Chapter 4

Exercise 4.1:
Period y; = # cases
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or by R:
plot(i,y,pch = 16)
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(b)
yi ~ Po(A) = i = E(y)) = A;and 6f = Var(y;) = 4; ~ E(y;) = Van(y;)
/1i = ie = 11’1(/11) = 91n(l) = Hxi =7n;
where x; = In (i) and n; = n;(x) = 0x;
Link function: g(4;) = In (4;)
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(See Minitab output)
or by R:



plot(log(i),y, pch=16)

100 150
1 !
0
.

50

(©)

;= e = ePrthexi = gBrehan ) = ghigln (iF2) = oh1h2

where x; = In (7).

% — e77i

pi=elien () =1 = Ilan
l —_n
—=ec ni

o

1 d
W = diag [Var(yl (al;;z) l [E (e™) ] = diag[e"] = diag[eF1if2] = ePrdiag[iP?]
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Iterative Maximum Likelihood procedure:
The MLE of g = (/31) at iteration (m + 1) is:

b(m+1) (xtW(m)x) xtW(m) z;m=0,12,.

1 x 1 In(1)
Note: The Design matrix is x = [ : ] = [ :
1 xy 1 In(N)],,,
iy P YiLy iP2In (D)

and the information matrix is ] = x!Wx = ef1 [ZN .8 B 72
~ Ly iPn () XL, iP2[In ()]
e Step(m=0):
0
Let initial value of b be b = ( (0)) (D
b =1,p" =1



For these initial values, we have:
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WO = dlag[ b1 bz ] = diag[ei] =
Lo N
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o o 1 1 2 1 In(1)
oy =[ ] .. o
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i Z iIn (i)

in () z [In (l)

(xtW(o) ) [ 0.0477528 —0.0182405
0.0182405 0.0072328

2 = b 4 b0 () +—3 s -1 =1+l ) + 2~ 1 =In (i) +2
eb1 b2 i

570.839 1439.61
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(0) Z i ()2
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D) _ (Lt (0 t© 4 0.65254
b = (W) W 1.65192
o Step(m=1)
b = 0.65254 b? = 0.8419
We repent step (0) using: ,we will obtain:
b{Y = 1.65192 b? = 0.14296
The following table summarizes the result of the iteration process:
m 0 1 2 5 6
p™ | 1| 06525 | 0.8419 | - [ 0.9960 | 0.9960
pi™ | 1| 16519 | 1.4296 | - | 1.32661 | 1.32661
we stop the iteration process at step m = 6. l\ 7\
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or by R:
We will use the iterative formula which is:

pm+l = pm 4+ [T(bm)](_l)U(bm),m =0,1,2....

( )
. . . 1
We will start with an initial value b(® = %0) = [ ]
b,

# Initial values bo

by
beta<-c(1,1) 1 |- Ill
beta b;JI 1
## 1] 11
Design matrix:
#Design matrix (X)
X=matrix(c(rep(1,20),log(i)),nrow=20,ncol = 2,byrow = F)
X
## [,1] [,2] 1 In()
#[1,] 1 0.0000000 = : |n£~1
# [2,] 1 0.6931472
# [3,] 1 1.0986123
# [4,] 1 1.3862944
## [5,] 1 1.6094379
# [6,] 1 1.7917595
## [7,]1 1 1.9459101
## [8,] 1 2.0794415
# [9,] 1 2.1972246
## [10,] 1 2.3025851
## [11,] 1 2.3978953
## [12,] 1 2.4849066
## [13,] 1 2.5649494
## [14,] 1 2.6390573
## [15,] 1 2.7080502
## [16,] 1 2.7725887
## [17,] 1 2.8332133
## [18, ] 1 2.8903718
## [19,] 1 2.9444390
## [20,] 1 2.9957323
Transform of design matrix:
#Transform Design matrix (Xt) 1 1
Xt<-t(X) “=lm@ . mw
Xt
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] 1 1.0000000 1.000000 1.000000 1.00000@ 1.000000 1.00000 1.000000
## [2,] @ 0.6931472 1.098612 1.386294 1.609438 1.791759 1.94591 2.079442

il [,9] [,10] [,11] [,12] [,13] [,14]  [,15] [,16]
## [1,] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000 1.000000
## [2,] 2.197225 2.302585 2.397895 2.484907 2.564949 2.639057 2.70805 2.772589
il [,17] [,18] [,19] [,20]

## [1,] 1.000000 1.000000 1.000000 1.000000

## [2,] 2.833213 2.890372 2.944439 2.995732

The matrix of working weights is:

W = dia [ (%ﬂ
& var(y;) \dn;

W = diag|e ﬂzlm

#Working weights matrix (W )

W<-exp(beta[1])*diag(c(i*beta[2]),nrow = 20,ncol = 28)
W

The information matrix is:

T=xWx=]

#Information matrix, Tau= Xt*W*X
Multiply the matrices.

fN: H

T=X'"WX
tau<- XEH*FHWIHE*H%X
tau




## [,1] [,2]
## [1,] 570.8392 1439.608
## [2,] 1439.6080 3768.835

Another way for find information matrix 7 :
N N

N N
Z (vi — eﬁl+ﬁzln(i>)] - Z Var(y,) = z oBi+BaIn(D) — z PP
i=1 i=1

i=1 i=1

1- Var(U;) = Var

N N N
2— Var(U;) = Var (y:In(d) — ln(i)eﬁlﬂgzln(")) = Var(y;In(i)) = [In(i)]?Var(y;)
[In()]2ef1+F2n® = % [In(i)]2efriP2

N N
3 - Cov(Uy, Up) = Cov Z (yi = ePH000), 3" (yiInG) — In(i)ePr P O) | = 3" Covly, yin(i))
i=1 i=1 i=1

N N N N
= Z In(i)Cov(y;, y;) = Z In(i)Var(y;) = Z In(i)efr*h2In()) = Z In (i)ePriP2
i=1 i=1 =1 =1

Information matrix 7 is:

— N N -
Z P12 Z ef1iP21n (i)
_ [Var(Ul) Cov(Uy, Uz)] _|i=1 i=1
Cov(U,,U,) Var(U,) N
z ef1iP21n (i) z ef1if2[In ()]?

-i=1 i=1 “2%2
The vector of scores is:

#The score statistics are: (Ul and U2)

Ul<-sum(y-exp(beta[1l]+beta[2]*1log(i)))

U2<-sum(y*log(i)-log(i)*exp(beta[l]+beta[2]*log(i))) U= ﬁﬂ_

¥y, — efrtBainiy

¥y In(i) — In(i) efr+fz 10y

#The vector of scores (U)

U<-matrix(e(U1,U2))
U

## [,1]
## [1,] 740.1608
## [2,] 1956.7710

finding U = Sore statistics:

e log -likelihood function is:
N

B =) Iutn (W) =4 - In )] =

i=1 i=1

Mz

=Z [yi(By + Balni) — eFr+Baini — iy (y,1)]

where A; = p; = ef1thaIni,
e Score Statistics are:



N
U, = ﬁ = Z [}’i — eB1+B2In (i)]
W =

N
o¢

Uy=—= Z [y:iIn(i) — In(i)ePrthaln W]
0f &

The vector of scare Statistics U is:
Uy Z?’—l [yi — eB1tpB2In (i)]
o-()- (30, .
Uz (Zliv=1 [yiln(i) — ln(i)eﬁ1+/321n(1)]>

Calculation:
b™* =b™ + [r(b™)]CHU(b™)
#iterative equation to find an approximate estimate of beta: bl, b2
b<-beta+solve(tau)%*%U
b b! = b° 4+ [¢°]~! U

## [,1]
## [1,] ©.652354
## [2,] 1.651991

Repeat the steps but change the value of initial value to the last value of beta you get it, and stop the iteration
process if you get the same value of Beta (in two successive steps)
The following table summarizes the results of the iterative procedure:

m 0 1 2 3 4 5 6

b | 1 | 0.652354 | 0.841856 | 0.98454 | 0.995952 | 0.995998 | 0.995998

b7* | 1 | 1.651991 | 1.429568 | 1.33373 | 1.326639 | 1.32661 1.32661

Since b = p©) = _01.93925696918]’ the iteration algorithm was terminated at step (5).
- . _ ﬁl] . b1] _ [0.995998
The final approximated of MLE of g = [ﬁz isb = b, = [ 132661

or by using loop in R:
AR AR Loop function HEHHHEHEHEAHE IR
# Initial values

beta <- matrix(c(1, 1))

tolerance <- 1le-6

max_iter <- 100

#Design matrix (X)
X=matrix(c(rep(1,20),log(i)),nrow=20,ncol = 2,byrow = F)
X

#Transform Design matrix (Xt)

Xt<-t(X)

Xt

# Iterative process

for (iter in 1l:max_iter) {

#Working weights matrix , Diagonal matrix having 20 rows and 20 columns :
W<- exp(beta[1])*diag((i)~(beta[2]), nrow=28, ncol=28)
#Information matrix , Tau= Xt*W*X

# Multiply the matrices.

Tau<-Xt %*% W %*% X

# to calculate the inverse of Tau:
Tau_inver<-solve(Tau)
Ul=sum(y-exp(beta[l]+beta[2]*1log(i)))
U2=sum(y*log(i)-log(i)*exp(beta[l]+beta[2]*1log(i)))
U<-matrix(c(U1,U2))

U



#iterative equation to find an approximate estimate of beta: bl, b2
b<- beta+(Tau_inver %*% U)
b
# Check for convergence
if (max(abs(b - beta)) < tolerance) {
break

}

# Update beta for the next iteration
beta <- b

# Print iteration results (optional)

cat("Iteration”, iter, ": beta =", t(b), "\n")
1

## Iteration : beta = 0.652354 1.651991

## Tteration : beta 9.8418567 1.429548

: beta
: beta
: beta

## Tteration
## Iteration
## Tteration

0.9845403 1.33373
0.9959522 1.326639
9.995998 1.32661

LR N

(d) Using Minitab Software:
stat - Reg — Poisson Reg— Fit Poisson Model
option: Link function— log

We obtain:
b, = 0.996
b, = 1.3266

(See Minitab output)

or by R:

model<-glm(y~log(i) ,family =poisson(link = "log"))

summary(model)

g

## Call:

## glm(formula = y ~ log(i), family = poisson(link = "log"))

g

## Coefficients:

B Estimate SEdWIERFOR z value Pr(>|z|) var(b,) = 0.169712 = D.02880148

## (Intercept) ©.99600 8.16971 5.869 4.39e-99 *** var(h,) = 0.06463% = 0,004177037

## log(i) 1.32661 0.06463 20.525 < 2e-16 ***

BF ---

## Signif. codes: @ "***' §.@01 '**' .01 '*' ©.O5 '.' B.1 " ' 1

g

## (Dispersion parameter for poisson family taken to be 1)

g

H#i Null deviance: 677.264 on 19 degrees of freedom

## Residual deviance: 21.755 on 18 degrees of freedom
## AIC: 138.85

g

## Number of Fisher Scoring iterations: 4

For example, an approximate 95% confidence interval for g and B is:

b; + 1.96 se(b,)
b, + 1.96 se(b,)

CI_of_beta <- confint.default(model,level=0.95)

CI_of_beta

fzed 2.5 % 97.5 %
## (Intercept) ©.6633773 1.328619
## log(i) 1.1999299 1.453289

For obtaining the estimated variance-covariance matrix of parameter estimates in a fitted model:
The variance-covariance matrix of the MLE b (cov(b) = 771) is



Tauinver<-vcov(model)
Tauinver

# (Intercept) log(i)

## (Intercept) ©.02880067 -0.010822607
## log(i) -9.01082261 ©.004177519

s _ [ var(by) cov(bl,bz)]_ 0.02880067
cov(f) = cov(b) = [cov(bl,bz) var(b,) —0.01082261

Exercise 4.2

(@)

(See Minitab output)
This graph shows that ( y; ) exponentially dereases with (x;).
or by R:

# yi:times to death .
yi<-c(65,156,100,134,16,108,121,4,39,143,56,26,22,1,1,5,65)
yi

## [1] 65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65

#x1i:logle(inital white blood cell count).

xi<-c(3.36,2.88,3.63,3.41,3.78,4.02,4,4.23,3.73,3.85,3.97,4.51,4.54,5,5,4.72,5)
xi

## [1] 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73 3.85 3.97 4.51 4.54 5.090 5.00
## [16] 4.72 5.00

# Plot the times to death yi against logl@(inital white blood cell count) xi.
plot(xi,yi,main = "Scatterplot”, xlab = "xi:logl@(inital white blood cell count)",
ylab = "Yi:times to death™)
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xi-log10(inital white blood cell count)

—0.010822607
0.004177519



#Plot Log yi agains

t
plot(xi,log(yi), main

log(i) to examine this model.
= "Scatterplot™, xlab = "xi", ylab = "log yi")
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(b)
EQ@;) = u

= ;= ePrthaxi = el = n(x) = By + B

e In(u) =n; = B1 + Bax;
The link function is g(u;) = In(y;)
) f(y;6) =6e"%;y>0,6>0

we need to show that E(y) = %& Var(y) = 9—12,
e First Method:
EW) = [, yf(y;0)dy == % (using integration by parts)
E(y?) = fooo Yy f(y;0)dy = - = é (using integration by parts)
1\2 1
Vary) = EG?) — [EQ)P =BG - (5) =+ =5,

e Second Method:
The exponential dist. belongs to the EF.
f(y;0) = fe—0Y = ginbIn[e™®] _ ,In6,-6y — ,¥(~6)+In(6)
= a(y) = y (canonical form)

b(6) = —6 (natural parameter)

c(@) =1In ()
dy)=1
1 1
=>c'(0) = 5,6”(9) =52

b'(6) = —1,b"(8) = 0

) 1
c(@): g 1

b'(6) -1 6

=E[la(y)] = -

1
reee-core (@)D
Var[a(y)] = = =1 ==

[b'(8)]3 9>



(d)
f(yi16;) = 0;e7 %y, > 0,0, >0

E(y) = =2
l

Var(yl) - O- 92
ﬁvm@0=ﬂﬁwﬂ
p = ePrtbexi = ey, = By + Box; & In(u;) = Py + Boxy

Link function is g(u;) = In(y;).

a‘ui — eni — eﬁ1+ﬁzxi — 'ui

an;

%: 1 — 1 =e M =¢e~ (B1+B2x7)
o Tem

Matrix of working weights is:
1

Var(y;) \0n;

S

[

. |

W= diagl ! (%) l— diag I—(e"l l— dlag[( 2 (e™) ] diag[1] =1 = |
|

0 1 Ivxn
The Vector of working responses is:

=n+®mPﬂky—m
T u;l ™~ ~

on; .
=>2z;=1n+ (6_) (yi—u);i=12,...,N
Hi

=n; + e_ni(yi — eni) =1 + yie_ni — e Nighi = ; + yie_ni -1

= By + Box; + ye PP —q
The MLE of B, = ([2,1), Combe obtain iteratively by:

pm+h) — [xtW(m)x]_lxtW(m) 7z (M = (xtx)_lxt zM-m =012, ..

The information matrix is:

— N -
1 X1 N Z X
1 1 - 1 1 x A
t — 2 _ i=1
xW x= [xl Xy e xNLXNINXN P I N
I xnlyy, Z Xi Z X7
“i=1 i=1 “2%2
N
L xtw iy = . ] for all m (i.e. W is fixed matrix)
l
xW =x'=x’
tym) — ot — |11 1 :
xWU = x* = for all m (i.e. fixed)
- - X1 X2 XN
2™ <
5
fwmﬂm=fﬂm=F . ml]ém=iﬂ
I ~ -~ X1 X3 e XN N
ZI(Vm) Z xizi(m)

-i=1



_172 xl—69632

x'Wx =

- [69.63 291.457V

Iterative ML procedure:

o Step(m=20)
p© =

p@
Letp @ = (a,)) () ie p©® =

z” = b + bx; + yie”
=10 — 2x; + y;e
= z(® = [4.1798 5.0668 ---

i 1 2 17
X; 3,36 | 2,88 5,00
y; | 65 | 156 65
= 291.457
69.63 ] ( (W x ) 2.73843
11
) initial value:

b®

% 1 = 11— 2%, + yye

—11+2x; l — 1 2

23.9122]

&tw(O) Z.«(O) = &t

N

0)

—0.65422
—0.65422 0.159726

90.8865

2
Z 2© ~ 1378.255

@ _ (ot 0.1ty 0 — [2.73843 —O 654221190.8865
BY = W) "2 WO 2 = [T 0159726 ) 378255
e Stopm=1:
We repeat Steep 0, using b(l) 142449
m =0,
b{Y = 0.95749
The following table summarizes the results of the iterative procedure:
m 0 1 8 9
pI™ | 11 | 1.4245 8.4775 | 8.4775
p{™ | -2 | 0.9575 -1.1093 | -1.1093

We stop the procedure at stepm =9
or by R:

We will use the iterative formula which is :
=b™ + [¢(b™)]VU(Db™),m =0,1,2 ... ...
0)

by ] [11
p© 2

l)nn4-1

We will start with an initial value b© = [

# Initial values bo:
beta<-c(11,-2)

beta

## [1] 11 -2

Design matrix (X) :

\

sam

!

=]

—1142%; _

1.42449
0.95749



#Design matrix (X)
X=matrix(c(rep(1,17),xi),nrow=17,ncol = 2,byrow = F)

X
## [.1]1 [,2]
## [1,1] 1 3.36
## [2,] 1 2.88
# [3,] 13.63
# [4,] 13.41
# [5,] 13.78
# [6,] 14.02
# [7,] 14.00
## [8,] 14.23
# [9,] 13.73
## [10,] 1 3.85
## [11,] 1 3.97
## [12,] 1 4.51
## [13,] 1 4.54
## [14,] 1 5.00
## [15,] 1 5.00
## [16,] 1 4.72
## [17,] 1 5.00

Transpose of design matrix (X7) :

#Transpose of design matrix :

Xt<-t(X)
Xt
= [,1] [,2] [,31 [,4] [,51 [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
## [1,] 1.0 1.00 1.00 1.00 1.00 1.00 11.60 1.8 1.060 1.00 1.00 1.00 1
## [2,] 3.36 2.88 3.63 3.41 3.78 4.02 4 4.23 3.73 3.85 32.97 4.51 4.54 5
- [,15] [,16] [,17]
## [1,] 1 1.00 1
22 [2,] 5 4.72 5
The matrix of working weights W = dia [ L (a“)z] is :

g g J var(y;) \on

#The matrix of working weights (W) is :
W<-diag(c(rep(1,17)),nrom = 17,ncol = 17)
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The information matrix t = Xt « W = X is:
##Information matrix, Tau= Xt*W*X (Multiply the matrices):

tau<- XtR*BWE*HX
tau
## [,1] [,2]

## [1,] 17.00 69.6300
## [2,] 69.63 291.4571

The score statistics are: (U1 and U2):
#The score statistics are: (Ul and U2
Ul<-sum(-1+(yi/exp(beta[l]+beta[2]*xi)})
U2<-sum(-xi+(yi*xi/exp(beta[1]+betal[2]*xi)))

The vector of scores U = [gl]
2z

U<-matrix(c(U1,U2))

U
## [,1]
## [1,] 43.14648

## [2,] 195.23871

find Score Statistics (U):

e log. likelihood function is:
N
1B =) (@) - yi6, Z () -2 - Z [1n(un -2
= i
lﬁl
Vi
- Zl [_Bl —Foxi - eﬁ1++ﬁ2xi]
=
e The Score statistics we:
Uy
U= (i)
th = 6.81 z [ 3,81"'529(1]
lyl

w2 = aﬁz Z[

The vector of U :

eﬁl"'ﬁle

ot

N -
Z [ 1+ eﬁl“‘ﬁzx ]
U=\t
XiYi
Z [_xi + eﬁl"'ﬁzxi]
—i=1 :
Another way for find information matrix 7 =
N N
Var(y,) (efrtlax)”
1 — Var(u,) = Var z [ eﬁlﬂgle]‘ Z (eﬁl+ﬁ2x1)2 Z eﬁ1+ﬁzx1)2 - Z l=N
[ i=1 1 i=1
— N N
) X1 xVart) _ N P’
2 —Var(u,) = Var z (_x t 2 eﬁ1+ﬁzx1 Z (eP1+B2xi)2 (ePrthBzxi)2 N Z Xi
Li=1 i=1 i=1
N N
_ . lyl
3 — Cov(uy,uy) = Cov Z ( eﬁl’fﬁle Z —x; + eﬁlﬂgle)

1l
=



Cov <(_1 + ﬁ) ’ (_xi + %D

N N
Yi X;iYi _ X; B X;
Cov( ) = Z —(3B1+ﬁzxi)2 Cov(y;, i) = 2 —(3B1+ﬁzxi)2 Var(y;)
i=1 i=1
N

eB1tB2xi’ pB1+PB2x;

Xi N2
(6'31—1.'823(1-)2 (eﬁ1+ﬁzx1) = z X

I
INGEUNGEINNgE

Il
=

l

3 —Information matrix J is:

N

<PV
R

_[7 6963

J= [Var(ul) Cov(ul,uz)] _
~ |Cov(uq,uy) Var(uy) X 69.63 291.4571
2
Z Xi Xi

-i=1 i=1 Y2%2

o)1= 2.73838856 —0.65420947
—0.65420947 0.159723697

where N = 17 ¥}2, x; = 69.63 YV, x? = 291.4571.

We make the following Calculation:
bm+1 =pbMm + [T(bm)]—lu(bm)

#We make the following Calculation:
b<-beta+solve(tau)%*xU

b

## [,1]

## [1,] 1.4248231

## [2,] 0.9574105

Repeat the steps but change the initial value to the last value of beta you obtained. Stop the iteration process if

you get the same value of beta in two successive steps.
The following table summarizes the results of the iterative procedure:

m 0 1 2134567 8 9
bt | 11 | 1.4245 8.4775 8.4775
byt | -2 | 0.9575 -1.1093 | -1.1093

Since p® = p© = [ 84775 ] the iteration algorithm was terminated at step (8).

—1.1093
_ o 3 ﬁ1] —_ bl] _ [ 84775
The final approximation of MLE of 8 = 8, ish = byl = [_1_1093



OR By using Loop

# yi:times to death .
yi<-¢(65,156,100,134,16,108,121,4,39,143,56,26,22,1,1,5,65)
yi

## [1] 65 156 1@e 134 16 188 121 4 39 143 56 26 22 1 1 5 65

#xi:loglO(inital white blood cell count).
xi<-¢(3.36,2.88,3.63,3.41,3.78,4.02,4,4.23,3.73,3.85,3.97,4.51,4.54,5,5,4.72,5)
xi

## [1] 3.36 2.88 3.63 3.41 3.78 4.02 4.00 4.23 3.73 3.85 3.97 4.51 4.54 5.00 5.00
## [16] 4.72 5.00

# Initial values
beta <- matrix(c(11, -2))
epsilon <- le-6
max_iter <- 100

By use Loop

BERRBRBRRREAARE By use Loop HERRRERREEHEREH

# Iterative process
for (iter in l:max_iter) {
##Design matrix (X)
X=matrix(c(rep(1,17),xi),nrow=17,ncol = 2,byrow = F)
#Transpose of design matrix :
Xt<-t(X)
#Working weights matrix (W)= Diagonal matrix having 17 rows and 17 columns :
W<-diag(e(rep(1,17)),nrow = 17,ncol = 17)
#Information matrix , Tau= Xt*W*X
# Multiply the matrices.
Tau<-Xt %*% W %*% X
# to calculate the inverse of Tau:
Tau_inver<-solve(Tau)
#The score statistics are: (Ul and U2)
Ul<-sum(-1+(yi/exp(beta[1]+beta[2]*xi)})
U2<-sum(-xi+(yi*xi/exp(beta[1]+betal[2]*xi)))
#The vector of scores (U)
U<-matrix(e(U1,U2))
U
#iterative equation to find an approximate estimate of beta: bl, b2
b<- beta+(Tau_inver %*% U)
b
# Check for convergence
if (max(abs(b - beta)) < epsilon ) {

break

}

# Update beta for the next iteration
beta <- b

# Print iteration results (optional)
cat("Iteration”, iter, ": beta =", t(b), "\n")

H

## Iteration 1 : beta = 1.424823 ©.95741805
## Iteration 2 : beta = 4.958176 ©.1854641
## Iteration 3 : beta = 6.027011 -0.4871352
## Iteration 4 : beta = 7.550717 -0.8500827
## Iteration 5 : beta = 8.297601 -1.860796
## Iteration 6 : beta = 8.4610892 -1.185153
## Iteration 7 : beta = 8.476365 -1.109021
## Tteration 8 : beta = 8.477422 -1.10928
## Iteration 9 : beta = 8.477493 -1.189297
## Iteration 10 : beta = 8.477497 -1.109298



Fit the model described in (c) using statistical software

model<-glm(yi~xi ,family =Gamma(link = "log"))

summary(model, dispersion =1)

fzed

## Call:

## glm(formula = yi ~ xi, family = Gamma(link = "log"))

&#

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t|)

## (Intercept) B.4775 1.60834 5.287 9.13e-05 ***

## xi -1.1893 @.3872 -2.865 8.0118 *

# ---

## Signif. codes: © '"***' g @@l '"**' .01 '*' ©.05 '.' B.1 " "1
fzed

## (Dispersion parameter for Gamma family taken to be ©.9388638)
fzed

H## Null deviance: 26.282 on 16 degrees of freedom

## Residual deviance: 19.457 on 15 degrees of freedom
## AIC: 173.97

fzed

## Number of Fisher Scoring iterations: 8

Find the 95% confidence interval for g, and f, is:

by £1.96se(by) > 84775+ 1.96 x 1.6034

b, + 1.96 se( by) >> —1.1093 + 1.96 % 0.3872
CI_of beta <- confint.default(model,level=0.95)

CI_of_beta

B3 2.5 % 97.5 %
## (Intercept) 5.334837 11.620815602
## xi -1.868283 -0.3503104

Find approximately the variance-covariance matrix of the MLE b :

Final approximate of the inverse of the information matrix evaluated at b is:

For obtaining the estimated variance-covariance matrix of parameter estimate s in a fitted model:
The variance-covariance matrix of the MLE b(cov(b) = t71) is

Tauinver<-vcov(model, dispersion =1)

Tauinver

i (Intercept) xi
## (Intercept) 2.7383886 -0.6542095
## xi -8.6542095 @.1597237

1 5y _ [ var(b;)  cov(by,by) _[2.7383886 —0.6542095
v =covB)=cov) = | ouby, b)) var(hy) covb) = | G esaz005 01597237

Find approximate of the information matrix evaluated at b

Tau_at_b<-solve(vcov(model, dispersion =1))

Tau_at_ b

#i# (Intercept) Xi

## (Intercept) 17.80 69.6300
## log(i) 69.63 291.4571

7 =cov(U) = var(Uy) COV(Ul'Uz)] 17 69.63 ]

cov(Uy, Us,) var(U,) ~ l69.63 291.4571

(e) The fitted values are:
y, = 'a\l — eb1+b2xi — 68.4775+—1.1093xi



L i, | s ! Ls

56
ﬁ\f/j“ et | 26| - | 18.75
A ER
D
(See Minitab output)
Standardized Residuals: r; = 2=
3 I U N N
T | -0.4378 | -0.2077 | 0.1670 | - | 2.4673 |

z 12 = (—0.4378)% + -+ + (2.4673)? = 14.0832
If the model is correct, we have

N =17
z rf ~ )((ZN_p) = )((215) where{ p =2

XG 05,15 = 24.9958 where a = 0.05
! 4
Xas>

/ A 24,9953

sz% —14.08%~>
Since ), r# < )(3_05(15)0: Y r# € A).we conclude that the model is adequate for describing the data.
(See Minitab output)
or by R:

yhat<-exp(8.4775-1.1093*xi) #or yhat=fitted.values(m,dispersion =1)
yhat

## [1] 115.61342 196.90394 85.69042 109.37551 72.55508 55.59615 56.84339
## [8] 44.04276 76.69304 67.13429 58.76691 32.28352 31.22684 18.74637
## [15] 18.74637 25.57471 18.74637

y<-yi
y

## [1] 65 156 100 134 16 108 121 4 39 143 56 26 22 1 1 5 65

ri<-(y-yhat)/yhat
ri

## [1] -0.43778151 -0.20773551 ©.16699164 ©.22513715 -0.77947788 ©.94258047
## [7] 1.12865547 -0.90917917 -0.4914793@ 1.13005890 -0.04708284 -0.19463562
## [13] -0.29547788 -0.94665633 -0.94665633 -0.80449437 2.46733841

test_statistc<- sum(ri”2)
test_statistc

## [1] 14.08317

chi_table<-qchisq(1-0.05,17-2)
chi_table

## [1] 24.99579



1-Hypothesis:
Hyo: Model fit datawell wvs Hy:Model does not fit data well

2- Test statistics:
17
xZ= Z r? = 14.0832
i=1

3- Rejection region of Hy:

N =#of observation and P = #of parameters

Xi,N—P = Xﬁ.os,rf—z = Xﬁ.05,15 =24.9958

A.R of HO
R.R of HO

1M

Xon-p= X:‘].os‘n_z
= Xoos1s = 24.9958

4-Since Y 12 < % >> (Y¥,1? € Accept Area), we conclude that the model is adequate

for describing the data .

Not:

We may use one of the following iterative equations to find an approximate estimate of

o~

pm+1) — p(m) 4 [g'(m)]-l ym
or

b(m+D) = [x¢ W('")X]_IX‘ W (m) z(m)

Exercise 4.3.:
Y1, V2, -, Yy are independent
yi ~ N(In(B),d?); o2 is known

Flyu B) = R IO
mo?

1 1
=L =L(pB) = —Eln(ZﬂGZ) —ﬁ[yl' —In(B)]?

N N
N 1
SI=tB) =Y Li=-5n oY) ~55 Y [y~ @)
i=1 i=1
N

T 202

N
al 1 1 1
2)" i~ ) (~3)| = 725, b~ n(A)]
i=1 i=1



_=o@i ln(ﬁ)—O@Zyl Nln(B)—0®Zyl N In(5)

@ln(ﬁ>—¥@ln(ﬁ>—y@ﬁ—ey

B = e¥ is the MLE of f became:
0%¢ B(=1/B) =X [yi —In(p)] 1 5

A 2o

02(63’)2

|, p?

- —z i—=»|=
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