistic (Pearson Chi-Squar):
chi_square<- sum(Pearson_Residuals"2)
#Critacl Value: df=N-p

chi_table<- qchisq(1-0.85,4)

We conclude that the model is adequate for fitting the data based on the Pearson Chi-squared
statistics.



pseudo RZ.

R_sg<- (model%null.deviance-model$deviance)/(model$null.deviance) ) *100
R_sqg

## [1] 99.20506

2 Dl 2
R?=1-—5==099205 »>»R*= 99.20%
o

The value (pseudo R? = 0.99) indicates that the model of interest provides good fit for the data
*R-Squared, ranges from 0 to 1, with higher values indicating a better model fit.

The following table contains some calculations:

dfl<-data.frame(x,n,y,p,pi_hat,yhat ,Deviance Residuals ,Pearson_Residuals)
df1

it X noy p pi_hat vhat Deviance Residuals
## 1 0 391 13 ©.063324808 0.02962762 11.584398 0.4142808205
i 2 1 205 5 ©.62439024 0.936004473 6.159169 -0.4899417477
3 16 156 5 ©.83205128 6.83406353 5.313911 -0.1399058934
## 4 50 50 3 0.06000000 ©.05905247 2.952623 0.0283527664
5 10 35 4 ©.11428571 6.11425978 3.999092 0.0004823665
¢ b6 2080 51 18 ©.35294118 6.35276092 17.990807 0.0826939960
##  Pearson_Residuals
#H 1 0.4222166621
H#i# 2 -0.4742527478
i 3 -0.1385568523
## 4 0.0284235278
## 5 0.0004823824
EE b ©.0026941004

Graphs: Visualization of the fitted curve:
Plot x with p; and p, :

# Visualization of the fitted curve
#install.packages("ggplot2")
library(ggplot2)

## Warning: package 'ggplot2' was built under R version 4.4.2

geplot(df, aes(x = x, y = p)) +
geom_point(size = 2) +
stat_smooth(method = "glm", method.args = list(family = binomial(link = "logit"))
, se = FALSE, color = "blue™) +
labs(title = "Dose-Response Relationship for Leukemia®,
x = "Radiation Dose",
y = "Proportional Mortality Rate")

## " geom_smooth()” using formula = 'y ~ x'

## Warning in eval(family$initialize): non-integer #successes in a binomial glm!



Dose-Response Relationship for Leukemia

0.3~
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BElack dots represent the observed proportions of leukaemia deaths in each radiation dose
category.
The blue line represents the fitted curve estimated using a logistic regression model.

gegplot(data=df, aes(x = x)}) +
geom_point{aes(y = p), color="blue",shape=16) +
geom_point(aes(y = pi_hat), color = "red",shape=15) +
labs(x = "Radiation Dose",y = "Proportion of Deaths from Leukemia")
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Plot x with y; and ¥, :

#The observed response (yi) plotted against (xi).
#The fitted response (yhat) plotted against (xi).
plot(x,y,type="1",col="red")
lines(x,yhat,col="green")
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OR by code:

#or

gegplot(data=df, aes(x = x)) +
geom_line(aes(y y), color="red") +
geom_line(aes(y pi_hat*n), color = "green") +
labs(x = "Radiation Dose",y = "Number of Deaths ")

Q7.2:
Table 7.15: 2 x 2 table for a prospective study of exposure and disease outcome
Diseased  Not diseased Odds Odds Ratio
T
Exposed T, 1—m 0, = 1-n
Not exposed 1-— 0, = —2 OR=¢ =—
p Ty Ty 271 q, =?=0,

e The odds of disease for either exposure group is:
B 1-— TT;

i ;i = 1,2
e The odds ratio (OR) is:

¢ _ﬁ_ﬁ/(l—fﬁ) _7T1(1—7T2)
B 0, B m,/(1 —13) B (1 —my)

e The odds ratio is a measure of the relative likelihood of disease for the exposed and non-exposed groups.

(a) For the simple logistic model is:

efi T; T; B;
T ;l=1,2(:)1n(1 >=,8i(:>—=el

- 1 + eﬁi — T 1 — T
The odds is:
T
0: = = ebBi

! 1 - T[l' €

The odds ratio is:
B
¢:&:£:eﬂ1_ﬁ2
0, eBz

If there is no difference between the exposed and not exposed groups (i.e., 8; = £, = B ), then the odds ratio is:
¢ — eﬁl_BZ — e.B_B — eO — 1



(b) Suppose that we have ] age groups. Let x; be the mean age of the j-th age group (j = 1,2, ...,] ), and the
2 % 2 contingency table for the j-th age group is:

Xj
Diseased  Not diseased Odds Odds Ratio
Tl’-lj

Exposed Tr1j 1—my; 0,5 = —

j
T, 0, :
Not exposed Tyj 1 — 1y, 0y = - ¢ = 0_11
2j 2j

Consider the following logistic model:
eai+[>’ixj

_ L - TTjj _ L .
T ——1 o tB; ;i=12andj=12,...,] ©1n (1—7Tij> =q; +,8ixj,1 =12andj=1,2,..,J]
T[ij

&

= e%*h¥j;i=12andj = 1,2, ..
1-n, e si=l2andj =12, ..,]

The odds is for the level x; is:
0:: = T _ edithix;
Y 1-— T[ij
The odds ratio for the level x; is:

. a1+B1x;

o =2U T e B
] 02] ea2+ﬁ2xj
If 5, = B, = B, then the odds ratio for the level x; is:
¢j = elai-az) — ¢o;j=12,..,]

Thus, the odds ratios are equal for all x; (i.e., ¢; = ¢ = constant). Consequently, In ((,bj) =In (¢p) = constant
forall;j =1,2,..,].



Q7.3

Table T.14 Fyfiy years survival for men after graduation from the Univergity of Ade-

lnide.
Year Faculty
of Medicine Arts Science Engincerning

graduation 5 T 5 T 5 T 5 T
1938 18 22 16 30 9 14 10 L]
1939 16 23 13 22 ] 12 T 11
19400 T 17 11 25 12 19 12 15
1941 12 25 12 14 12 15 8 ]
1942 24 5l 8 12 00 28 5 T
1943 16 21 11 20 16 21 1 2
1044 22 a2 4 1] 25 4l 16 22
1945 12 14 i 12 32 3R 19 25
1946 22 M | 5
1947 28 a7 13 23 25 41 25 5
Total 177 275 92 168 164 214 106 139

Table 7.1% Fifty years survival for women afier grodustion from the University of

Adelaide.
Year Faculty
of Arts Science
rraduation s T 5 T
1938 14 19 11
1930 1116 i 4
1940 15 18 6 7
1941 15 21 3 3
1942 8 f i 4
1949 13 19 g 0
1944 18 22 5 5
1945 18 22 165 17
1946 1 1 | 1
1947 13 16 10 10
Total 126 157 58 6l
Year (X) Sex (V) Faculty (W) | Total (n) Survive (Y)
1938 men medicine 22 18
1939 men medicine 23 16
1940 men medicine 17 7
1941 men medicine 25 12
1942 men medicine 50 24
1943 men medicine 21 16
1944 men medicine 32 22
1945 men medicine 14 12
1946 men medicine 34 22
1947 men medicine 37 28
1938 men arts 30 16
1939 men arts 22 13
1940 men arts 25 11
1941 men arts 14 12




1942 men arts 12 8
1943 men arts 20 11
1944 men arts 10 4
1945 men arts 12 4
1946 men arts * *
1947 men arts 23 13
1938 men science 14 9
1939 men science 12 9
1940 men science 19 12
1941 men science 15 12
1942 men science 28 20

1943 men science 21 | 16

1944 men science 31| 25

1945 men science 38 | 32

1946 men science 5 4

1947 men science 31| 25

1938 men engineering | 16 | 10

1939 men engineering | 11 | 7

1940 men engineering | 15 | 12

1941 men engineering | 9 8

1942 men engineering | 7 5

1943 men engineering | 2 1

1944 men engineering | 22 | 16

1945 men engineering | 25 | 19

1946 men engineering | * *

1947 men engineering | 35 | 25

1938 | women arts 19 | 14

1939 | women arts 16 | 11

1940 | women arts 18 | 15

1941 | women arts 21 | 15

1942 | women arts 9 8

1943 | women arts 13 | 13




1944 | women arts 22 18

1945 | women arts 22 | 18
1946 | women arts 1 1
1947 | women arts 16 | 13
1938 | women science

1939 | women science

1940 | women science

1 1
4 4
7 6
1941 | women science 3 3
4 4
9 8
5 5

1942 | women science
1943 | women science
1944 | women science
1945 | women science 17 | 16
1946 | women science 1 1
1947 | women science 10 | 10

Y = the number of survivals.

N = Number of observations = 58 (There are two missing values)

The explanatory variable (Covariate) is "Year (X)).

The explanatory variable (Factor) "Faculty (W)" has 4 levels; therefore we define 3 dummy variables which are:

_ (1 if Faculty = engineering

w, = )

0 otherwise

1 if Faculty = medicine
WZ = .

0 otherwise

1 if Faculty = science
Ws = .

0 otherwise

Note: If W; = W, = W5 = 0, the faculty = arts.
The explanatory variable (Factor) "Sex (V)" has 2 levels; therefore, we define 1 dummy variable which is:
V= {1; if Sex = Woman
0; if Sex = Man
We will use the following generalized linear model:
In (111) = a+BX +yV + S, W, + S, W, + 85 W,

p = Number of parameters = 6
For this model, we have the following Minitab output:




Deviance Table

Source DF Adj Dev Adj Mean Chi-Square P-Value

Regression 5 61.972 12.394 61.97 0.000
year 1 3.445 3.445 3.45 0.0863
faculty 3 27.099 9.033 27.10 0.000
sex 1 35.354 35.354 35.35 0.000

Error 52 54.114 1.041

Total 57 116.086

Goodness-of-Fit Tests

Test DF Chi-Square P-Value
Deviance 52 54.11 0.394
Pearsaon 52 48.27 B.622
Hosmer-Lemeshow 7 9.89 0.195

The deviance of this model is:
D =54.11 withdf =N—-—p=58—-6 =52
(a) To answer the question " Are the proportions of graduates who survived for 50 years after graduation the
same all years of graduation?”, we need to test:
H,: B = 0 against Hi: f # 0
The model under H,, is:

s
ln (1_7_[)=a+)/V+51W1+52W2+53W3

P, = Number of parameters = 5
For this model, we have the following Minitab output:

Goodness-of-Fit Tests

Test DF Chi-Square P-Value
Deviance 53 57.56 0.310
Pearsan 53 52.40 8.498
Hosmer-Lemeshow 4 .73 0.947

The deviance of this model is:
D, =57.56 withdf = N —p, =58—-5=753
Test statistic is:
AD =D, —D =57.56 — 54.11 = 3.45 withdf =53 —52=1
Since AD = 3.45 < )(5_05,(1) = 3.84146, we do not reject H, at « = 0.05. Therefore, we conclude that "Year"
is not significant; and consequently, we conclude that the proportions of graduates who survived for 50 years
after graduation are the same all years of graduation.

(b) To answer the question " Are the proportions of male graduates who survived for 50 years after graduation
the same for all Faculties?"

We will use the data for men only, and we will use the following generalized linear model:
T
ln (1—7‘[) :a+ﬁX+61W1+62W2+63W3

N = number of observations = 38 (there are two missing values)
p = Number of parameters = 5

For this model, we have the following Minitab output:

Deviance Table




Source DF Adj Dev Adj Mean Chi-Square P-Value

Regression 4 25.435 6.359 25.44 @.000
year 1 2.176 2.176 2.18 @.140
faculty 3 20.436 6.812 20.44 a.000

Error 33 40.850 1.238

Total 37 66.285

Goodness-of-Fit Tests

Test DF chi-square P-vValue
Deviance 33 40.85 8.164
Pearson 33 39.34 8.287
Hosmer-Lemeshow 7 19.53 9.161

The deviance of this model is:
D =4085withdf =N—-—p=38-5=233
To answer the question, we need to test:
H,:68; = 6, = 83 = 0 against H;: §; # 0 for at least one §;
The model under H,, is:

T
In (1—71) =a+ X
P, = Number of parameters = 2
For this model, we have the following Minitab output:

Goodness-of-Fit Tests

Test DF Chi-square P-value
Deviance 36 61.29 0.005
Pearsaon 36 61.83 B.886
Hosmer-Lemeshow 4 2.84 0.584

The deviance of this model is:
D, = 61.29 withdf = N —p, =38—2 =36
Test statistic is:
AD =D, —D = 61.29 —40.85 = 20.44 withdf =36 —33 =3

Since AD = 20.44 > X§_051(3) = 7.81473, we reject H, at @« = 0.05. Therefore, we conclude that "Faculty" is
significant for males; and consequently, we conclude that the proportions of male graduates who survived for
50 years after graduation are not the same for all Faculties.
(c) To answer the question " Are the proportions of female graduates who survived for 50 years after graduation
the same for Arts and Science?"
We will use the data for women only.
Since there are only two faculties for women (Arts and Science) which means that the explanatory variable
(Factor) "Faculty (W)" has 2 levels, therefore we define 1 dummy variable which is:

_ (1; if Faculty = Science

- {0; if Faculty = Arts
and we will use the following generalized linear model:

In (1fn)=a+ﬁx+6w

N = number of observations = 20 (there are no missing values)
p = Number of parameters = 3
For this model, we have the following Minitab output:

Deviance Table
Source DF Adj Dev Adj Mean Chi-Square P-value
Regression 2 10.605 5.3027 16.61 0.005




year 1 1.789 1.7889 1.79 @.181

faculty 1 7.063 7.0630 7.06 0.008
Error 17 11.950 @.7029
Total 19 22.555

Goodness-of-Fit Tests

Test DF cChi-square P-Value
Deviance 17 11.95 0.803
Pearson 17 8.47 ©.955
Hosmer-Lemeshow 7 4.15 0.762

The deviance of this model is:
D =1195withdf =N —-—p=20—-3 =17
To answer the question, we need to test:
H,:6 = 0 against H;: 6 # 0
The model under H,, is:

VI
In (1_n) =a+pX
Po = Number of parameters = 2
For this model, we have the following Minitab output:

Goodness-of-Fit Tests

Test DF Chi-square P-value
Deviance 18 19.01 9.391
Pearsan 18 13.89 B.736
Hosmer-Lemeshow 5 3.77 0.583

The deviance of this model is:
D, = 19.01 withdf =N —p, =20 —2 = 18
Test statistic is:
AD =D, —D =19.01 —11.95 = 7.06 withdf =18 — 17 =1

Since AD = 7.06 > )(5_05,(1) = 3.84146, we reject H, at « = 0.05. Therefore, we conclude that "Faculty" is
significant for females; and consequently, we conclude that the proportions of female graduates who survived
for 50 years after graduation are not the same for the faculties of Arts and Science.
(d) To answer the question " Is the difference between men and women in the proportion of graduates who
survived for 50 years after graduation the same for Arts and Science?"
We will use the data for Arts and Science only.
Since there are only two faculties for women (Arts and Science), which means that the explanatory variable
(Factor) "Faculty (W)" has 2 levels, therefore we define 1 dummy variable which is:

_ (1; if Faculty = Science

- {0; if Faculty = Arts
and we will use the following generalized linear model:

T
In (1_n)=a+ﬁX+yV+6W+(y6)VW
or
ln( r )=a+BX+yV+6W+TVW
1-m

T = (y6) = interaction effects between "Sex" and "Faculty".
N = number of observations = 39 (there is one missing value).
p = Number of parameters = 5.

For this model, we have the following Minitab output:




Deviance Table

Source DF Adj Dev Adj Mean Chi-Square P-Value

Regression 4 53.8548 13.4637 53.85 0.0008
year 1 1.9417 1.9417 1.94 0.163
sex 1 23.4687 23.4687 23.47 0.000
faculty 1 17.9185 17.9185 17.092 0.000
sex*faculty 1 0.8004 0.8004 0.80 @.371

Error 34 28.4163 0.8358

Total 38 82.2711

Goodness-of-Fit Tests

Test DF chi-Square P-Value
Deviance 34 28.42 0.738
Pearson 34 24,29 0.891
Hosmer-Lemeshow 7 2.67 09.913

The deviance of this model is:
D = 284163 withdf =N—-p=39—-5=34
To answer the question, we need to test:
H,:t = 0against H;:7 # 0
The model under H,, is:

s
In (1_n)=a+,8X+yV+6W

po = Number of parameters = 4.
For this model, we have the following Minitab output:

Goodness-of-Fit Tests

Test DF Chi-square P-value
Deviance 35 29.22 0.743
Pearsan 35 24.27 8.913
Hosmer-Lemeshow 7 3.26 0.860

The deviance of this model is:
D, = 29.217 with df = N —p, = 39 — 4 = 35
Test statistic is:
AD =D, — D = 29.217 — 28.4163 = 0.8007 withdf =35—-34 =1
Since AD = 0.8007 < ;(3_05,(1) = 3.84146, we do not reject H, at « = 0.05. Therefore, we conclude that

"interaction between "Sex" and "Faculty" is not significant; and consequently, we conclude that the difference
between men and women in the proportion of graduates who survived for 50 years after graduation is the same
for Arts and Science.

By using R:

#Read xls file

# Loading "readxl”
#install.packages( "readxl")
library("readxl")

## Warning: package 'readxl’' was built under R version 4.4.2

df<- read_excel(file.choose())
View(df)
p= Number of parameters =6

The percentages of graduates who survive 50 years after graduation and add itin df :

#The percentages of graduates who survive 50 years after graduation and add it in df :

df$p <- df$ Survive(Y) / df$ Total(n) )



model<-glm(p~ Year(X) + Sex(V) + Faculty(W) ,
family = binomial("logit"),weights =
summary(model)

#4
##
#4
##
#3
##
#3
#5
#3
#5
##
#4
##
#4
#5
#4
#5
#4
#5
#4
##
#4
##
#3

()

Call:

glm{formula = p ~ "Year(X) + “Sex(V) + " Faculty(W)’

data = df, weights = df$ Total(n) )
Coefficients:
Estimate Std.

(Intercept) -88.56297 47 85838
“Year(X)© 0.04569 0.02465
“Sex (V) women 1.28849 0.23009
“Faculty(W) engineering ©.75212 8.24264
“Faculty(W) medicine 9.38274 ®.19753
"Faculty(W) science 1.81635 0.20987
Signif. codes: @ "***' @8.801 '**' 9.81 '*'

(Dispersion parameter for binomial

Mull deviance: 116.886 on 57
Residual deviance: 54.114 on 52

(2 observations deleted due to missingness)

AIC: 214.85

Error z value

1.851
1.854
.60
.10
.938
.814

== woen

0.05 "'

, family

Pr(>|zl)

df$ Total(n) ,data=df)

= binomial("logit"),

@.06424 .

08.06377
2.14e-08
08.00194

L2 3 ]
Xk

8.95267 .

1.48e-06

8.1 " "

family taken to be 1)

degrees of freedom
degrees of freedom

Mumber of Fisher Scoring iterations: 4

Po = Number of parameters =5

modell<-glm{p~ Sex(V) + Faculty(W)"

df$ Total(n) ,data=df)
summary(modell)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##
#i#
##

Call:

glm(formula = p ~ "Sex(V)" + "Faculty(W) , family =
data = df, weights = df$ Total(n) )

Coefficients:

Estimate Std.

(Intercept)
“Sex (V) women
“Faculty(W) engineering
“Faculty (W) medicine
“Faculty (W) science

Signif. codes: @ '"***' @.

9.1555
1.3875
0.8157
9.4357
1.0714

ee1 "**!

8.1491
0.2296
8.2400
0.1952
8.2072

1

5
3
2
5

Error z value

binomial(

Pr(>|z|)

.043 9.296999

.694

1.24e-08

23]

, family = binomial("logit”),weights =

"logit"),

L L

.399 0.800676 ***
.233 9.025581 *

.172

@.81 "*' @.05 '.°’

2.32e-07

Rk

.1 " "1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 116.089

Residual deviance: ©57.56

(2 observations deleted
AIC: 216.3

on 57 degrees of freedom
on 53 degrees of freedom

due to missingness)

Mumber of Fisher Scoring iterations: 4

qchisq(©.95 ,1 )

#3

(b)

[1] 3.841459



#filter() selects rows based on their values , install dplyr package:
# when we need to use of %>% , install dplyr package:
#install.packages( "dplyr")

library(dplyr)

## Warning: package 'dplyr' was built under R version 4.4.2
##

## Attaching package: 'dplyr’

## The following objects are masked from 'package:stats':
##

#it filter, lag

## The following objects are masked from 'package:base’:

#5#

#it intersect, setdiff, setequal, union

#df1 =data for men only :
dfl<- df %>% filter(df$ Sex(V) =="men")

p= Number of parameters =5

model2<-glm(dfl$p~ dfl$ Year(X) +dfl$ Faculty(W) ,family=binomial("logit"”),weights
=df1% Total(n) )

summary(model2)

##

## Call:

## glm(formula = dfl$p ~ dfl$ Year(X) + dfl$ Faculty(W) , family = binomial("logit"),
H#i weights = dfl$ Total(n) )

#i

## Coefficients:

it Estimate Std. Error z value Pr(>|z])

## (Intercept) -75.32362  51.22522 -1.479 0.14144
## dfl$ Year(X)” 0.03889 9.02638 1.474 ©.14044
## dfl1$ Faculty(W) engineering ©.72534 8.24661 2.941 ©0.00327 **
## dfl¢$ Faculty(W) medicine 0.35468 ©.20228 1.753 ©.07953 .
## dfl$ Faculty(W) science 0.94403 0.22680 4.162 3.15e-05 ***
#H ---

## Signif. codes: @ "***' @g.001 '**' 9,01 '*' 9,05 '." 0.1 " "1

#5

## (Dispersion parameter for binomial family taken to be 1)

#

#H# Mull deviance: 66.285 on 37 degrees of freedom

## Residual deviance: 40.850 on 33 degrees of freedom

## (2 observations deleted due to missingness)

## AIC: 1709.68

#5

## Number of Fisher Scoring iterations: 4



Po= Number of parameters =2

model3<-glm(dfl$p~ dfl1$ Year(X) , family = binomial("logit"),weights = df1%$ Total(n) )
summary (model3)

##

## Call:

## glm(formula = dfl¢p ~ dfl$ Year(X) , family = binomial("logit"),
#i# weights = dfl$ Total(n) )

##

## Coefficients:

i Estimate Std. Error z value Pr(>|z|)

## (Intercept) -110.67149 49.95577 -2.215 9.0267 *

## dflfg Year(X)" 0.05734 8.02572 2.230 0.0258 *

-

## Signif. codes: @ '***' p.@eel "**' @.@1 '*' @05 '."' @.1 " ' 1
##

## (Dispersion parameter for binomial family taken to be 1)

##

#i Mull deviance: 66.285 on 37 degrees of freedom

## Residual deviance: 61.286 on 36 degrees of freedom
## (2 observations deleted due to missingness)

## AIC: 185.12

#i

## Number of Fisher Scoring iterations: 4

qchisq(®.95,3)

## [1] 7.814728

(©)
#Date for women only
df2<-df %>% filter(df$ Sex(V) == "women")

p= Number of parameters =3
modeld<-glm(df2$p~df2$ Year(X) +df2$ Faculty(W) ,

family = binomial("logit"),weights = df2$ Total(n) ,data=df2)
summary (model4)

H#H

## Call:

## glm(formula = df2$p ~ df2$ Year(X) + df2$ Faculty(W) , family = binomial("logit"),
#it data = df2, weights = df2$ Total(n) )

7

## Coefficients:

it Estimate Std. Error z value Pr(>|z]|)

## (Intercept) -177.01670 134.69706 -1.314 ©.1888

## df2¢$ Year(X)" ©.09188 9.06937 1.324 ©.1854

## df2$ Faculty(W) science  1.44256  ©.63186 2.283 0.0224 *
T —

## Signif. codes: @ "***' g @01 '**' .01 '*' ©.05 "." 0.1 " ' 1
##

## (Dispersion parameter for binomial family taken to be 1)

#i

H#Hit Mull deviance: 22.555 on 19 degrees of freedom

## Residual deviance: 11.95@ on 17 degrees of freedom
## AIC: 46.853

#H
## Number of Fisher Scoring iterations: 5



Po=Number of parameters =2

model5<-glm(df2$p~df2$ Year(X) ,

family = binomial("logit"),weights = df2$ Total(n) ,data=df2)

summary{model5)

=

## Call:

## glm(formula = df2¢p ~ df2% Year(X) , family = binomial("logit"),
#HH data = df2, weights = df2$ Total(n) )

#H

## Coefficients:

i Estimate Std. Error z value Pr(>|z|)

## (Intercept) -244.12681 132.49910 -1.843 @.8654 .

## df2$% Year(X)" 9.12657 B.06823 1.855 8.09636 .

#Ho---

## Signif. codes: © '¥**' 9.001 '**' .81 '** ©9.05 '." ©.1 ' ' 1
#=

## (Dispersion parameter for binomial family taken to be 1)
#7

#it Mull deviance: 22.555 on 19 degrees of freedom

## Residual deviance: 19.813 on 18 degrees of freedom

## AIC: 51.916

##

## Number of Fisher Scoring iterations: 4

qchisq(@.95 ,1 )

## [1] 3.841459

(d)
df3<-df %>% filter(df$ Faculty(W) %in% c("arts”,"science"))
View(df3)

p = Number of parameters = 5.

model6<-glm(df3$p~df3s Year(X) +df3$ Sex(V) +df3$ Faculty(W) +
df3$ Sex (V) *df3$ Faculty(W) ,

family = binomial("logit"),weights = df3$ Total(n) ,data=df3)

summary (model6)

#5

#i# Call:

## glm(formula = df3$p ~ df3% Year(X) + df3$ Sex(V) + df3$ Faculty(W) +

#it df3$ Sex(V)  * df3$ Faculty(W) , family = binomial("logit"),

#H# data = df3, weights = df3%$ Total(n) )

##

## Coefficients:

#H Estimate Std. Error z value Pr(:|z|)
## (Intercept) -91.98146 66.28588 -1.388 0.165
## df3%$ Year(X)" 0.04747 0.03414 1.391 0.164
## df3$ Sex(V) women 1.19106 0.25414 4.687 2.78e-06
## df3$ Faculty(W) science ©.93295 ©.22854 4.082 4.46e-85

## df3$ Sex(V) women:df3$ Faculty(W) science 0.56486 0.66442
#H
## (Intercept)

0.850 ©.395



## df3$ Year(X)

## df3$ Sex (V) women R

## df3$ Faculty(W) science A

## df3$ Sex(V) women:df3$ Faculty(W) science

#H o---

## Signif. codes: @ '"***' g el '**' 9.1 '*' @.05 '.' ©.1 ' ' 1
H#H

## (Dispersion parameter for binomial family taken to be 1)
##

#it Null deviance: 82.271 on 38 degrees of freedom

## Residual deviance: 28.416 on 34 degrees of freedom

## (1 observation deleted due to missingness)

## AIC: 127.26

HH

## Number of Fisher Scoring iterations: 5

Po= Number of parameters = 4.

model7<-glm(df3%$p~df3$ Year(X) +df3% Sex(V) +df3% Faculty(W) , family =
binomial("logit"),weights = df3% Total(n) ,data=df3)

summary (model?7)

#H

## Call:

## glm(formula = df3¢p ~ df3$ Year(X) + df3g Sex(V) + df3$ Faculty(W) ,
H#it family = binomial{"logit"), data = df3, weights = df3$ Total(n) )
#H

## Coefficients:

#i# Estimate Std. Error z value Pr(>|z|)

## (Intercept) -92.050886 66.38656 -1.387 8.166

## df34 Year(X)" 0.04749 9.03419 1.389 9.165

## df34° Sex (V) women 1.28790 0.23024 5.594 2.22e-98 ***

## df3¢ Faculty(W) science 1.00806 ©.21203 4.754 1.99e-06 ***
oo

## Signif. codes: @ '"***' p.eel1 '**' ®.P1 '*' ©.85 '."' ©.1 " " 1
#H

## (Dispersion parameter for binomial family taken to be 1)

#H

H#Ht Mull deviance: 82.271 on 38 degrees of freedom

## Residual deviance: 29.217 on 35 degrees of freedom

H#it (1 observation deleted due to missingness)

## AIC: 126.06

H#H

## Number of Fisher Scoring iterations: 4

qchisq(©.95 ,1 }

## [1] 3.841459

Q7.4:
(a) DO - Dl = z[l(bmax) - l(bmin)] - z[l(bmax) - l(b)] =C
(b) For this hypothesis Dy ~ y2(N — 1),D; ~ x>(N —p) so C ~ y*(p — 1).



