Chapter 5

5.1:
y ~ Bin(n, )
E(y) =nn
Var(y) = nn(1l —m)
(a)

flym) = ( )ny(l m)™Y (for one observation)

I[(M)y=yIn(m)+(n—y)In(1—m)+1n [(Z)]
ol 'y n-—y y(l m)—(n—y)n _y—yr—nmtyr y-nm
o m 1-n (1 —m) (1l —m) Cn(l-m)
e TheMLEofris# =2

U=U(n) =

S

. _ p [y ] _ EQ)-nm _ nn-nm _
Note that: E(U) = E [7‘[(1—7‘[)] T rna-m  m(l-m 0
e Information:
4 —nw _ Var(4) _ nn(1l —m) _ n

J = Var(U) = Var t(1-m)] n2(1-m)?2 mn2(1-n)?2 n(l-mn)

e Now:

A A y 2 y nim n (y—nm)? [ y-—nn
(t —m)( —m) = (E - ) [n(l n)] ) (n(l — n)) - nw(l—m) Jnm(1l —m)

Since y ~ Bin(n, ), we have:
_Y—EQ)__y—nm
JVar(y) nm(l-—m)
(Normal approximation to binomial)
72— [ y —nm

2
—l ~ X (21) (approximately)
Jnr(l—m)

~N(0,1) (approximately)

2
(b) Wald statistic is: z% = [ YT ] _ o-nm? (%)

nm(1-m) nr(1l-m)

and

cre1e  [Y—nm P 1 _ (y—nm)? n(l—n)_(y—nn)z_) .
vl U_[n(l—n)] _ " T n21-m)2 n nan(l-n) ()

n(l—m)
() = (**)
. Wald statistic = UYJ"u

(©)

e I(m)=yn(m+@n-y)h@d-m)+n|7)
e For the saturated model, we have:
o MLEofrmis#t =2
o The fitted value y = nt = n (%) = y
o The maximum value of [(rr) for the Saturated model is:



(b y) = 1() = yIn (7) + (n— y)In (1 — #) + In [(;)] =yIn (2)+ (= yIn (1-2) +1n [(;)]

e For the model of interest:
o Let 1 be the MLE of m, and y = nit be the fitted value.
o The maximum value of [(rr) for the model of interest is:

[(b;y) =1(7) = yln (A) + (n —y)In (1 — ) +In [(;)]

= yIn (%) +(n—y)ln (1 - 2) +In [(Z)]
e The deviance is:

D = 2[l(bmax) — L(b)] )
[yln ( )+ (n—y)n (1 —X) +1In [(;)]}

o[l @)+ - (-2 ()

y
_ N 4 (- )in |2 g4
- @)+ - (3| -2 )+ - ()
n
(d) 2
Wald statistic = (7 — m)t?] (r — ) :,(é(_lin,)r) ~ X

Score statistic: UYJ'U =~ x{,

Deviance: D = 2 [yln ( )+ (n—y)In (ﬂ)]
e We have shown that:

. .. (y—nm)?
Wald Statistic = Score Statistic = —————
nr(1l —m)

n = 10, Yy=3,  Xbosa = 3.84

(i) For the model with = 7, = 0.1: {
y = nmy = (10)(0.1) = 1
(y —nm,)? (B-1)?
e Wald statistic = ) — A0 D03 4.444
Since 4.444 > X0,05(1) we reject Hy: T = 0.1
e wald statistic = Score statistic = 4.444 we will have the same calculations and the same conclusion.
Therefore, the model is not adequate bused on There two statistics.
e Deviance or log-likelihood statistic
- [ 1 ( ) I ( nTy )] —2[(3)ln ( >+(10—3)ln (10_3)] = 3.07327
= 2|yln + (n—y)ln —— T0-1)| =3
Since 3.07327 < XO_OS(D, we donot reject to based on the deviance statistic, and we conclude that the model is
a adequate.
We notice that their statistics do not lead to the same conclusions.
(i) Both statistics equal zero and would not suggest rejecting = = 0.3.
(iii) Wald/score statistic = 1.60, log-likelihood statistic = 1.65, so neither would suggest rejecting = = 0.5.

Hy:m = 0.1}
Hp:m # 0.1

5.2:



V1, Y2, -, Yy are independent.
y; ~ Exp(6;) foralli =1,2,...,N
f(i,0:) = Hie_eiyi, y;i>0andf; >0

e For maximal model, the 6; 's ane different.
e For the model of interest, the 6; s are the same
0,=0,=-=0y=0.
(1) For the maximal model:
The log-likelihood function is:

=16y, ..., 00) _Z In (6;e =0 = Z In (6,) — Z 6.,

ol 316y, ... HN) 1

89i B 691 9 s

Ol et 1 s _ 1
The MLE of 6; is §; = - (Note 222 = )

The maximum value of 1(0,, ..., 8y) is:

l(bmax) = 1(8,, ...,
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(2) For the model of internet (6, = 8, = -+ =

The log-likelihood function is:
N

L=106) = z In (6e~9%) = NIn (6) — ez yi

N
N
_=§ Zyl

i

=1
N
al set N Z N 1
—_— J— y —_— ==
0 T8 ' ?’=1 yi ¥

i=

1
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The MLE of 0 is 6 = 1 (note that ﬁ= ——< o)

The maximum value of [(6)is

It Y=16)=NIn(d) - HZ yi = Nln(y)—%ZN:yi=Nln(%>—N,(z yi=N17)

For (1) and (2):
The deviance is

— 2[1(Pmax) — I(° )] —z{[z In

i=1

o
—2[Zln; im(i)l i

i=1

)
i (2)- <;> -2y w223 n ()

5.3



Y1, V2, -, Yy are independent.
y; ~ Pareto(@) foralli =1,2,...,N

0 _f—
f(Yi;H):WZH}’ie l.y.>1and6 >0

(a) The log-likelihood function is:
N

[ =1(6) = Z In (8y76~1) = NIn (6) — (6 + 1)2 In (y;)

I

ol set N N
36 "Z”‘(y‘ =0e6= zm(yl)

0e
The MLE of A is § = ( ttht N<0>
e of 8is 6 = note tha =——
¥ In() ( D’ 62
(b) Recall From Exercise 3.11:

e Score statistic is: U = %— >N In(y)
e The information is: J = Var(U) = %

. A N .
The variance of 8 = YD) is 2

Var() =g 1 = m

A 62
O~N@OT H=N <9'W> (asymptotically)

Wald Statistic is:
_b6-E@) 6-0

o

A 2
6-672 NO-6)?2 (6-6)\
=N ~ X

62/N 62 0

~ N(0,1) (approximately)

72 =

(©
1st Method:
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The 95% C.1. for @ is (%%)
W W
2nd Method:
ol e Ve
a<l|zl<b & (a<r<b) OR (-b<z< —a)
B
v € (—b, —a) (left side of the number line)
n 2 2 n 2
6 Xa 0 X2
1—a—P)( a<N<——1) <)(a/2 =P 2<<——1 < 0:/2

’Xl a/2 1< Xa/z /Xa/z < 1< -— Xl a/2
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(d) y ~ pareto(8); f(y;0) =0y %% y>1andb >0
The cumulative dist. function is:

y o1 x—e 1+1
F = v = _—
) ]1 Ox dx 9[_6_1+1l B l

= _9]::=1 =1- y—9

Suppose U ~ Uniform(0,1).
To generate y, we first generate a random number U from Uniform(0,1), and then equate, U = F(y) and then
solve for y = F~1(u)

For Pareto,
6

1 1
u=1—y‘9<:>y_9=1—u<:>(;) =1—u(:>;=(1—u)1/9<:>y=(1—u)_1/9

1
1 18
=)

Note: U ~ Unifrom (0,1) & 1 — U ~ Unifrom(0,1)
Thus, we can use:
- ()
Y= u

We will use computer to do that. (See Minitab output) For 6 = 2.

1/6

o Foro=2:
Generating Process: Using Minitab, we generate 100 random numbers from uniform (0,1);
1
I ASAG AV I F
=G -G -
Ui Vi

0.1290 | 2.7842

0.4867 | 1.4335

0.7293 | 1.1710




b=3 ]riv(yi), N =100, ¥¥, In(y,) =51.786
A A 0 = cTogs = 11931
5% Cl.forf: ——=-<0< 6 = 1931 <6<£:>17247<6<24017
RPN IR T AR I kT |
IN JN 10 10
e We repeat this process 20 times using Minitab Macro, and found that:

(1) 6 = 1.99
(2) Out of 20 95% C. I.'s for 8, 19 intervals contain 8 = 2.0 (See Minitab Output)

5.4:

Using data in Exercise 4.2:
Vi Xi
65 3.36
156 | 2.88
65 5

y; = time to death (in weeks)
x; = logy, (initial while bland while call)

u; = E(y;) = ePrthrxi = ¢1(X)) = oMi (' This ensure that y; > 0)

& In () = By + Brx; = nx) =
link function

g(u) =1n ()
We will use the following form for Exp(8)
1
f(i,0) =5€_y/6;y >0,0>0

E(y) =6
Var(Y;) = 67
(a) Wald Statistic:
(L-8)1(6—8)~r*®)

From Exercises 4.2, we have:

b, = 8.4775
b, = —1.1093
17 6963 1.
J(2) = [69.63 291.457] = Var({)

_1,.~ _ [ 273839  —0.654209
()= [—0.654209 0.159724
b= (bl) B ( 8.4775 )
~ \b,/  \-1.1093
e Individuals C.I. for g, and 3, :
95% C. I. for ; is:

| = var(p)



b; + 1.96 se(b,) = 8.4775 + 1.96V2.73839
= 5.23408 < f; < 11.72092
95% C.1, for B, is:
b, + 1.96 se(b,) = —1.1093 + 1.96V0.159724
= —1.89262 < B, < —0.32598
e Simultancous C.I. for §; and B, :
A (1 — a)100% confidence Region for g is

(B X 0o < (= B)1(b = B) < Xopao)
where:

NG ey . o8 [17  69.63 8-9775—[?1)
(b~ B8)(k~B) = (84775~ p1,~11093 = B) | o2 997 457 *(—1.1093—ﬁz

= 17(8.4775 — B1)? + 291.457(—1.1093 — B,)? + 2(69.63)(8.4775 — B;)(—1.1093 — B,)

Hy: B, =0 Ho: p; = efr
®) {Hl:ﬁz +0 F \Hy: g = ebrthon

(1) Model under Hy:
Ui = efr i=1,.. N (Recall w; =06;)
For this model

=M= =Uuy=u==0
The log-likelihood function is:
51w 1 1w N
Iy =100) = z In (56’ 9),<f(y; 0) = —e‘y/ ) = —NIn (6) _52 y; = —Nln (0) 57
i=1 i=1
ol N Ny
Io_ X 1Y
0 6 62
alo set NY N Y A —
— a lo T e IT e —
The MLE of 6 is § = (69299_ (y)2<0)
The maximum value of the loy-litelikood function
X A A N y
lo = 1(6) = ~NIn (§) = 57 = ~NIn ) = N (i ) _N[InG) + 1], (F = 62.4706)
= —17[In (62.4706) + 1] = —87.289832

(2) Model under H; :
p; = ePrtbex (u; = 6;)
We have found that the MLE's of 8, and 3, are:
b, = 8.4775 and b, = —1.1093
Therefore, the MLE of u; = 6, is

A

61_ — eb1+[>’2xi — 88.4775—1.1093xi

The log-likelihood function is:
N

Ly =16y, ..., 0n) :Z In (%e_yi/6i> Z [ In (9)—— Z In (6;) i %

i=1
The maximum value of the log-likelihood function is:
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A yl _ i yl
In (9i) _ Z M= In (e84775-11093x;) _ ST,

_ Z (84775 — 1.1093x;) — 2 o = —(66.8769) — (17.0001)

=1
= —83 877 (calculatedfrom the data)

The test statistic is:
AD = 2[l; — Iy] = 2[—83.877 — (—87.289832)] = 6.825664

under Ho, AD ~ x{,_1y = X{u)
X605,y = 3.842
Since AD > )(3_05,(1), we reject Hy: B, = 0 and we conclude that x has a significant importance in predicting y.

Solution of parts a and b by using R:

# y:times to death .
y<-c(65,156,100,134,16,108,121,4,39,143,56,26,22,1,1,5,65)
y

## [1] 65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65

#x:logl@(inital white blood cell count).
x<-c(3.36,2.88,3.63,3.41,3.78,4.02,4,4.23,3.73,3.85,3.97,4.51,4.54,5,5,4.72,5)
X

## [1] 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73 3.85 3.97 4.51 4.54 5.00 5.00
## [16] 4.72 5.00

1)Hypothesis: Hy vs H,
Hy:Bz=0 » Hyp, =efr
Vs
Hi:f;#0 > Hj:p, = eB1tBasx;
a-ModelunderH; :

#To Test HO:Beta2 equal @ vs Hl:Beta2 not equal @ :
# 1) find model under HO and Hl :

#model under H1 (M1) :

ml<-glm(y~x ,family =Gamma(link = "log"))
summary(ml,dispersion =1)

##

## Call:

## glm(formula = y ~ x, family = Gamma(link = "log"))
##

## Coefficients:

Hit Estimate SEAMNERROR z value Pr(>|z|)

## (Intercept) 8.4775 - 5.123 3.01e-07 **x
BH x -1.1893 -2.776 9.88551 **
#E -

## Signif. codes: @ "¥**' @.01 '**' ©.01 "*' ©.85 '." @.1 ' ' 1
B

## (Dispersion parameter for Gamma family taken to be 1)
g

H## Null deviance: 26.282 on 16 degrees of freedom
B

&% AIC: 173.97

g

## Number of Fisher Scoring iterations: 8



b-Modelunder H, :

#model under HO (MB)
mo<-glm(y~1 ,family =Gamma(link = "log"))
summary (m@,dispersion =1)

&4

## Call:

## glm(formula = y ~ 1, family = Gamma(link = "log"))

g

## Coefficients:

Hit Estimate Std. Error z value Pr(>|z]|)

## (Intercept) 4.1347 8.2425 17.85 <2e-16 ***
#—# -

## Signif. codes: @ "***' @.@el1 '**' .01 '*' 8.05 '." 0.1 ' " 1
B

## (Dispersion parameter for Gamma family taken to be 1)
g

## Null deviance: 26.282 on 16 degrees of freedom
“- Residual deviance: 26.282 on 16 degrees of freedon
## AIC: 178.09

g

## Number of Fisher Scoring iterations: 6

2)Find test statistics: Dy = Dy

AD =Dy — Dy Nx;j_q
D0=Deviance of model MO
D1=Deviance of model M1
p= number of parameters in model M; =2
g= number of parameters in model M, =1

# 2) Find test statistics

# we can find test statistics by useing Deviance (delta(D)= DO-D1)
D@<- deviance(m@)

D@

## [1] 26.2821

D1<- deviance(ml)
D1

## [1] 19.45653

# or by code : anova(m@ ,ml , test = "Chisq")
delta D <- DO-D1
delta D

## [1] 6.825567

AD = D, — D, = 26.2821 — 19.4563 = 6.825567



3)To find table value:

use the chi-square table and the degrees of freedom (df) are calculated as p-q.

# critical value "from chi table " df=p-q =2-1=1

# p= number of parameter in model M1=2 ,, g= number of parameter in model M@=1
df diff<- m@$df.residual - ml$df.residual

df_diff

## [1] 1

critical_value<- qchisq(1-8.e5 , df_diff)
critical_value

## [1] 3.841459

A.R of HO
R.R of HO

2
2 = X
Xe, pq Xﬁ.us ,2-1

= Xoo0s1 = 3.84146

4)Decision:

Since AD > 2,5, . We Reject Hy: B, = 0 ., and we conclude that x has a significant importance
in predicting

#Decision:

if (delta D »critical_value) {
print("Reject HO")

Jelse{
print("Do not Reject H@")

1

## [1] "Reject HO"

Hypothesis Testing Steps for Model Parameters:

1- Hypothesis:
Hop:B;=0 Vs Hi:B; =0
2- Test statistics:

AD =Do— Dy~ X34

=2[£(byy) — £(bg: ¥)]

Dy = Deviance of modelMO and D; = Deviance of model M1

( Do = D4)

b, is the MLE of B, for model My and b, is the MLE of £, for model M,
£(b1;y) = £(bo;y)

3- Critical value
2
Xp—q
p= number of parameters in model M; and g= number of parameters in model M,

4- Decision:
If AD > xZ2,_, .We Reject H,
IfAD < xZ, , . Wedonot Reject Hy,and choose model MO



