
 

 

Chapter 5 

 

5.1: 

y ∼ Bin(𝑛, 𝜋) 
𝐸(𝑦) = 𝑛𝜋

Var(𝑦) = 𝑛𝜋(1 − 𝜋)
 

(a)  

𝑓(𝑦; 𝜋) = (𝑛
𝑦
)𝜋𝑦(1 − 𝜋)𝑛−𝑦 (for one observation) 

𝑙(𝜋) = 𝑦ln⁡(𝜋) + (𝑛 − 𝑦)ln⁡(1 − 𝜋) + ln⁡ [(
𝑛

𝑦
)] 

𝑈 = 𝑈(𝜋) =
𝜕𝑙

𝜕𝜋
=
𝑦

𝜋
−
𝑛 − 𝑦

1 − 𝜋
=
𝑦(1 − 𝜋) − (𝑛 − 𝑦)𝜋

𝜋(1 − 𝜋)
=
𝑦 − 𝑦𝜋 − 𝑛𝜋 + 𝑦𝜋

𝜋(1 − 𝜋)
=

𝑦 − 𝑛𝜋

𝜋(1 − 𝜋)
 

• The MLE of 𝜋 is 𝜋̂ =
𝑦

𝑛
 

     Note that: 𝐸(𝑈) = 𝐸 [
𝑦−𝑛𝜋

𝜋(1−𝜋)
] =

𝐸(𝑦)−𝑛𝜋

𝜋(1−𝜋)
=

𝑛𝜋−𝑛𝜋

𝜋(1−𝜋)
= 0 

• Information: 

 

𝐽 = Var(𝑈) = Var [
4 − 𝑛𝜋

𝜋(1 − 𝜋)
] =

Var(4)

𝜋2(1 − 𝜋)2
=
𝑛𝜋(1 − 𝜋)

𝜋2(1 − 𝜋)2
=

𝑛

𝜋(1 − 𝜋)
 

• Now: 

(𝜋̂ − 𝜋)𝑡𝐽(𝜋̂ − 𝜋) = (
𝑦

𝑛
− 𝜋)

2

[
𝑛

𝜋(1 − 𝜋)
] = (

𝑦 − 𝑛𝜋

𝑛
)
2

(
𝑛

𝜋(1 − 𝜋)
) =

(𝑦 − 𝑛𝜋)2

𝑛𝜋(1 − 𝜋)
= [

𝑦 − 𝑛𝜋

√𝑛𝜋(1 − 𝜋)
]

2

 

Since ⁡y ∼ Bin(𝑛, 𝜋), we have: 

𝑍 =
𝑦 − 𝐸(𝑦)

√Var(𝑦)
=

𝑦 − 𝑛𝜋

√𝑛𝜋(1 − 𝜋)
⁡≈⁡𝑁(0,1) (approximately) 

(Normal approximation to binomial) 

𝑍2 = [
𝑦 − 𝑛𝜋

√𝑛𝜋(1 − 𝜋)
]

2

≈ 𝑋(1)
2  (approximately) 

 

(b) Wald statistic is: ⁡𝑧2 = [
𝑦−𝑛𝜋

√𝑛𝜋(1−𝜋)
]
2

=
(𝑦−𝑛𝜋)2

𝑛𝜋(1−𝜋)
→ (∗)    

and 

𝑈𝑡𝐽−1𝑈 = [
𝑦 − 𝑛𝜋

𝜋(1 − 𝜋)
]
2 1

𝑛
𝜋(1 − 𝜋)

=
(𝑦 − 𝑛𝜋)2

𝜋2(1 − 𝜋)2
𝜋(1 − 𝜋)

𝑛
=
(𝑦 − 𝑛𝜋)2

𝑛𝜋(1 − 𝜋)
→ (∗∗) 

(∗) = (∗∗) 
∴ ⁡ Wald statistic = 𝑈𝑡𝐽−1𝑢 

 

(c)  

• 𝑙(𝜋) = 𝑦ln⁡(𝜋) + (𝑛 − 𝑦)ln⁡(1 − 𝜋) + ln⁡ [(𝑛
𝑦
)] 

• For the saturated model, we have: 

o MLE of 𝜋 is 𝜋̂ =
𝑦

𝑛
 

o The fitted value 𝑦̂ = 𝑛𝜋̂ = 𝑛 (
𝑦

𝑛
) = 𝑦 

o The maximum value of 𝑙(𝜋) for the Saturated model is: 



 

 

⁡⁡⁡⁡⁡⁡𝑙(𝑏max; 𝑦) = 𝑙(𝜋̂) = 𝑦ln⁡(𝜋̂) + (𝑛 − 𝑦)ln⁡(1 − 𝜋̂) + ln⁡ [(
𝑛

𝑦
)] = 𝑦ln⁡ (

𝑦

𝑛
) + (𝑛 − 𝑦)ln⁡ (1 −

𝑦

𝑛
) + ln⁡ [(

𝑛

𝑦
)] 

 

• For the model of interest: 

o Let 𝜋̃ be the MLE of 𝜋, and 𝑦̃ = 𝑛𝜋̃ be the fitted value. 

o The maximum value of 𝑙(𝜋) for the model of interest is: 

𝑙(𝑏; 𝑦)⁡= 𝑙(𝜋̃) = 𝑦ln⁡(𝜋̃) + (𝑛 − 𝑦)ln⁡(1 − 𝜋̃) + ln⁡ [(
𝑛

𝑦
)]

⁡= 𝑦ln⁡ (
𝑦̃

𝑛
) + (𝑛 − 𝑦)ln⁡ (1 −

𝑦̃

𝑛
) + ln⁡ [(

𝑛

𝑦
)]

 

• The deviance is: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐷 = 2[𝑙(𝑏𝑚𝑎𝑥) − 𝑙(𝑏)]

= 2 {[𝑦ln⁡ (
𝑦

𝑛
) + (𝑛 − 𝑦)ln⁡ (1 −

𝑦

𝑛
) + ln⁡ [(

𝑛

𝑦
)]] − [𝑦ln⁡ (

𝑦̃

𝑛
) + (𝑛 − 𝑦)ln⁡ (1 −

𝑦̃

𝑛
) + ln⁡ [(

𝑛

𝑦
)]}

= 2{𝑦ln⁡ (
𝑦

𝑦̃
) + (𝑛 − 𝑦)ln⁡ (

1 −
𝑦
𝑛

1 −
𝑦̃
𝑛

)] = 2 [𝑦ln⁡ (
𝑦

𝑦̃
) + (𝑛 − 𝑦)ln⁡ (

𝑛 − 𝑦

𝑛 − 𝑦̃
)] 

 

(d) 

Wald statistic = (𝜋̂ − 𝜋)𝑡2𝐽(𝜋 − 𝜋)⁡:
(𝑦 − 𝑛𝜋)2

𝑛𝜋(1 − 𝜋)
⁡≈ 𝜒(1)

2  

Score statistic: 𝑈𝑡𝐽−1𝑈 ≈ 𝜒(1)
2  

Deviance: 𝐷 = 2 [𝑦ln⁡ (
𝑦

𝑦̃
) + (𝑛 − 𝑦)ln⁡ (

𝑛−𝑦

𝑛−𝑦̃
)] 

• We have shown that: 

 Wald Statistic =  Score Statistic =
(𝑦 − 𝑛𝜋)2

𝑛𝜋(1 − 𝜋)

𝑛 = 10, 𝑦 = 3, 𝜒0.05(1)
2 = 3.84

 

(i) For the model with 𝜋 = 𝜋0 = 0.1:⁡ {
𝐻0: 𝜋 = 0.1
𝐻1: 𝜋 ≠ 0.1

} 

𝑦̃ = 𝑛𝜋0 = (10)(0.1) = 1 

• Wald statistic =
(𝑦−𝑛𝜋0)

2

𝑛𝜋0(1−𝜋0)
=

(3−1)2

(10)(0.1)(0.9)
= 4.444 

            Since 4.444 > 𝑋0.05
2 (1), we reject 𝐻0: 𝑇 = 0.1 

• wald statistic = Score statistic = 4.444 we will have the same calculations and the same conclusion. 

Therefore, the model is not adequate bused on There two statistics. 

• Deviance or log-likelihood statistic 

𝐷 = 2 [𝑦ln⁡ (
𝑦

𝑛𝜋0
) + (𝑛 − 𝑦)ln⁡ (

𝑛 − 𝑦

𝑛 − 𝑛𝜋0
)] = 2 [(3)ln⁡ (

3

1
) + (10 − 3)ln⁡ (

10 − 3

10 − 1
)] = 3.07327 

Since 3.07327 < 𝑋0.05(1)
2 , we donot reject to based on the deviance statistic, and we conclude that the model is 

a adequate. 

We notice that their statistics do not lead to the same conclusions. 

(ii) Both statistics equal zero and would not suggest rejecting 𝜋 = 0.3. 

(iii) Wald/score statistic = 1.60, log-likelihood statistic = 1.65, so neither would suggest rejecting 𝜋 = 0.5. 

 

𝟓. 𝟐: 



 

 

y1, 𝑦2, … , y𝑁 are independent. 

𝑦𝑖 ∼ Exp(𝜃𝑖) for all 𝑖 = 1,2, … ,𝑁 

𝑓(𝑦𝑖, 𝜃𝑖) = 𝜃𝑖𝑒
−𝜃𝑖𝑦𝑖 , 𝑦𝑖 > 0⁡⁡and⁡𝜃𝑖 > 0 

• For maximal model, the 𝜃𝑖
′ 's ane different. 

• For the model of interest, the 𝜃𝑖
′ s are the same 

𝜃1 = 𝜃2 = ⋯ = 𝜃𝑁 = 𝜃. 
(1) For the maximal model: 

The log-likelihood function is: 

𝑙 = 𝑙(𝜃1, … , 𝜃𝑁) =∑  

𝑁

𝑖=1

 ln⁡(𝜃𝑖𝑒
−𝜃𝑖𝑦𝑖) =∑  

𝑁

𝑖=1

 ln⁡(𝜃𝑖) −∑  

𝑁

𝑖=1

 𝜃𝑖𝑦𝑖

𝜕𝑙

𝜕𝜃𝑖
=
𝜕𝑙(𝜃1, … , 𝜃𝑁)

𝜕𝜃𝑖
=
1

𝜃𝑖
− 𝑦𝑖

𝜕𝑙

𝜕𝜃𝑖
=

 set 
0 ⇔

1

𝜃𝑖
− 𝑦𝑖 = 0 ⇔ 𝜃̂𝑖 =

1

𝑦𝑖

 

The MLE of 𝜃𝑖 is 𝜃̂𝑖 =
1

𝑦𝑖
⁡(Note:

𝜕2𝑙

𝜕𝜃𝑖
2 = −

1

𝜃𝑖
2 < 0). 

The maximum value of 𝑙(𝜃1, … , 𝜃𝑁) is: 

𝑙( 𝑚𝑎𝑥~
𝑏 ) = 𝑙(𝜃̂1, … , 𝜃̂𝑁) =∑  

𝑁

𝑖=1

 ln⁡ (
1

𝑦𝑖
) −∑  

𝑁

𝑖=1

 
1

𝑦𝑖
(𝑦𝑖) =∑  

𝑁

𝑖=1

 ln⁡ (
1

𝑦𝑖
) − 𝑁 

(2) For the model of internet (𝜃1 = 𝜃2 = ⋯ = 𝜃𝑁 = 𝜃) : 
The log-likelihood function is: 

𝑙 = 𝑙(𝜃) =∑  

𝑁

𝑖=1

ln⁡(𝜃𝑒−𝜃𝑦𝑖) = 𝑁ln⁡(𝜃) − 𝜃∑  

𝑁

𝑖=1

𝑦𝑖 

𝜕𝑙

𝜕𝜃
=
𝑁

𝜃
−∑  

𝑁

𝑖=1

 𝑦𝑖

𝜕𝑙

𝜕𝜃
=

 set 
0 ⇔

𝑁

𝜃
−∑  

𝑁

𝑖=1

 𝑦𝑖 = 0 ⇔ 𝜃̂ =
𝑁

∑  𝑁
𝑖=1  𝑦𝑖

=
1

𝑦‾

 

The MLE of 𝜃 is ⁡𝜃̂ =
1

𝑦‾
⁡(𝑛𝑜𝑡𝑒⁡𝑡ℎ𝑎𝑡⁡

𝜕𝑙2

𝜕𝜃2
= −

𝑁

𝜃2
< 0) 

The maximum value of 𝑙(𝜃) is 

𝑙(~
𝑏 ) = 𝑙(𝜃̂) = 𝑁 ln(𝜃̂) − 𝜃̂∑⁡ 𝑦𝑖 = 𝑁 ln (

1

𝑦‾
) −

1

𝑦‾
∑  

𝑁

𝑖=1

 𝑦𝑖 = 𝑁 ln (
1

𝑦‾
) − 𝑁, (∑⁡ 𝑦𝑖 = 𝑁𝑌‾) 

For (1) and (2): 

The deviance is 

⁡⁡⁡⁡⁡⁡⁡𝐷 = 2[𝑙( 𝑚𝑎𝑥~
𝑏 ) − 𝑙(~

𝑏 )] = 2 {[∑  

𝑁

𝑖=1

 ln⁡ (
1

𝑦𝑖
) − 𝑁] − [𝑁ln⁡ (

1

𝑦‾
) − 𝑁]} = 2 [∑  

𝑁

𝑖=1

 ln⁡ (
1

𝑦𝑖
) − 𝑁ln⁡ (

1

𝑦‾
)] 

⁡⁡⁡⁡⁡⁡⁡⁡⁡= 2 [∑  

𝑁

𝑖=1

 ln⁡ (
1

𝑦𝑖
) −∑  

𝑁

𝑖=1

 ln⁡ (
1

𝑦‾
)] = 2∑  

𝑁

𝑖=1

  [ln⁡ (
1

𝑦𝑖
) − ln⁡ (

1

𝑦‾
)] = 2∑  

𝑁

𝑖=1

 ln⁡ [
1/𝑦𝑖
1/𝑦‾

] = 2∑  

𝑁

𝑖=1

 ln⁡ (
𝑦‾

𝑦𝑖
) 

 

𝟓. 𝟑: 



 

 

𝑦1, 𝑦2, … , 𝑦𝑁 are independent. 

𝑦𝑖 ∼ Pareto(𝜃) for all 𝑖 = 1,2, … ,𝑁 

𝑓(𝑦𝑖; 𝜃) =
𝜃

𝑦𝑖
𝜃+1 = 𝜃𝑦𝑖

−𝜃−1⁡; 𝑦𝑖 > 1 and 𝜃 > 0 

(a) The log-likelihood function is: 

𝑙 = 𝑙(𝜃) =∑  

𝑁

𝑖=1

 ln⁡(𝜃𝑦𝑖
−𝜃−1) = 𝑁ln⁡(𝜃) − (𝜃 + 1)∑  

𝑁

𝑖=1

 ln⁡(𝑦𝑖)

𝜕𝑙

𝜕𝜃
=
𝑁

𝜃
−∑⁡ ln⁡(𝑦𝑖)

𝜕𝑙

𝜕𝜃
=
set
0 ⇔

𝑁

𝜃
−∑⁡ ln(𝑦𝑖) = 0 ⇔ 𝜃̂ =

𝑁

∑ ⁡ ln⁡(𝑦𝑖)

 The MLE of 𝜃 is 𝜃̂ =
𝑁

∑ ⁡ ln⁡(𝑦𝑖)
 ⁡ , (note⁡that⁡

𝜕2𝑙

𝜕𝜃2
= −

𝑁

𝜃2
< 0)

 

(b) Recall From Exercise 3.11: 

• Score statistic is: 𝑈 =
𝑁

𝜃
− ∑  𝑁

𝑖=1 ln⁡(𝑦𝑖) 

• The information is: ⁡𝐽 = Var(𝑈) =
𝑁

𝜃2
 

The variance of 𝜃̂ =
𝑁

∑ ⁡ln⁡(𝑦𝑖)
 is: 

Var(𝜃̂) = 𝒥−1 =
𝜃2

𝑁

𝜃̂ ≈ 𝑁(𝜃, 𝒯−1) = 𝑁 (𝜃,
𝜃2

𝑁
) ⁡ (asymptotically) 

 

Wald Statistic is: 

𝑍 =
𝜃̂ − 𝐸(𝜃̂)

√Var(𝜃̂)

=
𝜃̂ − 𝜃

√𝜃
2

𝑁

≈̇ 𝑁(0,1)⁡ (approximately) 

𝑍2 =
(𝜃̂ − 𝜃)2

𝜃2/𝑁
=
𝑁(𝜃̂ − 𝜃)2

𝜃2
= 𝑁(

𝜃̂ − 𝜃

𝜃
)

2

≈ 𝜒(1)
2

 

(c) 

1st Method: 

 

𝑍 =
𝜃̂ − 𝜃

√𝜃
2

𝑁

=
√𝑁(𝜃̂ − 𝜃)

𝜃
= √𝑁(

𝜃̂

𝜃
− 1) 

 

 



 

 

1 − 𝛼 = 𝑃[−𝑍𝛼/2 < 𝑍 < 𝑍𝛼/2] = 𝑃 [−𝑍𝛼/2 < √𝑁(
𝜃̂

𝜃
− 1) < 𝑍𝛼/2] = 𝑃 [−𝑍𝛼/2

1

√𝑁
<
𝜃̂

𝜃
− 1 < 𝑍𝛼/2

1

√𝑁
]

= 𝑃 [1 − 𝑍𝛼/2
1

√𝑁
<
𝜃̂

𝜃
< 1 + 𝑍𝛼/2

1

√𝑁
] = 𝑃 [

1

1 + 𝑍𝛼/2
1

√𝑁

<
𝜃

𝜃̂
<

1

1 − 𝑍𝛼/2
1

√𝑁
]

= 𝑃

[
 
 
 

𝜃̂

1 +
𝑍𝛼/2

√𝑁

< 𝜃 <
𝜃̂

1 −
𝑍𝛼/2

√𝑁 ]
 
 
 

 

 

∴ (1 − 𝛼)100%⁡ C.I. for 𝜃 is 

𝜃̂

1 +
𝑍𝛼
2

√𝑁

< 𝜃 <
𝜃̂

1 −
𝑍𝛼
2

√𝑁

 

The 95%⁡C. I.⁡ for 𝜃 is (
𝜃̂

1+
1.96

√𝑁

,
𝜃̂

1−
1.96

√𝑁

). 

 

2nd Method: 

𝑁(𝜃̂ − 𝜃)2

𝜃2
= 𝑁 (

𝜃̂

𝜃
− 1)

2

≈ 𝜒(1)
2  

 

 

1 − 𝛼 = 𝑃 [𝜒
1−
𝛼
2

2 < 𝑁 (
𝜃̂

𝜃
− 1)

2

< 𝜒𝛼/2
2 ] = 𝑃 [

𝜒
1−
𝛼
2

2

𝑁
< (

𝜃̂

𝜃
− 1)

2

<
𝜒𝛼/2
2

𝑁
] 

= 𝑃 [(√
𝜒1−𝛼/2
2

𝑁
<
𝜃̂

𝜃
− 1 < √

𝜒𝛼/2
2

𝑁
)∪ (−√

𝜒𝛼/2
2

𝑁
<
𝜃̂

𝜃
− 1 < −√

𝜒1−𝛼/2
2

𝑁
)] 



 

 

= 𝑃{[
1

𝜃̂
(1 + √

𝜒1−𝛼/2
2

𝑁
) <

1

𝜃
<
1

𝜃̂
(1 + √

𝜒𝛼/2
2

𝑁
)]∪ [

1

𝜃̂
(1 − √

𝜒𝛼/2
2

𝑁
) <

1

𝜃
<
1

𝜃̂
(1 − √

𝜒1−𝛼/2
2

𝑁
)]} 

= 𝑃

{
 
 

 
 

(

 
𝜃̂

1 + √
𝜒2𝛼/2
𝑁

< 𝜃 <
𝜃̂

1 + √
𝜒1
2 − 𝛼/2
𝑁 )

 ⁡∪

(

 
 
 

𝜃̂

1 − √
𝜒1−𝛼/2
2

𝑁

< 𝜃 <
𝜃̂

1 − √
𝜒𝛼/2
2

𝑁 )

 
 
 

}
 
 

 
 

 

∴ (1 − 𝛼)100%⁡⁡𝐶.I. for 𝜃 is (the region): 

∴

(

 
 
 

𝜃̂

1 + √
𝜒𝛼/2
2

𝑁

,
𝜃̂

1 + √
𝜒1−𝛼/2
2

𝑁 )

 
 
 

∪

(

 
 
 

𝜃̂

1 − √
𝜒1−𝛼/2
2

𝑁

,
𝜃̂

1 − √
𝜒𝛼/2
2

𝑁 )

 
 
 

 

 (d) ⁡𝑦 ∼ pareto(𝜃); ⁡𝑓(𝑦; 𝜃) = 𝜃𝑦−𝜃−1; ⁡𝑦 > 1 and 𝜃 > 0 

The cumulative dist. function is: 

𝐹(𝑦) = ∫  
𝑦

1

 𝜃𝑥−𝜃−1𝑑𝑥 = 𝜃 [
𝑥−𝜃−1+1

−𝜃 − 1 + 1
]
𝑥=1

𝑦

= 𝜃 [
𝑥−𝜃

−𝜃
]
𝑥=1

𝑦

= [−𝑥−𝜃]
𝑥=1

𝑦
= 1 − 𝑦−𝜃 

Suppose 𝑈 ∼ Uniform(0,1). 
To generate 𝑦, we first generate a random number 𝑈 from Uniform(0,1), and then equate, 𝑈 = 𝐹(𝑦) and then 

solve for 𝑦 = 𝐹−1(𝑢) 
For Pareto, 

𝑢 = 1 − 𝑦−𝜃 ⇔ 𝑦−𝜃 = 1 − 𝑢 ⇔ (
1

𝑦
)
𝜃

= 1 − 𝑢 ⇔
1

𝑦
= (1 − 𝑢)1/𝜃 ⇔ 𝑦 = (1 − 𝑢)−1/𝜃 

∴ 𝑦 = (
1

1 − 𝑢
)

1
𝜃

 

 

Note: 𝑈 ∼ Unifrom (0,1) ⇔ 1 − 𝑈 ∼ Unifrom(0,1) 
Thus, we can use: 

𝑦 = (
1

𝑢
)
1/𝜃

 

We will use computer to do that. (See Minitab output) For 𝜃 = 2. 

• For 𝜃 = 2 :  

Generating Process: Using Minitab, we generate 100 random numbers from uniform (0,1); 

𝑦 = (
1

𝑢
)
1/𝜃

= (
1

𝑢
)

1
2
= √

1

𝑢
. 

𝑢𝑖 𝑦𝑖 

0.1290 2.7842 

0.4867 1.4335 

⋮ ⋮ 

0.7293 1.1710 



 

 

 

𝜃̂ =
𝑁

∑ ⁡ln⁡(𝑦𝑖)
,⁡⁡⁡𝑁 = 100, ⁡⁡∑  𝑁

𝑖=1  ln⁡(𝑦𝑖) = 51.786 

⇒ 𝜃̂ =
100

51.786
= 1.931 

95% 𝐶.I.⁡for 𝜃:⁡
𝜃̂

1 +
1.96

√𝑁

< 𝜃 <
𝜃̂

1 −
1.96

√𝑁

⇒
1.931

1 +
1.96
10

< 𝜃 <
1.931

1 −
1.96
10

⇒ 1.7247 < 𝜃 < 2.4017 

• We repeat this process 20 times using Minitab Macro, and found that: 

(1) 𝜃̂ = 1.99 

(2) Out of 20⁡⁡95% C. I.'s for 𝜃, 19 intervals contain 𝜃 = 2.0 (See Minitab Output) 

 

 

𝟓. 𝟒: 
Using data in Exercise 4.2: 

𝑦𝑖 𝑥𝑖 

65 3.36 

156 2.88 

⋮ ⋮ 

65 5 

 

𝑦𝑖 = time to death (in weeks) 

𝑥𝑖 = log10 (initial while bland while call) 

𝜇𝑖 = 𝐸(𝑦𝑖) = 𝑒
𝛽1+𝛽1𝑥𝑖 = 𝑒𝜂(𝑥𝑖) = 𝑒𝜂𝑖 ⁡( This ensure that⁡𝜇𝑖 > 0) 

⇔ ln⁡(𝜇𝑖) = 𝛽1 + 𝛽1𝑥𝑖 = 𝜂(𝑥𝑖) = 𝜂𝑖 
link function 

𝑔(𝜇𝑖) = ln⁡(𝜇𝑖) 
We will use the following form for Exp(𝜃) 

⁡𝑓(𝑦𝑖, 𝜃) =
1

𝜃
𝑒−𝑦/𝜃; 𝑦 > 0⁡, 𝜃 > 0

𝐸(𝑦𝑖) = 𝜃𝑖
Var(𝑌𝑖) = 𝜃𝑖

2

 

(a) Wald Statistic: 

(𝑏∼ − 𝛽∼
)
𝑡
𝐽(𝑏∼ − 𝛽∼

) ∼ 𝜒2(𝑝) 

From Exercises 4.2, we have: 

𝑏1 = 8.4775

𝑏2 = −1.1093
 

𝐽(𝑏∼) = [
17 69.63
69.63 291.457

] = Var(𝑈∼)

𝐽−1(𝑏∼) = [
2.73839 −0.654209
−0.654209 0.159724

] = Var(𝑏∼)

𝑏∼ = (
𝑏1
𝑏2
) = (

8.4775

−1.1093
)

 

• In dividuals C.I. for 𝛽1 and 𝛽2 : 

95% C. I. for 𝛽1 is: 



 

 

𝑏1 ± 1.96⁡se(𝑏1) = 8.4775 ± 1.96√2.73839

⇒ 5.23408 < 𝛽1 < 11.72092
 

95% C.I, for 𝛽2 is: 

𝑏2 ± 1.96⁡se(𝑏2) = −1.1093 ± 1.96√0.159724

⇒⁡−1.89262 < 𝛽2 < −0.32598
 

• Simultancous C.I. for 𝛽1 and 𝛽2 : 

A (1 − 𝛼)100% confidence Region for 𝛽
∼

 is 

{𝛽
∼
: 𝑋1−𝛼/2(2)

2 < (𝑏∼ − 𝛽∼
)
𝑡
𝐽(𝑏∼ − 𝛽∼

) < 𝑋𝛼/2(2)} 

where: 

(𝑏∼ − 𝛽∼
)
𝑡
𝐽(𝑏∼ − 𝛽∼

) = (8.4775 − 𝛽1, −1.1093 − 𝛽2) [
17 69.63
69.63 291.457

] ∗ (
8.9775 − 𝛽1
−1.1093 − 𝛽2

) 

= 17(8.4775 − 𝛽1)
2 + 291.457(−1.1093 − 𝛽2)

2 + 2(69.63)(8.4775 − 𝛽1)(−1.1093 − 𝛽2) 

 

 (b) {
𝐻0: 𝛽2 = 0
𝐻1: 𝛽2 ≠ 0

⇔ {
𝐻0: 𝜇𝑖 = 𝑒

𝛽1

𝐻1: 𝜇𝑖 = 𝑒
𝛽1+𝛽2𝑥𝑖

 

(1) Model under 𝐻0: 

𝜇𝑖 = 𝑒𝛽1⁡, 𝑖 = 1, … ,𝑁⁡⁡(Recall⁡𝜇𝑖 = 𝜃𝑖) 
For this model 

𝜇1 = 𝜇2 = ⋯ = 𝜇𝑁 = 𝜇 = 𝜃 

The log-likelihood function is: 

𝑙0 = 𝑙(𝜃) =∑  

𝑁

𝑖=1

  ln (
1

𝜃
𝑒−

𝑦𝑖
𝜃 ) , (𝑓(𝑦; 𝜃) =

1

𝜃
𝑒−𝑦/𝜃) = −𝑁ln⁡(𝜃) −

1

𝜃
∑  

𝑁

𝑖=1

 𝑦𝑖 = −𝑁ln⁡(𝜃) −
𝑁

𝜃
𝑦‾  

𝜕𝑙0
𝜕𝜃
⁡= −

𝑁

𝜃
+
𝑁𝑦‾

𝜃2

𝜕𝑙0
𝜕𝜃
⁡=
set
0 ⇔

𝑁𝑌‾

𝜃2
=
𝑁

𝜃
⇔
𝑌‾

𝜃
= 1 ⇔ 𝜃̂ = 𝑌‾

 

The MLE of 𝜃 is 𝜃̂ = 𝑌‾ ⁡(
𝜕2𝑙0

𝜕𝜃2
|
𝜃=𝜃̂

= ⋯ = −
𝑁

(𝑦‾)2
< 0) 

The maximum value of the loy-litelikood function 

𝑙0 = 𝑙(𝜃̂) = −𝑁ln⁡(𝜃̂) −
𝑁

𝜃̂
𝑦‾ = −𝑁ln⁡(𝑦‾) − 𝑁 (

𝑦‾

𝑦‾
) = −𝑁[ln(𝑦‾) + 1], (𝑦‾ = 62.4706) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= −17[ln⁡(62.4706) + 1] = −87.289832 

(2) Model under 𝐻1 : 

𝜇𝑖 = 𝑒
𝛽1+𝛽2𝑥𝑖 ⁡, (𝜇𝑖 = 𝜃𝑖) 

We have found that the 𝑀𝐿𝐸′s of 𝛽1 and 𝛽2 are: 

𝑏1 = 8.4775 and 𝑏2 = −1.1093 

Therefore, the 𝑀𝐿𝐸 of 𝜇𝑖 = 𝜃𝑖 is 

𝜃𝑖̂ = 𝑒𝑏1+𝛽2𝑥𝑖 = 𝑒8.4775−1.1093𝑥𝑖 
The log-likelihood function is: 

𝑙1 = 𝑙(𝜃1, … , 𝜃𝑁) =∑  

𝑁

𝑖=1

 ln⁡ (
1

𝜃𝑖
𝑒−𝑦𝑖/𝜃𝑖) =∑  

𝑁

𝑖=1

  [−ln⁡(𝜃𝑖) −
𝑦𝑖
𝜃𝑖
] = −∑  

𝑁

𝑖=1

 ln⁡(𝜃𝑖) −∑  

𝑁

𝑖=1

 
𝑦𝑖
𝜃𝑖

 

The maximum value of the log-likelihood function is: 



 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑙1 = 𝑙(𝜃̂1, … , 𝜃̂𝑁) = −∑  

𝑁

𝑖=1

 ln⁡(𝜃̂𝑖) −∑  

𝑁

𝑖=1

 
𝑦𝑖

𝜃̂𝑖
= −∑  

𝑁

𝑖=1

 ln⁡(𝑒8.4775−1.1093𝑥𝑖) −∑  

𝑁

𝑖=1

 
𝑦𝑖

𝑒8.4775−1.1093𝑥𝑖

= −∑  

𝑁

𝑖=1

  (8.4775 − 1.1093𝑥𝑖) −∑  

𝑁

𝑖=1

 
𝑦𝑖

𝑒8.4775−1.1093𝑥𝑖
= −(66.8769) − (17.0001) ⁡

= −83.877⁡  (calculatedfrom the data) 

The test statistic is: 

Δ𝐷 = 2[𝑙1 − 𝑙0] = 2[−83.877 − (−87.289832)] = 6.825664 

 

under 𝐻0, Δ𝐷 ∼ 𝜒(2−1)
2 = 𝜒(1)

2  

𝜒0.05,(1)
2 = 3.842 

Since Δ𝐷 > 𝜒0.05,(1)
2 , we reject 𝐻0: 𝛽2 = 0 and we conclude that 𝑥 has a significant importance in predicting 𝑦. 

 

Solution of parts a and b by using R: 

 

 

 



 

 

 

 

 



 

 

 

 

 

 
 


