

Chapter 7: Binary Variables and Logistic Regression: (Dobson 2008)

7.9 Exercises (p. 143)

Q 7.1:

Table 7.14: y = Number of Deaths from leukemia and other cancers classified by radiation dose received from the Hiroshima atomic bomb.

Deaths	0	1–9	10–49	50–99	100–199	200+	Radiation dose (rads)
Leukemia	13	5	5	3	4	18	
Other cancers	378	200	151	47	31	33	
Total cancers	391	205	156	50	35	51	

Let:

n_i = Total cancers

y_i = Number of deaths from leukemia

$n_i - y_i$ = Number of deaths from other cancers

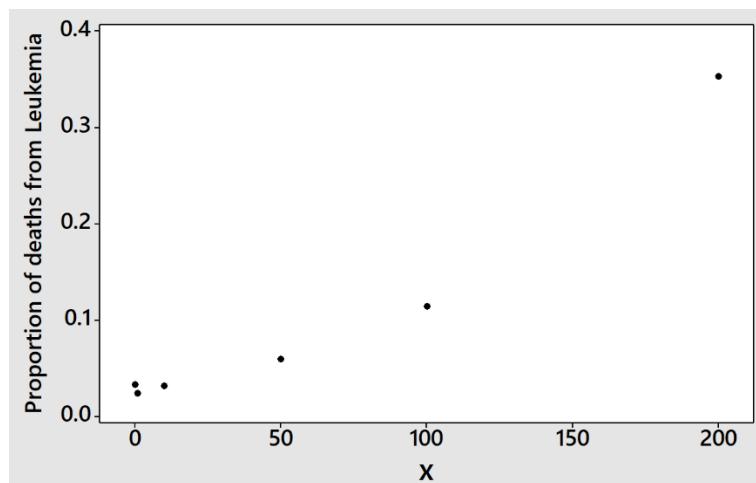
x_i = radiation dose (lower limit of radiation dose interval)

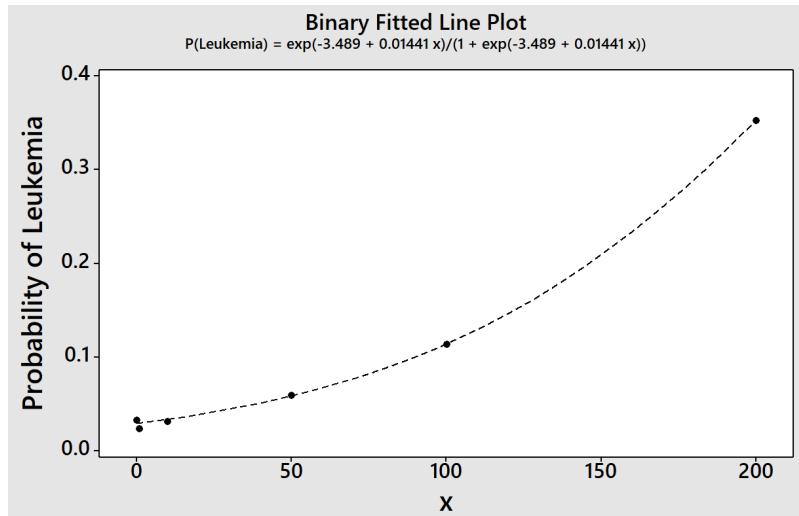
$i = 1, 2, \dots, N$

$N = 6$ (Number of different values of radiation dose x_i)

$P_i = \frac{y_i}{n_i}$ = Proportion of deaths from leukemia

x_i	y_i	$n_i - y_i$	n_i	$P_i = \frac{y_i}{n_i}$
0	13	378	391	0.0332
1	5	200	205	0.0244
10	5	151	156	0.0321
50	3	47	50	0.0600
100	4	31	35	0.1143
200	18	33	51	0.3529





- The suggested model is the logistic regression model given by:

$$\begin{cases} \ln\left(\frac{\pi_i}{1 - \pi_i}\right) = \beta_1 + \beta_2 x_i & ; i = 1, 2, \dots, N \\ Y_i \sim \text{Bin}(n_i, \pi_i) \end{cases}$$

- Minitab Calculations:

Minitab Output:

Binary Logistic Regression: y versus x

Method

Link function Logit
 Rows used 6

Response Information

Variable	Value	Count	Event Name
y	Event	48	Leukemia
	Non-event	840	
n	Total	888	

Deviance Table

Source	DF	Seq Dev	Contribution	Adj Dev	Adj Mean	Chi-Square	P-Value
Regression	1	53.9188	99.21%	53.9188	53.9188	53.92	0.000
x	1	53.9188	99.21%	53.9188	53.9188	53.92	0.000
Error	4	0.4321	0.79%	0.4321	0.1080		
Total	5	54.3509	100.00%				

Model Summary

Deviance	Deviance	
R-Sq	R-Sq(adj)	AIC
99.21%	97.37%	323.54

Coefficients

Term	Coef	SE Coef	95% CI	Z-Value	P-Value	VIF
Constant	-3.489	0.204	(-3.889, -3.089)	-17.10	0.000	
x	0.01441	0.00182	(0.01085, 0.01797)	7.93	0.000	1.00

Odds Ratios for Continuous Predictors

Odds Ratio	95% CI
x	1.0145 (1.0109, 1.0181)

Regression Equation

$P(\text{Leukemia}) = \exp(Y') / (1 + \exp(Y'))$
 $Y' = -3.489 + 0.01441 x$

Goodness-of-Fit Tests

Test	DF	Chi-Square	P-Value
Deviance	4	0.43	0.980
Pearson	4	0.42	0.981
Hosmer-Lemeshow	2	0.42	0.810

- From this output we have:

$$\hat{\beta}_1 = -3.489, \text{ se}(\hat{\beta}_1) = 0.204, 95\% \text{ C.I for } \beta_1 \text{ is } (-3.889, -3.089)$$

$$\hat{\beta}_2 = 0.01441, \text{ se}(\hat{\beta}_2) = 0.00182, 95\% \text{ C.I for } \beta_2 \text{ is } (0.01085, 0.01797)$$

Deviance: $D = 0.4321$ (with $df = N - p = 6 - 2 = 4$)

Pearson Chi - Square Statistics: $X^2 = 0.4232$ (with $df = N - p = 6 - 2 = 4$)

- Variance-covariance matrix of $\hat{\beta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}$ is:

$$Cov(\hat{\beta}) = \begin{bmatrix} 0.0416415 & -0.0002357 \\ -0.0002357 & 0.0000033 \end{bmatrix}$$

- The fitted equation of the model is:

$$\ln\left(\frac{\hat{\pi}_i}{1 - \hat{\pi}_i}\right) = \hat{\beta}_1 + \hat{\beta}_2 x_i = -3.489 + 0.01441 x_i$$

- The estimates of probabilities are:

$$\hat{\pi}_i = \frac{e^{\hat{\beta}_1 + \hat{\beta}_2 x_i}}{1 + e^{\hat{\beta}_1 + \hat{\beta}_2 x_i}} = \frac{e^{-3.489 + 0.01441 x_i}}{1 + e^{-3.489 + 0.01441 x_i}}$$

- The critical value is $\chi^2_{\alpha, (N-p)} = \chi^2_{0.05, (4)} = 9.48773$ at $\alpha = 0.05$.

Since $D = 0.4321 < \chi^2_{0.05, (4)} = 9.48773$ (and $X^2 = 0.42 < \chi^2_{0.05, (4)} = 9.48773$), we conclude that the model fits the data well.

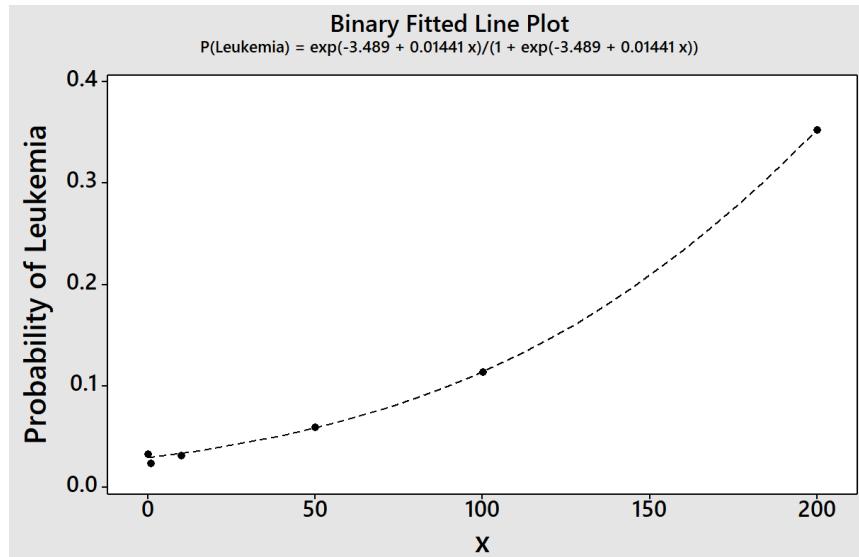
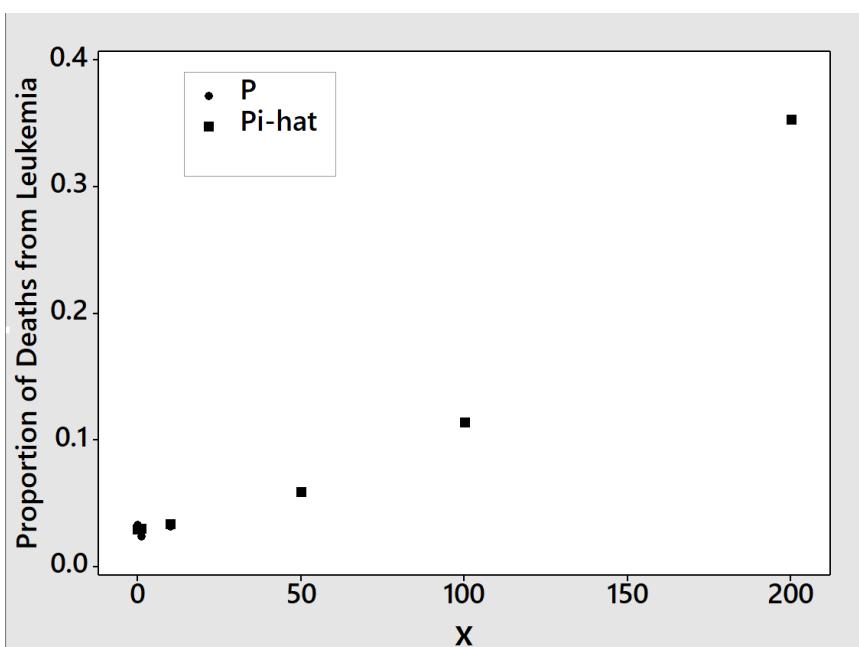
- The following table contains some calculations:

x_i	n_i	y_i	$P_i = \frac{y_i}{n_i}$	$\hat{\pi}_i$	e_{Di} Deviance Residual	e_{Pi} Pearson Residual	\hat{y}_i
0	391	13	0.0332	0.029628	0.4143	0.4222	11.584
1	205	5	0.0244	0.030045	-0.4899	-0.4743	6.159
10	156	5	0.0321	0.034064	-0.1399	-0.1386	5.314
50	50	3	0.0600	0.059052	0.0284	0.0284	2.953
100	35	4	0.1143	0.114260	0.0005	0.0005	3.999
200	51	18	0.3529	0.352761	0.0027	0.0027	17.991
Sum	$\sum_{i=1}^m n_i = 888$	$\sum_{i=1}^m y_i = 48$			$D = \sum_{k=1}^m e_{Dk}^2 = 0.432057$	$X^2 = \sum_{k=1}^m e_{Pk}^2 = 0.423196$	$\sum_{i=1}^m \hat{y}_i = 48$

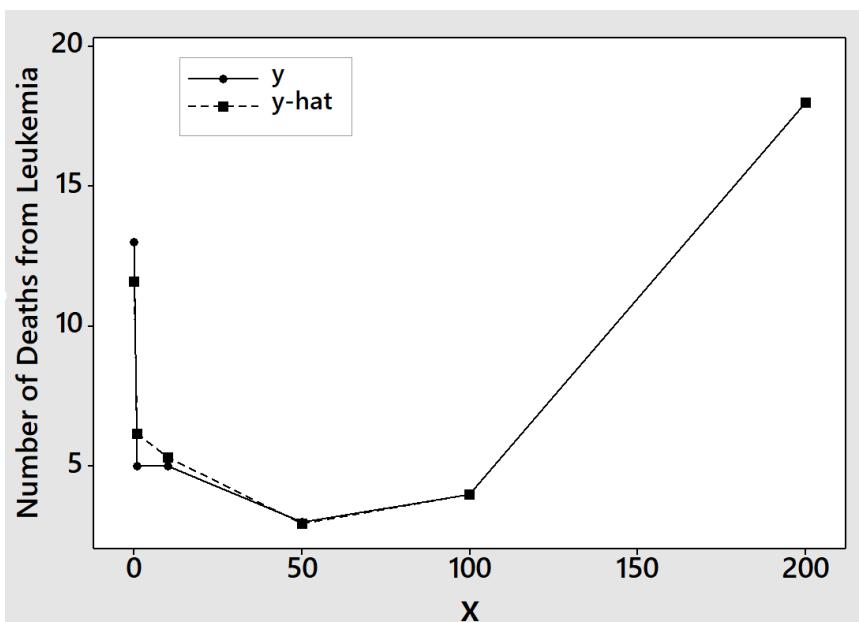
- The following figures show:

(1) The observed proportions ($P_i = \frac{y_i}{n_i}$) plotted against the radiation dose (x_i).

(2) The expected proportions (estimates of the probabilities) ($\hat{\pi}_i$) plotted against the radiation dose (x_i).



- The following figures show:
 - (1) The observed response (y_i) plotted against the radiation dose (x_i).
 - (2) The observed response (\hat{y}_i) plotted against the radiation dose (x_i).



Q 7.2:

Table 7.15: 2x2 table for a prospective study of exposure and disease outcome

	Diseased	Not diseased	Odds	Odds Ratio
Exposed	π_1	$1 - \pi_1$	$O_1 = \frac{\pi_1}{1 - \pi_1}$	
Not exposed	π_2	$1 - \pi_2$	$O_2 = \frac{\pi_2}{1 - \pi_2}$	$OR = \phi = \frac{O_1}{O_2}$

- The odds of disease for either exposure group is:

$$O_i = \frac{\pi_i}{1 - \pi_i} ; i = 1, 2$$

- The odds ratio (OR) is:

$$\phi = \frac{O_1}{O_2} = \frac{\pi_1/(1 - \pi_1)}{\pi_2/(1 - \pi_2)} = \frac{\pi_1(1 - \pi_2)}{\pi_2(1 - \pi_1)}$$

- The odds ratio is a measure of the relative likelihood of disease for the exposed and not exposed groups.

(a) For the simple logistic model is:

$$\begin{aligned} \pi_i &= \frac{e^{\beta_i}}{1 + e^{\beta_i}} ; i = 1, 2 \\ &\Leftrightarrow \\ \ln\left(\frac{\pi_i}{1 - \pi_i}\right) &= \beta_i \\ &\Leftrightarrow \\ \frac{\pi_i}{1 - \pi_i} &= e^{\beta_i} \end{aligned}$$

The odds is:

$$O_i = \frac{\pi_i}{1 - \pi_i} = e^{\beta_i}$$

The odds ratio is:

$$\phi = \frac{O_1}{O_2} = \frac{e^{\beta_1}}{e^{\beta_2}} = e^{\beta_1 - \beta_2}$$

If there is no difference between the exposed and not exposed groups (i.e., $\beta_1 = \beta_2 = \beta$), then the odds ratio is:

$$\phi = e^{\beta_1 - \beta_2} = e^{\beta - \beta} = e^0 = 1$$

(b) Suppose that we have J age groups. Let x_j be the mean age of the j -th age group ($j = 1, 2, \dots, J$), and the 2x2 contingency table for the j -th age group is:

	x_j			
	Diseased	Not diseased	Odds	Odds Ratio
Exposed	π_{1j}	$1 - \pi_{1j}$	$O_{1j} = \frac{\pi_{1j}}{1 - \pi_{1j}}$	
Not exposed	π_{2j}	$1 - \pi_{2j}$	$O_{2j} = \frac{\pi_{2j}}{1 - \pi_{2j}}$	$\phi_j = \frac{O_{1j}}{O_{2j}}$

Consider the following logistic model:

$$\pi_{ij} = \frac{e^{\alpha_i + \beta_i x_j}}{1 + e^{\alpha_i + \beta_i x_j}} \quad ; i = 1, 2 \text{ and } j = 1, 2, \dots, J$$

$$\Leftrightarrow$$

$$\ln\left(\frac{\pi_{ij}}{1 - \pi_{ij}}\right) = \alpha_i + \beta_i x_j \quad ; i = 1, 2 \text{ and } j = 1, 2, \dots, J$$

$$\Leftrightarrow$$

$$\frac{\pi_{ij}}{1 - \pi_{ij}} = e^{\alpha_i + \beta_i x_j} \quad ; i = 1, 2 \text{ and } j = 1, 2, \dots, J$$

The odds is for the level x_j is:

$$O_{ij} = \frac{\pi_{ij}}{1 - \pi_{ij}} = e^{\alpha_i + \beta_i x_j}$$

The odds ratio for the level x_j is:

$$\phi_j = \frac{O_{1j}}{O_{2j}} = \frac{e^{\alpha_1 + \beta_1 x_j}}{e^{\alpha_2 + \beta_2 x_j}} = e^{(\alpha_1 - \alpha_2) + (\beta_1 - \beta_2)x_j}$$

If $\beta_1 = \beta_2 = \beta$, then the odds ratio for the level x_j is:

$$\phi_j = e^{(\alpha_1 - \alpha_2)} = \phi \quad ; j = 1, 2, \dots, J$$

Thus, the odds ratios are equal for all x_j (i.e., $\phi_j = \phi = \text{constant}$). Consequently, $\ln(\phi_j) = \ln(\phi) = \text{constant}$ for all $j = 1, 2, \dots, J$.

Q 7.3:

Year (X)	Sex (V)	Faculty (W)	Total (n)	Survive (Y)
1938	men	medicine	22	18
1939	men	medicine	23	16
1940	men	medicine	17	7
1941	men	medicine	25	12
1942	men	medicine	50	24
1943	men	medicine	21	16
1944	men	medicine	32	22
1945	men	medicine	14	12
1946	men	medicine	34	22
1947	men	medicine	37	28
1938	men	arts	30	16
1939	men	arts	22	13
1940	men	arts	25	11
1941	men	arts	14	12
1942	men	arts	12	8
1943	men	arts	20	11
1944	men	arts	10	4
1945	men	arts	12	4
1946	men	arts	*	*
1947	men	arts	23	13
1938	men	science	14	9
1939	men	science	12	9
1940	men	science	19	12
1941	men	science	15	12
1942	men	science	28	20

1943	men	science	21	16
1944	men	science	31	25
1945	men	science	38	32
1946	men	science	5	4
1947	men	science	31	25
1938	men	engineering	16	10
1939	men	engineering	11	7
1940	men	engineering	15	12
1941	men	engineering	9	8
1942	men	engineering	7	5
1943	men	engineering	2	1
1944	men	engineering	22	16
1945	men	engineering	25	19
1946	men	engineering	*	*
1947	men	engineering	35	25
1938	women	arts	19	14
1939	women	arts	16	11
1940	women	arts	18	15
1941	women	arts	21	15
1942	women	arts	9	8
1943	women	arts	13	13
1944	women	arts	22	18
1945	women	arts	22	18
1946	women	arts	1	1
1947	women	arts	16	13
1938	women	science	1	1
1939	women	science	4	4
1940	women	science	7	6
1941	women	science	3	3
1942	women	science	4	4
1943	women	science	9	8
1944	women	science	5	5
1945	women	science	17	16
1946	women	science	1	1
1947	women	science	10	10

Y= the number of survivals.

N = Number of observations = 58 (There are two missing values)

The explanatory variable (Covariate) is "Year (X)).

The explanatory variable (Factor) "Faculty (W)" has 4 levels, therefore we define 3 dummy variables which are:

$$W_1 = \begin{cases} 1 & \text{if Faculty = engineering} \\ 0 & \text{otherwise} \end{cases}$$

$$W_2 = \begin{cases} 1 & \text{if Faculty = medicine} \\ 0 & \text{otherwise} \end{cases}$$

$$W_3 = \begin{cases} 1 & \text{if Faculty = science} \\ 0 & \text{otherwise} \end{cases}$$

Note: If $W_1 = W_2 = W_3 = 0$, the faculty = arts.

The explanatory variable (Factor) "Sex (V)" has 2 levels; therefore, we define 1 dummy variable which is:

$$V = \begin{cases} 1 & \text{if Sex = Woman} \\ 0 & \text{if Sex = Man} \end{cases}$$

We will use the following generalized linear model:

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta X + \gamma V + \delta_1 W_1 + \delta_2 W_2 + \delta_3 W_3$$

p= Number of parameters = 6

For this model, we have the following Minitab output:

Deviance Table						
Source	DF	Adj Dev	Adj Mean	Chi-Square	P-Value	
Regression	5	61.972	12.394	61.97	0.000	
year	1	3.445	3.445	3.45	0.063	
faculty	3	27.099	9.033	27.10	0.000	
sex	1	35.354	35.354	35.35	0.000	
Error	52	54.114	1.041			
Total	57	116.086				

Goodness-of-Fit Tests

Test	DF	Chi-Square	P-Value
Deviance	52	54.11	0.394
Pearson	52	48.27	0.622
Hosmer-Lemeshow	7	9.89	0.195

The deviance of this model is:

$D = 54.11$ with $df = N - p = 58 - 6 = 52$

(a) To answer the question " Are the proportions of graduates who survived for 50 years after graduation the same all years of graduation?", we need to test:

$H_0: \beta = 0$ against $H_1: \beta \neq 0$

The model under H_0 is:

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \gamma V + \delta_1 W_1 + \delta_2 W_2 + \delta_3 W_3$$

p_o = Number of parameters = 5

For this model, we have the following Minitab output:

Goodness-of-Fit Tests

Test	DF	Chi-Square	P-Value
Deviance	53	57.56	0.310
Pearson	53	52.40	0.498
Hosmer-Lemeshow	4	0.73	0.947

The deviance of this model is:

$D_\rho = 57.56$ with $df = N - p_\rho = 58 - 5 = 53$

Test statistic is:

$$\Delta D = D_0 - D = 57.56 - 54.11 = 3.45 \quad \text{with} \quad df = 53 - 52 = 1$$

Since $\Delta D = 3.45 < \chi^2_{0.05,(1)} = 3.84146$, we do not reject H_0 at $\alpha = 0.05$. Therefore, we conclude that "Year" is not significant; and consequently, we conclude that the proportions of graduates who survived for 50 years after graduation are the same all years of graduation.

(b) To answer the question " Are the proportions of male graduates who survived for 50 years after graduation the same for all Faculties?"

We will use the data for men only, and we will use the following generalized linear model:

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta X + \delta_1 W_1 + \delta_2 W_2 + \delta_3 W_3$$

N= number of observations = 38 (there are two missing values)

p= Number of parameters = 5

For this model, we have the following Minitab output:

Deviance Table

Source	DF	Adj Dev	Adj Mean	Chi-Square	P-Value
Regression	4	25.435	6.359	25.44	0.000
year	1	2.176	2.176	2.18	0.140
faculty	3	20.436	6.812	20.44	0.000
Error	33	40.850	1.238		
Total	37	66.285			

Goodness-of-Fit Tests

Test	DF	Chi-Square	P-Value
Deviance	33	40.85	0.164
Pearson	33	39.34	0.207
Hosmer-Lemeshow	7	10.53	0.161

The deviance of this model is:

$$D = 40.85 \quad \text{with } df = N - p = 38 - 5 = 33$$

To answer the question, we need to test:

$$H_0: \delta_1 = \delta_2 = \delta_3 = 0 \quad \text{against} \quad H_1: \delta_j \neq 0 \text{ for at least one } \delta_j$$

The model under H_0 is:

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta X$$

p_o = Number of parameters = 2

For this model, we have the following Minitab output:

Goodness-of-Fit Tests	DF	Chi-Square	P-Value
Test	DF	Chi-Square	P-Value
Deviance	36	61.29	0.005
Pearson	36	61.03	0.006
Hosmer-Lemeshow	4	2.84	0.584

The deviance of this model is:

$$D_o = 61.29 \quad \text{with } df = N - p_o = 38 - 2 = 36$$

Test statistic is:

$$\Delta D = D_o - D = 61.29 - 40.85 = 20.44 \quad \text{with } df = 36 - 33 = 3$$

Since $\Delta D = 20.44 > \chi^2_{0.05,(3)} = 7.81473$, we reject H_0 at $\alpha = 0.05$. Therefore, we conclude that "Faculty" is significant for males; and consequently, we conclude that the proportions of male graduates who survived for 50 years after graduation are not the same for all Faculties.

(c) To answer the question " Are the proportions of female graduates who survived for 50 years after graduation the same for Arts and Science?"

We will use the data for women only.

Since there are only two faculties for women (Arts and Science) which means that the explanatory variable (Factor) "Faculty (W)" has 2 levels, therefore we define 1 dummy variable which is:

$$W = \begin{cases} 1 & ; \text{ if Faculty = Science} \\ 0 & ; \text{ if Faculty = Arts} \end{cases}$$

and we will use the following generalized linear model:

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta X + \delta W$$

N = number of observations = 20 (there are no missing values)

p_o = Number of parameters = 3

For this model, we have the following Minitab output:

Deviance Table					
Source	DF	Adj Dev	Adj Mean	Chi-Square	P-Value
Regression	2	10.605	5.3027	10.61	0.005

year	1	1.789	1.7889	1.79	0.181
faculty	1	7.063	7.0630	7.06	0.008
Error	17	11.950	0.7029		
Total	19	22.555			

Goodness-of-Fit Tests

Test	DF	Chi-Square	P-Value
Deviance	17	11.95	0.803
Pearson	17	8.47	0.955
Hosmer-Lemeshow	7	4.15	0.762

The deviance of this model is:

$$D = 11.95 \quad \text{with } df = N - p = 20 - 3 = 17$$

To answer the question, we need to test:

$$H_0: \delta = 0 \quad \text{against} \quad H_1: \delta \neq 0$$

The model under H_0 is:

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta X$$

p_0 = Number of parameters = 2

For this model, we have the following Minitab output:

Goodness-of-Fit Tests			
Test	DF	Chi-Square	P-Value
Deviance	18	19.01	0.391
Pearson	18	13.89	0.736
Hosmer-Lemeshow	5	3.77	0.583

The deviance of this model is:

$$D_0 = 19.01 \quad \text{with } df = N - p_0 = 20 - 2 = 18$$

Test statistic is:

$$\Delta D = D_0 - D = 19.01 - 11.95 = 7.06 \quad \text{with } df = 18 - 17 = 1$$

Since $\Delta D = 7.06 > \chi^2_{0.05,(1)} = 3.84146$, we reject H_0 at $\alpha = 0.05$. Therefore, we conclude that "Faculty" is significant for females; and consequently, we conclude that the proportions of female graduates who survived for 50 years after graduation are not the same for the faculties of Arts and Science.

(d) To answer the question " Is the difference between men and women in the proportion of graduates who survived for 50 years after graduation the same for Arts and Science?"

We will use the data for Arts and Science only.

Since there are only two faculties for women (Arts and Science), which means that the explanatory variable (Factor) "Faculty (W)" has 2 levels, therefore we define 1 dummy variable which is:

$$W = \begin{cases} 1 & ; \text{ if Faculty = Science} \\ 0 & ; \text{ if Faculty = Arts} \end{cases}$$

and we will use the following generalized linear model:

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta X + \gamma V + \delta W + (\gamma\delta) VW$$

or

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta X + \gamma V + \delta W + \tau VW$$

$\tau = (\gamma\delta)$ = interaction effects between "Sex" and "Faculty".

N = number of observations = 39 (there is one missing value).

p = Number of parameters = 5.

For this model, we have the following Minitab output:

Deviance Table						
Source	DF	Adj Dev	Adj Mean	Chi-Square	P-Value	
Regression	4	53.8548	13.4637	53.85	0.000	
year	1	1.9417	1.9417	1.94	0.163	
sex	1	23.4687	23.4687	23.47	0.000	
faculty	1	17.0185	17.0185	17.02	0.000	
sex*faculty	1	0.8004	0.8004	0.80	0.371	
Error	34	28.4163	0.8358			
Total	38	82.2711				

Goodness-of-Fit Tests

Test	DF	Chi-Square	P-Value
Deviance	34	28.42	0.738
Pearson	34	24.29	0.891
Hosmer-Lemeshow	7	2.67	0.913

The deviance of this model is:

$$D = 28.4163 \quad \text{with } df = N - p = 39 - 5 = 34$$

To answer the question, we need to test:

$$H_0: \tau = 0 \quad \text{against} \quad H_1: \tau \neq 0$$

The model under H_0 is:

$$\ln\left(\frac{\pi}{1-\pi}\right) = \alpha + \beta X + \gamma V + \delta W$$

p_o = Number of parameters = 4.

For this model, we have the following Minitab output:

Goodness-of-Fit Tests			
Test	DF	Chi-Square	P-Value
Deviance	35	29.22	0.743
Pearson	35	24.27	0.913
Hosmer-Lemeshow	7	3.26	0.860

The deviance of this model is:

$$D_o = 29.217 \quad \text{with } df = N - p_o = 39 - 4 = 35$$

Test statistic is:

$$\Delta D = D_o - D = 29.217 - 28.4163 = 0.8007 \quad \text{with } df = 35 - 34 = 1$$

Since $\Delta D = 0.8007 < \chi^2_{0.05,(1)} = 3.84146$, we do not reject H_0 at $\alpha = 0.05$. Therefore, we conclude that "interaction between "Sex" and "Faculty" is not significant; and consequently, we conclude that the difference between men and women in the proportion of graduates who survived for 50 years after graduation is the same for Arts and Science.