
Chapter 4 

Exercise 4.1: 

Period 𝑦𝑖 = # cases 

1 1 

2 6 

3 16 

4 23 

5 27 

⋮ ⋮ 

20 159 

 

(a) 

 

 
or by R: 
plot(i,y,pch = 16) 
 

 
 

(b)  

𝑦𝑖 ∼ 𝑃0(𝜆𝑖)  ⇒ 𝜇𝑖 = 𝐸(𝑦𝑖) = 𝜆𝑖 and 𝜎𝑖
2 = Var(𝑦𝑖) = 𝜆𝑖    ∴ 𝐸(𝑦𝑖) = Van(𝑦𝑖) 

𝜆𝑖 = 𝑖𝜃 ⇔ ln(𝜆𝑖) = 𝜃 ln(𝑖) = 𝜃𝑥𝑖 = 𝜂𝑖   
where 𝑥𝑖 = ln (𝑖) and 𝜂𝑖 = 𝜂𝑖(𝑥) = 𝜃𝑥𝑖 
Link function: 𝑔(𝜆𝑖) = ln (𝜆𝑖) 

                                                    
(See Minitab output) 
or by R: 



plot(log(i),y, pch=16) 

 
 

(c) 

𝜇𝑖 = 𝑒𝜂𝑖 = 𝑒𝛽1+𝛽2𝑥𝑖 = 𝑒𝛽1𝑒𝛽2ln (𝑖) = 𝑒𝛽1𝑒ln (𝑖
𝛽2) = 𝑒𝛽1𝑖𝛽2 

where 𝑥𝑖 = ln (𝑖). 

𝜇𝑖 = 𝑒
𝜂𝑖 ⇔ ln (𝜇𝑖) = 𝜂𝑖 ⇒

[
 
 
 
 
𝜕𝜇𝑖
𝜕𝜂𝑖

= 𝑒𝜂𝑖

𝜕𝜂𝑖
𝜕𝜇𝑖

= 𝑒−𝜂𝑖
 

                    𝑊 = diag [
1

Var(𝑦𝑖)
(
𝜕𝜇𝑖
𝜕𝜂𝑖

)
2

] = [
1

𝑒𝜂𝑖
(𝑒𝜂𝑖)2] = diag[𝑒𝜂𝑖] = diag[𝑒𝛽1𝑖𝛽2] = 𝑒𝛽1diag[𝑖𝛽2]

= 𝑒𝛽1

[
 
 
 
 
1𝛽2 0

2𝛽2

⋱

⋱

0 𝑁𝛽2]
 
 
 
 

𝑁×𝑁

 

𝑧∼ = 𝜂
∼
+ diag [

𝜕𝜂𝑖

𝜕𝜇𝑖
] ( 𝑦
∼
− 𝜇
∼
) = 𝜂

∼
+ diag[𝑒−𝜂𝑖](𝑦

∼
− 𝜇
∼
);  𝑦 = (

𝑦1
⋮
𝑦𝑁
) and 𝜇

∼
= (

𝜇1
⋮
𝜇𝑁
) 

⇒ 𝑧𝑖 = 𝜂𝑖 + 𝑒
−𝜂𝑖(𝑦𝑖 − 𝜇𝑖) ;  𝑖 = 1,2, … ,𝑁 

          = 𝜂𝑖 + 𝑦𝑖𝑒
−𝜂𝑖 − 𝑒−𝜂𝑖𝑒𝜂𝑖 = 𝜂𝑖 + 𝑦𝑖𝑒

−𝜂𝑖 − 1 = (𝛽1 + 𝛽2𝑥𝑖) + 𝑦𝑖𝑒
−(𝛽1+𝛽2𝑥𝑖) − 1           

          = 𝛽1 + 𝛽2 ln(𝑖) + 𝑦𝑖𝑒
−𝛽1𝑒−𝛽2 ln(𝑖) − 1 = 𝛽1 + 𝛽2 ln(𝑖) + 𝑦𝑖𝑒

−𝛽1𝑖−𝛽2 − 1 

          = 𝛽1 + 𝛽2ln (𝑖) +
𝑦𝑖

𝑒𝛽1𝑖𝛽2
− 1 

Iterative Maximum Likelihood procedure: 

The MLE of 𝛽
∼
= (𝛽1

𝛽2
) at iteration (𝑚 + 1) is: 

𝑏∼
(𝑚+1) = (𝑥𝑡𝑊(m)𝑥)

−1
𝑥𝑡𝑊(m) 𝑧∼ ;𝑚 = 0,1,2, …. 

Note: The Design matrix is 𝑥 = [
1 𝑥1
⋮ ⋮
1 𝑥𝑁

] = [
1 ln (1)
⋮ ⋮
1 ln (𝑁)

]

𝑁×2

 

and the information matrix is 𝐽
∼
= 𝑥𝑡𝑊𝑥 = 𝑒𝛽1 [

∑  𝑁
𝑖=1 𝑖

𝛽2 ∑  𝑁
𝑖=1 𝑖

𝛽2ln (𝑖)

∑  𝑁
𝑖=1 𝑖

𝛽2ln (𝑖) ∑  𝑁
𝑖=1 𝑖

𝛽2[ln (𝑖)]2
] 

 

• Step (𝑚 = 0) : 

Let initial value of 𝑏∼ be 𝑏∼
(0) = (

𝑏1
(0)

𝑏2
(0)) = (1

1
). 

𝑏1
(0)
= 1, 𝑏2

(0)
= 1 



For these initial values, we have: 

𝑊(0) = diag [𝑒𝑏1
(0)

𝑖𝑏2
(0)

] = diag[𝑒𝑖] = 𝑒

[
 
 
 
 
1 0

2

⋱

⋱
0 𝑁]

 
 
 
 

𝑁×𝑁

 

                   𝐽
∼
(0) = 𝑥𝑡𝑊(0)𝑥 = [

1 … 1
ln (1) ln (𝑁)

] 𝑒

[
 
 
 
 
1 0

2

⋱

⋱
0 𝑁]

 
 
 
 

[
1 ln (1)
⋮ ⋮
1 ln (𝑁)

]

= 𝑒

[
 
 
 
 
 
∑  

𝑁

𝑖=1

 𝑖 ∑  

𝑁

𝑖=1

 𝑖ln (𝑖)

∑  

𝑁

𝑖=1

 𝑖ln (𝑖) ∑  

𝑁

𝑖=1

 𝑖[ln (𝑖)]2

]
 
 
 
 
 

= [
570.839 1439.61
1439.61 3768.84

] 

(𝑥𝑡𝑊(0)𝑥)
−1
= [

0.0477528 −0.0182405
−0.0182405 0.0072328

] 

𝑧𝑖
(0)
= 𝑏1

(0)
+ 𝑏2

(0)
ln (𝑖) +

𝑦𝑖

𝑒𝑏1
(0)

𝑖𝑏2
(0) − 1 = 1 + ln (𝑖) +

𝑦𝑖
𝑒𝑖
− 1 = ln (𝑖) +

𝑦𝑖
𝑒𝑖

 

𝑧∼
(0)
= (0.36788 1.79679 … .92037) 

𝑥𝑡𝑊(0) = [
1 ⋯ 1
ln (1) ⋯ ln (𝑁)

] 𝑒

[
 
 
 
 
1 0

2

⋱

⋱
0 𝑁]

 
 
 
 

= 𝑒 [
1 2 ⋯ 𝑁

1ln (1) 2ln (2) ⋯𝑁ln (𝑁)
] 

𝑥𝑡𝑊(0) 𝑧∼
(0)
= 𝑒 [

1 2 ⋯ 𝑁
1ln (1) 2ln (2) . 𝑁ln (𝑁)

]

[
 
 
 
 𝑧1
(0)

𝑧2
(0)

⋮

𝑧𝑁
(0)
]
 
 
 
 

= 𝑒

[
 
 
 
 
 

∑  

𝑁

𝑖=1

 𝑖𝑧(𝑖)
(0)

∑ 

𝑁

𝑖=1

 𝑖ln (𝑖)𝑧𝑖
(0)

]
 
 
 
 
 

= [
2750.61
7165.21

] 

𝑏∼
(1) = (𝑥𝑡𝑊(0)𝑥)

−1
𝑥𝑡𝑊(0) 𝑧∼

(0) = [
0.65254
1.65192

] 

• Step (𝑚 = 1) 

We repent step (0) using: {

𝑏1
(1)
= 0.65254

𝑏2
(1)
= 1.65192

  ,we will obtain: {

𝑏1
(2)
= 0.8419

𝑏2
(2)
= 0.14296

 

 

The following table summarizes the result of the iteration process: 

𝑚 0 1 2 ⋯ 5 6 

𝑏1
(m)

 1 0.6525 0.8419 ⋯ 0.9960 0.9960 

𝑏2
(m)

 1 1.6519 1.4296 ⋯ 1.32661 1.32661 

we stop the iteration process at step 𝑚 = 6. 
 

sam
e 



or by R: 

We will use the iterative formula which is: 

𝐛𝐦+1 = 𝐛𝐦 + [𝝉(𝐛𝐦)](−1)𝐔(𝐛𝐦),𝐦 = 𝟎, 𝟏, 2…… 

We will start with an initial value 𝑏(0) = [
𝑏1
(0)

𝑏2
(0)
] = [

1
1
] 

 
Design matrix: 

 

 
Transform of design matrix: 

 
The matrix of working weights is: 

𝑊 = diag [
1

var(𝑦𝑖)
(
𝜕𝜇𝑖
𝜕𝜂𝑖

)] 

 
The information matrix is: 

𝜏 = 𝑥𝑡𝑊𝑥 = 𝐽
∼

 

 



 
Another way for find information matrix 𝜏 : 

1 −      Var(𝑈1) = Var [∑  

𝑁

𝑖=1

 (𝑦𝑖 − 𝑒
𝛽1+𝛽2ln(𝑖))] =∑  

𝑁

𝑖=1

 Var(𝑦𝑖) =∑  

𝑁

𝑖=1

  𝑒𝛽1+𝛽2ln(𝑖) =∑ 

𝑁

𝑖=1

 𝑒𝛽1𝑖𝛽2 

2 −      Var(𝑈2) = Var [∑  

𝑁

𝑖=1

 (𝑦𝑖ln(𝑖) − ln(𝑖)𝑒
𝛽1+𝛽2ln(𝑖))] =∑  

𝑁

𝑖=1

 Var(𝑦𝑖ln(𝑖)) =∑  

𝑁

𝑖=1

  [ln(𝑖)]2Var(𝑦𝑖)

=∑  

𝑁

𝑖=1

  [ln(𝑖)]2𝑒𝛽1+𝛽2ln(𝑖) =∑ 

𝑁

𝑖=1

  [ln(𝑖)]2𝑒𝛽1𝑖𝛽2 

3 − Cov(𝑈1, 𝑈2) = Cov(∑  

𝑁

𝑖=1

  (𝑦𝑖 − 𝑒
𝛽1+𝛽2ln(𝑖)),∑  

𝑁

𝑖=1

  (𝑦𝑖ln(𝑖) − ln(𝑖)𝑒
𝛽1+𝛽2ln(𝑖))) =∑ 

𝑁

𝑖=1

 Cov(𝑦𝑖, 𝑦𝑖ln(𝑖))

=∑  

𝑁

𝑖=1

 ln(𝑖)Cov(𝑦𝑖 , 𝑦𝑖) =∑  

𝑁

𝑖=1

 ln(𝑖)Var(𝑦𝑖) =∑  

𝑁

𝑖=1

 ln(𝑖)𝑒𝛽1+𝛽2ln(𝑖) =∑ 

𝑁

𝑖=1

 ln (𝑖)𝑒𝛽1𝑖𝛽2 

 

Information matrix 𝜏 is: 

𝜏 = [
Var(𝑈1) Cov(𝑈1, 𝑈2)

Cov(𝑈1, 𝑈2) Var(𝑈2)
] =

[
 
 
 
 
 
∑  

𝑁

𝑖=1

  𝑒𝛽1𝑖𝛽2 ∑  

𝑁

𝑖=1

  𝑒𝛽1𝑖𝛽2ln (𝑖)

∑  

𝑁

𝑖=1

  𝑒𝛽1𝑖𝛽2ln (𝑖) ∑  

𝑁

𝑖=1

  𝑒𝛽1𝑖𝛽2[ln (𝑖)]2

]
 
 
 
 
 

2×2

 

The vector of scores is: 

 
 finding 𝑈 = Sore statistics: 

• log -likelihood function is: 

                 ℓ(𝛽) =∑  

𝑁

𝑖=1

  [𝑦𝑖𝑙𝑛 (𝜆𝑖) − 𝜆𝑖 − 𝑙𝑛 (𝑦𝑖!)] =∑  

𝑁

𝑖=1

  [𝑦𝑖𝑙𝑛 (𝑒
𝛽1+𝛽2𝑙𝑛𝑖) − 𝑒𝛽1+𝛽2𝑙𝑛𝑖 − 𝑙𝑛 (𝑦𝑖!)]

= ∑  

𝑁

𝑖=1

  [𝑦𝑖(𝛽1 + 𝛽2𝑙𝑛𝑖) − 𝑒
𝛽1+𝛽2𝑙𝑛𝑖 − 𝑙𝑛 (𝑦𝑖!)] 

 

where 𝜆𝑖 = 𝜇𝑖 = 𝑒
𝛽1+𝛽2ln𝑖. 

• Score Statistics are: 



𝑈1 =
𝜕ℓ

𝜕𝛽1
=∑  

𝑁

𝑖=1

  [𝑦𝑖 − 𝑒
𝛽1+𝛽2ln (𝑖)]

𝑈2 =
𝜕ℓ

𝜕𝛽2
=∑  

𝑁

𝑖=1

  [𝑦𝑖ln(𝑖) − ln(𝑖)𝑒
𝛽1+𝛽2ln (1)]

 

The vector of scare Statistics 𝑈 is: 

𝑈 = (
𝑢1
𝑢2
) = (

∑  𝑁
𝑖=1   [𝑦𝑖 − 𝑒

𝛽1+𝛽2ln (𝑖)]

∑  𝑁
𝑖=1   [𝑦𝑖ln(𝑖) − ln(𝑖)𝑒

𝛽1+𝛽2ln(𝑖)]
) 

 

 

Calculation: 

𝑏m+1 = bm + [𝜏(bm)](−1)U( bm) 

 
Repeat the steps but change the value of initial value to the last value of beta you get it, and stop the iteration 

process if you get the same value of Beta (in two successive steps) 

The following table summarizes the results of the iterative procedure: 

m 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 

𝑏1
𝑚 1 0.652354 0.841856 0.98454 0.995952 0.995998 0.995998 

𝑏2
𝑚 1 1.651991 1.429568 1.33373 1.326639 1.32661 1.32661 

 

Since 𝑏(5) = 𝑏(6) = [
0.995998
1.32661

], the iteration algorithm was terminated at step (5). 

The final approximated of MLE of 𝛽 = [
𝛽1
𝛽2
] is 𝑏 = [

𝑏1
𝑏2
] = [

0.995998
1.32661

] 

or by using loop in R: 

 



 
 

(d) Using Minitab Software: 

stat → Reg → Poisson Reg→ Fit Poisson Model 

option: Link function→ log 

We obtain: 

𝑏1 = 0.996

𝑏2 = 1.3266
 

(See Minitab output) 

or by R: 

 
For example, an approximate 95% confidence interval for 𝜷𝟏 and 𝜷𝟐 is: 

𝑏1 ± 1.96 se(𝑏1)

𝑏2 ± 1.96 se(𝑏2)
 

 
For obtaining the estimated variance-covariance matrix of parameter estimates in a fitted model: 

The variance-covariance matrix of the MLE 𝒃 (cov(𝐛) = 𝝉−1) is 



 

cov(𝛽̂) = cov(𝑏) = [
var(𝑏1) cov(𝑏1, 𝑏2)

cov(𝑏1, 𝑏2) var(𝑏2)
] = [

0.02880067 −0.010822607
−0.01082261 0.004177519

] 

 

Exercise 4.2 

(a) 

 

 
 

(See Minitab output) 

This graph shows that ( 𝑦𝑖 ) exponentially dereases with (𝑥𝑖). 
or by R: 

 

 



 
(b) 

𝐸(𝑦𝑖) = 𝜇𝑖 

⇒ 𝜇𝑖 = 𝑒
𝛽1+𝛽2𝑥𝑖 = 𝑒𝜂𝑖;  𝜂𝑖 = 𝜂(𝑥𝑖) = 𝛽1 + 𝛽2𝑥𝑖 

⇔ ln(𝜇𝑖) = 𝜂𝑖 = 𝛽1 + 𝛽2𝑥𝑖 

The link function is g(𝜇𝑖) = ln(𝜇𝑖) 
(c)  𝑓(𝑦; 𝜃) = 𝜃𝑒−𝜃𝑦; 𝑦 > 0, 𝜃 > 0 

we need to show that 𝐸(𝑦) =
1

𝜃
 & Var(𝑦) =

1

𝜃2
. 

• First Method: 

𝐸(𝑦) = ∫  
∞

0
𝑦𝑓(𝑦; 𝜃)𝑑𝑦 = ⋯ =

1

𝜃
  (using integration by parts) 

𝐸(𝑦2) = ∫  
∞

0
 𝑦2𝑓(𝑦; 𝜃)𝑑𝑦 = ⋯ =

2

𝜃2
   (using integration by parts) 

Var(𝑦) = 𝐸(𝑦2) − [𝐸(𝑦)]2 = 𝐸(𝑦2) − (
1

𝜃
)
2

= ⋯ =
1

𝜃2
 

• Second Method: 

The exponential dist. belongs to the EF. 

𝑓(𝑦; 𝜃) = 𝜃𝑒−𝜃𝑦 = 𝑒ln𝜃𝑒ln [𝑒
−𝜃𝑦] = 𝑒ln𝜃𝑒−𝜃𝑦 = 𝑒𝑦(−𝜃)+ln(𝜃) 

⇒ 𝑎(𝑦) = 𝑦 (canonical form) 

𝑏(𝜃) = −𝜃 (natural parameter)  

𝑐(𝜃) = ln (𝜃) 

𝑑(𝑦) = 1 

⇒ 𝑐′(𝜃) =
1

𝜃
, 𝑐′′(𝜃) = −

1

𝜃2
 

𝑏′(𝜃) = −1, 𝑏′′(𝜃) = 0 

⇒𝐸[𝑎(𝑦)] = −
𝑐′(𝜃)

𝑏′(𝜃)
= −

1
𝜃
−1

=
1

𝜃

Var[𝑎(𝑦)] =
𝑏′′(𝜃)𝑐′(𝜃) − 𝑐′′(𝜃)𝑏′(𝜃)

[𝑏′(𝜃)]3
=

0 − (−
1

𝜃2
) (−1)

[−1]3
=
1

𝜃2

 

 



(d) 

𝑓(𝑦𝑖′𝜃𝑖) = 𝜃𝑖𝑒
−𝜃𝑖𝑦𝑖; 𝑦𝑖 > 0, 𝜃𝑖 > 0 

𝐸(𝑦𝑖) = 𝜇𝑖 =
1

𝜃𝑖
 

Var(𝑦𝑖) = 𝜎𝑖
2 =

1

𝜃𝑖
2 

⇒ Var(𝑦𝑖) = [𝐸(𝑦𝑖)]
2  

𝜇𝑖 = 𝑒𝛽1+𝛽2𝑥𝑖 = 𝑒𝜂𝑖; 𝜂𝑖 = 𝛽1 + 𝛽2𝑥𝑖 ⇔ 𝑙𝑛(𝜇𝑖) = 𝛽1 + 𝛽2𝑥𝑖 
 

Link function is 𝑔(𝜇𝑖) = ln(𝜇𝑖). 

{
 

 
𝜕𝜇𝑖
𝜕𝜂𝑖

= 𝑒𝜂𝑖 = 𝑒𝛽1+𝛽2𝑥𝑖 = 𝜇𝑖

𝜕𝜂𝑖
𝜕𝜇𝑖

=
1

𝜇𝑖
=

1

𝑒𝜂𝑖
= 𝑒−𝜂𝑖 = 𝑒−(𝛽1+𝛽2𝑥𝑖)

 

Matrix of working weights is: 

𝑊 = diag [
1

Var(𝑦𝑖)
(
𝜕𝜇𝑖
𝜕𝜂𝑖

)
2

] = diag [
1

𝜇𝑖
2
(𝑒𝜂𝑖)2] = diag [

1

(𝑒𝜂𝑖)2
(𝑒𝜂𝑖)2] = diag[1] = 𝐼 =

[
 
 
 
 
1

1

⋱

0

0 1 ]
 
 
 
 

𝑁×𝑁

 

The Vector of working responses is: 

𝑧∼ = 𝜂
∼
+ diag [

𝜕𝜂𝑖
𝜕𝜇𝑖

] (𝑦
∼
− 𝜇
∼
) 

                                                   ⇒ 𝑧𝑖 = 𝜂𝑖 + (
𝜕𝜂𝑖
𝜕𝜇𝑖

) (𝑦𝑖 − 𝜇𝑖); 𝑖 = 1,2, … ,𝑁 

                                                             = 𝜂𝑖 + 𝑒
−𝜂𝑖(𝑦𝑖 − 𝑒

𝜂𝑖) = 𝜂𝑖 + 𝑦𝑖𝑒
−𝜂𝑖 − 𝑒−𝜂𝑖𝑒𝜂𝑖 = 𝜂𝑖 + 𝑦𝑖𝑒

−𝜂𝑖 − 1 

                                                             = 𝛽1 + 𝛽2𝑥𝑖 + 𝑦𝑖𝑒
−𝛽1−𝛽𝑖𝑥𝑖 − 1 

The MLE of 𝛽0 = (
𝛽1
𝛽
), Combe obtain iteratively by: 

𝑏∼
(𝑚+1) = [𝑥𝑡𝑊(𝑚)𝑥]

−1
𝑥𝑡𝑊(𝑚) 𝑧∼

(𝑚) = (𝑥𝑡𝑥)
−1
𝑥𝑡 𝑧∼

(𝑚) ; 𝑚 = 0,1,2, … 

The information matrix is: 

𝑥𝑡𝑊 𝑥 = [
1 1 ⋯ 1
𝑥1 𝑥2 … 𝑥𝑁

]
2×𝑁

𝐼𝑁×𝑁 [

1 𝑥1
1
⋮

𝑥2
⋮

1 𝑥𝑁

]

𝑁×2

=

[
 
 
 
 
 
𝑁 ∑  

𝑁

𝑖=1

 𝑥𝑖

∑ 

𝑁

𝑖=1

 𝑥𝑖 ∑ 

𝑁

𝑖=1

 𝑥𝑖
2

]
 
 
 
 
 

2×2

 

∴ 𝑥𝑡𝑊(𝑚)𝑥 = [
𝑁 Σ𝑥𝑖
Σ𝑥𝑖 Σ𝑥𝑖

2] for all 𝑚 (i.e.  𝑊 is fixed matrix) 

 

𝑥𝑡𝑊 = 𝑥𝑡𝐼 = 𝑥𝑡  

∴ 𝑥𝑡𝑊(𝑚) = 𝑥𝑡 = [
1 1 … 1
𝑥1 𝑥2 … 𝑥𝑁

] for all 𝑚 (i.e. fixed) 

𝑥𝑡𝑊(𝑚) 𝑧∼
(𝑚) = 𝑥𝑡 𝑧∼

(𝑚) = [
1 1 … 1
𝑥1 𝑥2 … 𝑥𝑁

]

[
 
 
 
 𝑧1
(m)

𝑧2
(m)

⋮

𝑧𝑁
(m)
]
 
 
 
 

=

[
 
 
 
 
 
∑  

𝑁

𝑖=1

  𝑧𝑖
(𝑚)

∑ 

𝑁

𝑖=1

 𝑥𝑖𝑧𝑖
(𝑚)

]
 
 
 
 
 

 

 



 

 

𝑖 1 2 ⋯ 17 

𝑥𝑖 3,36 2,88 ⋯ 5,00 

𝑦𝑖 65 156 ⋯ 65 

 

𝑁 = 17,∑  𝑥𝑖 = 69.63,∑  𝑥𝑖
2 = 291.457

𝑥𝑡𝑊𝑥 = [
17 69.63
69.63 291.457

] , (𝑥𝑡𝑊𝑥)
−1
= [

2.73843 −0.65422
−0.65422 0.159726

]
 

Iterative ML procedure: 

• Step ( 𝑚 = 0 ) 

Let 𝑏∼  
(0) = (

𝑏1
(0)

𝑏2
(0)) = (11

−2
) i. e. {

𝑏1
(0)
= 11

𝑏2
(0)
= −2} initial value: 

 

𝑧𝑖
(0) = 𝑏1

(0) + 𝑏2
(0)𝑥𝑖 + 𝑦𝑖𝑒

−𝑏1
(0)
−𝑏2

(0)
𝑥𝑖 − 1 = 11 − 2𝑥𝑖 + 𝑦𝑖𝑒

−11+2𝑥𝑖 − 1 

                                      = 10 − 2𝑥𝑖 + 𝑦𝑖𝑒
−11+2𝑥𝑖 , 𝑖 = 1,2, … ,𝑁 

                      ⇒ 𝑧∼
(0) = [4.1798   5.0668  ⋯   23.9122] 

𝑥𝑡𝑊(0) 𝑧∼
(0) = 𝑥𝑡 𝑧∼

(0) = [
∑ 𝑧𝑖

(0)

∑ 𝑥𝑖𝑧𝑖
(0)
] = [

90.8865
378.255

] 

𝑏∼
(1) = (𝑥𝑡𝑊(0)𝑥)

−1
𝑥𝑡𝑊(0) 𝑧∼

(0) = [
2.73843 −0.65422
−0.65422 0.159726

] [
90.8865
378.255

] = [
1.42449
0.95749

] 

 

• Stop 𝑚 = 1 : 

We repeat Steep 𝑚 = 0, using {
𝑏1
(1)
= 1.42449

𝑏2
(1)
= 0.95749

 

The following table summarizes the results of the iterative procedure: 

𝑚 0 1  8 9 

𝑏1
(𝑚)

 11 1.4245 … 8.4775 8.4775 

𝑏2
(𝑚)

 -2 0.9575  -1.1093 -1.1093 

 

 

We stop the procedure at step 𝑚 = 9 

or by R: 

We will use the iterative formula which is : 

𝐛𝐦+1 = 𝐛𝐦 + [𝜏(𝐛𝐦)](−1)𝐔(𝐛𝐦),𝐦 = 0,1,2…… 

We will start with an initial value 𝑏(0) = [
𝑏1
(0)

𝑏2
(0)
] = [

11
−2
] 

 
Design matrix (X) : 

sam
e 



 
Transpose of design matrix (𝑋𝑇) : 

 

The matrix of working weights 𝑊 = diag [
1

var(𝑦𝑖)
(
𝜕𝜇

𝜕𝜂
)
2

] is : 

 



The information matrix 𝜏 = 𝑋𝑡 ∗ 𝑊 ∗ 𝑋 is: 

 
The score statistics are: (U1 and U2): 

 
find Score Statistics (U): 

• log. likelihood function is: 

                  𝑙(𝛽) =∑  

𝑁

𝑖=1

  [ln(𝜃𝑖) − 𝑦𝑖𝜃𝑖] = ∑  

𝑁

𝑖=1

  [ln (
1

𝜇𝑖
) −

𝑦𝑖
𝜇𝑖
] =∑  

𝑁

𝑖=1

  [ln((𝜇𝑖)
−1) −

𝑦𝑖
𝜇𝑖
]

=∑  

𝑁

𝑖=1

  [−𝛽1 − 𝛽2𝑥𝑖 −
𝑦𝑖

𝑒𝛽1++𝛽2𝑥𝑖
] 

• The Score statistics we: 

𝑈 = (
𝑢1
𝑢2
) 

𝑢1 =
𝜕𝑙

𝜕𝛽1
=∑  

𝑁

𝑖=1

  [−1 +
𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
] 

𝑢2 =
𝜕𝑙

𝜕𝛽2
=∑  

𝑁

𝑖=1

  [−𝑥𝑖 +
𝑥𝑖𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
] 

The vector of 𝑈 : 

𝑈 =

[
 
 
 
 
 
∑  

𝑁

𝑖=1

  [−1 +
𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
]

∑  

𝑁

𝑖=1

  [−𝑥𝑖 +
𝑥𝑖𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
]
]
 
 
 
 
 

 

Another way for find information matrix 𝜏 =  𝐽 : 

1 − Var(𝑢1) = Var [∑  

𝑁

𝑖=1

  [−1 +
𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
]] =∑  

𝑁

𝑖=1

 
Var(𝑦𝑖)

(𝑒𝛽1+𝛽2𝑥𝑖)2
=∑  

𝑁

𝑖=1

 
(𝑒𝛽1+𝛽2𝑥𝑖)

2

(𝑒𝛽1+𝛽2𝑥𝑖)2
=∑  

𝑁

𝑖=1

 1 = 𝑁 

2 − Var(𝑢2) = Var [∑  

𝑁

𝑖=1

  (−𝑥𝑖 +
𝑥𝑖𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
)] =∑  

𝑁

𝑖=1

 
𝑥𝑖
2Var(𝑦𝑖)

(𝑒𝛽1+𝛽2𝑥𝑖)2
=∑  

𝑁

𝑖=1

 
𝑥𝑖
2(𝑒𝛽1+𝛽2𝑥𝑖)

2

(𝑒𝛽1+𝛽2𝑥𝑖)2
=∑  

𝑁

𝑖=1

 𝑥𝑖
2 

3 − Cov(𝑢1, 𝑢2) = Cov(∑  

𝑁

𝑖=1

  (−1 +
𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
) ,∑  

𝑁

𝑖=1

  (−𝑥𝑖 +
𝑥𝑖𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
))       



                               = ∑  

𝑁

𝑖=1

 Cov ((−1 +
𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
) , (−𝑥𝑖 +

𝑥𝑖𝑦𝑖
𝑒𝛽1+𝛽2𝑥𝑖

)) 

                               = ∑  

𝑁

𝑖=1

 Cov (
𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
,
𝑥𝑖𝑦𝑖

𝑒𝛽1+𝛽2𝑥𝑖
) =∑  

𝑁

𝑖=1

 
𝑥𝑖

(𝑒𝛽1+𝛽2𝑥𝑖)2
Cov(𝑦𝑖, 𝑦𝑖) =∑  

𝑁

𝑖=1

 
𝑥𝑖

(𝑒𝛽1+𝛽2𝑥𝑖)2
Var(𝑦𝑖) 

                                = ∑  

𝑁

𝑖=1

 
𝑥𝑖

(𝑒𝛽1+𝛽2𝑥𝑖)2
(𝑒𝛽1+𝛽2𝑥𝑖)

2
=∑  

𝑁

𝑖=1

 𝑥𝑖 

 

3 −Information matrix 𝐽 is: 

                        𝐽 = [
Var(𝑢1) Cov(𝑢1, 𝑢2)

Cov(𝑢1, 𝑢2) Var(𝑢2)
] =

[
 
 
 
 
 
𝑁 ∑  

𝑁

𝑖=1

 𝑥𝑖

∑ 

𝑁

𝑖=1

 𝑥𝑖 ∑ 

𝑁

𝑖=1

 𝑥𝑖
2

]
 
 
 
 
 

2×2

= [
17 69.63
69.63 291.4571

] 

⇒ 𝐽−1 = [
2.73838856 −0.65420947
−0.65420947 0.159723697

] 

where 𝑁 = 17 ∑  12
𝑖=1  𝑥𝑖 = 69.63 ∑  𝑁

𝑖=1  𝑥𝑖
2 = 291.4571. 

We make the following Calculation: 

𝐛m+1 = 𝐛m + [𝜏(𝐛m)]−1𝐔(𝐛m) 

 
Repeat the steps but change the initial value to the last value of beta you obtained. Stop the iteration process if 

you get the same value of beta in two successive steps. 

The following table summarizes the results of the iterative procedure: 

m 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 

𝑏1
𝑚 11 1.4245       8.4775 8.4775 

𝑏2
𝑚 -2 0.9575       -1.1093 -1.1093 

 

Since 𝑏(8) = 𝑏(9) = [
8.4775
−1.1093

], the iteration algorithm was terminated at step (8). 

The final approximation of MLE of 𝛽 = [
𝛽1
𝛽2
] is 𝑏 = [

𝑏1
𝑏2
] = [

8.4775
−1.1093

] 



 

 

 

 



 
Find the 95% confidence interval for 𝜷1 and 𝜷2 is: 

𝑏1 ± 1.96 se( b1) ⋙      8.4775 ± 1.96 ∗ 1.6034

 b2 ± 1.96 se( b2) ⋙ −1.1093 ± 1.96 ∗ 0.3872
 

 

 
Find approximately the variance-covariance matrix of the MLE 𝒃 : 

Final approximate of the inverse of the information matrix evaluated at 𝒃 is: 

For obtaining the estimated variance-covariance matrix of parameter estimate 𝑠 in a fitted model: 

The variance-covariance matrix of the MLE 𝒃(𝐜𝐨𝐯(𝐛) = 𝝉−𝟏) is 

 

𝜏−1 = cov(𝛽̂) = cov(𝑏) = [
var(𝐛1) cov(𝐛1, 𝑏2)

cov(𝑏1, 𝑏2) var(𝑏2)
] cov(𝑏) = [

2.7383886 −0.6542095
−0.6542095 0.1597237

] 

 

Find approximate of the information matrix evaluated at 𝑏 

 

𝜏 = cov(𝑈) = [
var(U1) cov(U1, 𝑈2)

cov(U1, 𝑈2) var(U2)
] = [

17 69.63
69.63 291.4571

] 

 

 

 

(e) The fitted values are: 

𝑦𝑖̂ = 𝜇𝑖̂ = 𝑒
𝑏1+𝑏2𝑥𝑖 = 𝑒8.4775+−1.1093𝑥𝑖 

 



 
 

(See Minitab output) 

 

Standardized Residuals: 𝑟𝑖 =
𝑦𝑖−𝑦̂𝑖

𝑦̂𝑖
 

𝑖 1 2 3 ⋯ 17 

𝑟𝑖 -0.4378 -0.2077 0.1670 …. 2.4673 

 

∑ 𝑟𝑖
2 = (−0.4378)2 +⋯+ (2.4673)2 = 14.0832 

If the model is correct, we have 

∑ 𝑟𝑖
2 ∼ 𝜒(𝑁−𝑝)

2 = 𝜒(15)
2  where {

𝑁 = 17
𝑝 = 2

 

𝑋0.05,(15)
2 = 24.9958 where 𝛼 = 0.05 

 
Since ∑  𝑟𝑖

2 < 𝜒0.05(15)
2 (⇔ ∑  𝑟𝑖

2 ∈ 𝐴).we conclude that the model is adequate for describing the data. 

(See Minitab output) 

or by R: 

 

 



 

 

 
 

Exercise 𝟒. 𝟑. : 
𝑦1, 𝑦2, … , 𝑦𝑁 are independent 

𝑦𝑖 ∼ 𝑁(ln(𝛽), 𝜎
2); 𝜎2 is known 

 

𝑓(𝑦𝑖, 𝛽) =
1

√2𝜋𝜎2
𝑒
−
1
2𝜎2

[𝑦𝑖−ln(𝛽)]
2

 

⇒ 𝑙𝑖 = 𝑙𝑖(𝛽) = −
1

2
ln(2𝜋𝜎2) −

1

2𝜎2
[𝑦𝑖 − ln(𝛽)]

2 

⇒ 𝑙 = ℓ(𝛽) =∑  

𝑁

𝑖=1

  𝑙𝑖 = −
𝑁

2
ln (2𝜋𝜎2) −

1

2𝜎2
∑ 

𝑁

𝑖=1

  [𝑦𝑖 − ln(𝛽)]
2 

⇒
𝜕𝑙

𝜕𝛽
= −

1

2𝜎2
[2∑  

𝑁

𝑖=1

  (𝑦𝑖 − ln(𝛽)) (−
1

𝛽
)] =

1

𝜎2𝛽
∑  

𝑁

𝑖=1

  [𝑦𝑖 − ln(𝛽)] 



𝜕𝑙

𝜕𝛽
= 0 ⇔ ∑  

𝑁

𝑖=1

  [𝑦𝑖 − ln(𝛽)] = 0 ⇔ ∑ 𝑦𝑖 − 𝑁 ln(𝛽) = 0 ⇔ ∑ 𝑦𝑖 = 𝑁 ln(𝛽) 

⇔  ln(𝛽) =
∑  𝑦𝑖
𝑁

⇔ ln (𝛽) = 𝑦‾ ⇔ 𝛽̂ = 𝑒𝑦‾   

𝛽̂ = 𝑒𝑦‾  is the MLE of 𝛽 became: 

          
𝜕2ℓ

𝜕𝛽2
|
𝛽=𝛽̂

=
1

𝜎2
[
𝛽(−1/𝛽) − ∑  [𝑦𝑖 − ln(𝛽)]

𝛽2
]|
𝛽=𝛽̂

=
1

𝜎2𝛽̂2
[−1 −∑ (𝑦𝑖 − ln(𝛽̂)]]

=
1

𝜎2𝛽̂2
[−1 −∑  

𝑁

𝑖=1

  (𝑦𝑖 − 𝑦‾)] = −
1

𝜎2(𝑒𝑦‾)2
< 0 

 


