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Ex. 3.1: 

(a) 

𝑦 =  weight (Response) 

𝑥1 =  age 

𝑥2 =  sex 

𝑥3 =  height 

𝑥4 =  mean daily food intake 

𝑥5 =  mean daily energy expenditure 

𝑦𝑖 ∼ 𝑁(𝜇𝑖 , 𝜎
2)

𝐸(𝑦𝑖) = 𝜇𝑖

⟧ 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  

Model: 

𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽5𝑥𝑖5 

𝑔(𝜇𝑖) = 𝜇𝑖   (link function = identity function) 

𝜂(𝑥𝑖) =∑  

5

𝑗=0

𝛽𝑗𝑥𝑖𝑗  (𝑥0 ≡ 1)  (linear component)  

(b)  

𝑦 = number of mice infected (in each level) 

𝑥 =  exposure level of bacteria, with 5 levels:𝑥1, 𝑥2, … , 𝑥5 

𝑛 = 20 mice for each level. 

𝑦𝑖 ∼ Bino(𝑛, 𝜋𝑖), 𝑛 = 20, 𝑖 = 1,2, … ,5 because 'infection' is a binary outcome (but the plausibility of the 
assumption of independence of infection for mice depends on the experimental conditions. 

⇒ 𝐸(𝑦𝑖) = 𝜇𝑖 = 𝑛𝜋𝑖  

Let 𝑃𝑖 =
𝑦𝑖

𝑛
: proportion of infected mice in the 𝑖 − 𝑡ℎ level 

𝐸(𝑃𝑖) = 𝜋𝑖 
Model: 

𝑔(𝜋𝑖) = 𝛽0 + 𝛽1𝑥𝑖  for some link function such as 𝑔(𝜋) = ln (
𝜋

1 − 𝜋
)

𝜂(𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖 ←  Linear Predictor 
 

or 𝑔(𝜋𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖4 + 𝛽5𝑥𝑖5 with the 𝛽
𝑘
 's subject to a corner point or sum-to-zero 

constraint. 
 

(c)   
                                                           𝑦 = number of trips per week (Response) 

                                                  𝑥1 = 𝑥𝑖1 = number of people in the household.  

                                                  𝑥2 = 𝑥𝑖2 = household income 

                                                  𝑥3 = 𝑥𝑖3 = distance to supermarket 

𝑦𝑖 ∼ 𝑃0(𝜇𝑖) ≅ Poisson(𝜆𝑖) 
⇒ 𝐸(𝑦𝑖) = 𝜇𝑖 

model; 
𝑔(𝜇𝑖) = log 𝜆𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽𝑥𝑥𝑖2 + 𝛽3𝑥𝑖3

 = 𝜂(𝑥𝑖)
 

for some link function such as 𝑔(𝜇𝑖) = ln (𝜇𝑖). 

𝜂(𝑥𝑖) =∑  

3

𝑗=0

 𝛽𝑗; 𝑥𝑖𝑗  (𝑥𝑖0 = 1) ←  Linear Predictor 

⟧ 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  



 

 

 

Ex 𝟑. 𝟐: 

𝑦 ∼ Gamma(𝛼, 𝛽) (𝑦 > 0, 𝛼 > 0, 𝛽 > 0) 
• 𝛼 is assumed to be known: 

𝑓(𝑦; 𝛽) =
𝛽𝛼

Γ(𝛼)
𝑦𝛼−1𝑒−𝑦𝛽

 = 𝛽𝛼[Γ(𝛼)]−1𝑦𝛼−1𝑒−𝑦𝛽

 = 𝑒ln (𝛽
𝛼)𝑒ln [Γ(𝛼)]

−1
𝑒ln (𝑦

𝛼−1)𝑒−𝑦𝛽

 = 𝑒𝛼ln (𝛽)𝑒−ln (Γ(𝛼))𝑒(𝛼−1)ln (𝑦)𝑒−𝑦𝛽

 = 𝑒−𝑦𝛽+𝛼ln (𝛽)−ln (Γ(𝛼))+(𝛼−1)ln (𝑦)

 = 𝑒𝑦(−𝛽)+𝛼ln (𝛽)−ln [Γ(𝛼)]+(𝛼−1)ln (𝑦)

 

This is the canonical form of 𝐸𝐹: 

𝑎(𝑦) = 𝑦

𝑏(𝛽) = −𝛽 ( natinal panametor )

𝑐(𝛽) = 𝛼ln (𝛽)

𝑑(𝑦) = −ln [Γ(𝛼)] + (𝛼 − 1)ln (𝑦)

 

• Natural parameter is 𝑏(𝛽) = −𝛽 

 

• 𝐸(𝑦) = −
𝑐′(𝛽)

𝑏′(𝛽)
= −

(𝛼/𝛽)

(−1)
=

𝛼

𝛽
 

• Var(𝑦) =
𝑏′′(𝛽)𝑐′(𝛽)−𝑐′′(𝛽)𝑏′(𝛽)

[𝑏′(𝛽)]3
=
0−(−𝛼/𝛽2)(−1)

(−1)3
=

𝛼

𝛽2
 

where: 

𝑏′(𝛽) =
𝑑

𝑑𝛽
𝑏(𝛽) =

𝑑

𝑑𝛽
(−𝛽) = −1 

𝑐′(𝛽) =
𝑑

𝑑𝛽
𝑐(𝛽) =

𝑑

𝑑𝛽
(𝛼ln (𝛽)) =

𝛼

𝛽
 

𝑏′′(𝛽) = 0 

𝑐′′(𝛽) = −𝛼/𝛽2 
 

Ex 3.3: 

(a) 

𝑓(𝑦; 𝜃) = 𝜃𝑦−𝜃−1 = 𝑒ln (𝜃)𝑒ln [𝑦
−𝜃−1] = 𝑒ln (𝜃)𝑒(−𝜃−1)ln (𝑦) = 𝑒ln (𝑦)(−𝜃−1)+ln (𝜃) 

 

⇒ 𝑎(𝑦) = ln (𝑦) 
𝑏(𝜃) = −𝜃 − 1 

𝑐(𝜃) = ln (𝜃) 
𝑑(𝑦) = 0 

(b) 

𝑓(𝑦 ; 𝜃) = 𝜃𝑒−𝑦𝜃 = 𝑒ln (𝜃)𝑒−𝑦𝜃 = 𝑒𝑦(−𝜃)+ln (𝜃) 
⇒ 𝑎(𝑦) = 𝑦 

𝑏(𝜃) = −𝜃 

𝑐(𝜃) = ln (𝜃) 
𝑑(𝑦) = 0 

(c) 

      𝑓(𝑦; 𝜃) = (
𝑦 + 𝑟 − 1

𝑟 − 1
)𝜃𝑟(1 − 𝜃);  𝑟 is 𝑘𝑛𝑜𝑤𝑛 

= 𝑒ln (
𝑦+𝑟−1
𝑟−1 )𝑒ln (𝜃

𝑟)𝑒ln [(1−𝜃)
𝑦] = 𝑒ln (

𝑦+𝑟−1
𝑟−1 )𝑒𝑟ln (𝜃)𝑒𝑦ln (1−𝜃) = 𝑒𝑦ln (1−𝜃)+𝑟ln (𝜃)+ln (

𝑦+𝑟−1
𝑟−1 ) 



⇒ 𝑎(𝑦) = 𝑦 

𝑏(𝜃) = ln (1 − 𝜃) 
𝑐(𝜃) = 𝑟ln (𝜃) 

𝑑(𝑦) = ln (
𝑦 + 𝑟 − 1

𝑟 − 1
) 

 

Ex 3.4: 

For the distribution belonging to 𝐸𝐹, we have: 

𝐸[𝑎(𝑦)] = −
𝑐′(𝜃)

𝑏′(𝜃)

Var[𝑎(𝑦)] =
𝑏′′(𝜃)𝑐′(𝜃) − 𝑐′′(𝜃)𝑏′(𝜃)

[𝑏′(𝜃)]3

 

(a) For y ∼ Po(𝜃) : 
⇒ 𝑎(𝑦) = y 

b(𝜃) = ln(𝜃) 
𝑐(𝜃) = −𝜃 

𝑏(𝑦) = −ln(𝑦!) 

⇒ 𝑏′(𝜃) =
1

𝜃
 

𝑏′′(𝜃) = −
1

𝜃2
 

𝑐′(𝜃) = −1 

𝑐′′(𝜃) = 0 

⇒ 𝐸(𝑦) =
−(−1)

(
1
𝜃)

= 𝜃 

Var(𝑦) =
(−

1
𝜃2
) (−1) − 0

(
1
𝜃)

3 =
1/𝜃2

1/𝜃3
=

1

(
1
𝜃)
= 𝜃 

(b) For y ∼ 𝑁(𝜇, 𝜎2): it is assumed that 𝜎2is fixed, 
⇒𝑎(𝑦) = 𝑦

𝑏(𝜇) =
𝜇

𝜎2

𝑐(𝜇) = −
𝜇2

2𝜎2

𝑑(𝑦) = −
𝑦2

2𝜎2
−
1

2
ln (2𝜋𝜎2)

⇒

{
  
 

  
 𝑏′(𝜇) =

1

𝜎2

𝑏′′(𝜇) = 0

𝑐′(𝜃) = −
𝜇

𝜎2

𝑐′′(𝜃) = −
1

𝜎2

⇒𝐸(𝑦) =
−(−𝜇/𝜎2)

(1/𝜎2)
= 𝜇

Var(𝑦) =
0 − (−1/𝜎2)(1/𝜎2)

(1/𝜎2)3
=
1/𝜎4

1/𝜎6
= 𝜎2

 

(c) For 𝑦 ∼ Bino(𝑛, 𝜋) : 



⇒ 𝑎(𝑦) = 𝑦 

𝑏(𝜋) = ln (
𝜋

1 − 𝜋
) 

𝑐(𝜋) = 𝑛ln (1 − 𝜋) 

𝑑(𝑦) = ln (
𝑛

𝑦
) 

⇒ 𝐸(𝑦) = −
(−

𝑛
1 − 𝜋)

1
𝜋(1 − 𝜋)

= 𝑛𝜋 

            Var(𝑦) =

2𝜋 − 1
𝜋2(1 − 𝜋)2

(
−𝑛
1 − 𝜋) −

(−
𝑛

(1 − 𝜋)2
) (

1
𝜋(1 − 𝜋)

)

[
1

𝜋(1 − 𝜋)
]
3 =

𝑛(1 − 2𝜋)
𝜋2(1 − 𝜋)3

+
𝑛

𝜋(1 − 𝜋)3

1
𝜋3(1 − 𝜋)3

=

𝑛(1 − 2𝜋) + 𝑛𝜋
𝜋2(1 − 𝜋)3

1
𝜋3(1 − 𝜋)3

= [𝑛(1 − 2𝜋) + 𝑛𝜋]𝜋 = (𝑛 − 2𝑛𝜋 + 𝑛𝜋)𝜋 = (𝑛 − 𝑛𝜋)𝜋 = 𝑛(1 − 𝜋)𝜋

= 𝑛𝜋(1 − 𝜋) 
where 

𝑏′(𝜋) =
1 − 𝜋

𝜋
[
(1 − 𝜋) − 𝜋(−1)

(1 − 𝜋)2
] =

1 − 𝜋

𝜋

1

(1 − 𝜋)2
=

1

𝜋(1 − 𝜋)
 

𝑏′′(𝜋) =
0 − [(1 − 𝜋) + 𝜋(−1)]

[𝜋(1 − 𝜋)]2
=

2𝜋 − 1

𝜋2(1 − 𝜋)2
 

𝑐′(𝜋) =
𝑛

1 − 𝜋
(−1) =

−𝑛

1 − 𝜋
 

𝑐′′(𝜋) = −𝑛 [
−(−1)

(1 − 𝜋)2
] = −

𝑛

(1 − 𝜋)2
 

 

Ex 3.5: 

(a) For y ∼ 𝑁𝐵𝑖𝑛(𝑟, 𝜃) ( see Ex 3.3 part(𝑐)), 
⇒ 𝑎(𝑦) = 𝑦 

𝑏(𝜃) = ln (1 − 𝜃) 
𝑐(𝜃) = 𝑟ln (𝜃) 

𝑑(𝑦) = ln (
𝑦 + 𝑟 − 1

𝑟 − 1
) 

  ⇒  𝑏′(𝜃) =
−1

1 − 𝜃
 

    𝑏′′(𝜃) = −
(1 − 𝜃)(0) − (−1)

(1 − 𝜃)2
= −

1

(1 − 𝜃)2
 

𝑐′(𝜃) =
𝑟

𝜃
 

𝑐′′(𝜃) = −
𝑟

𝜃2
 

⇒ 𝐸(𝑦) = −
(
𝑟
𝜃)

(−
1

1 − 𝜃)
=
𝑟(1 − 𝜃)

𝜃
 



            Van(𝑦) =
−

1
(1 − 𝜃)2

(
𝑟
𝜃) − (−

𝑟
𝜃2
) (−

1
1 − 𝜃)

(−
1

1 − 𝜃)
3 =

−
𝑟

𝜃(1 − 𝜃)2
−

𝑟
𝜃2(1 − 𝜃)

−
1

(1 − 𝜃)3

=
−[
𝜃𝑟 + (1 − 𝜃)𝑟
𝜃2(1 − 𝜃)2

]

−
1

(1 − 𝜃)3

=

𝑟
𝜃2(1 − 𝜃)2

1
(1 − 𝜃)3

=

𝑟
𝜃2

1
(1 − 𝜃)

=
𝑟(1 − 𝜃)

𝜃2
 

 

Ex. 3.6: 

Refare to Example 3.5.3 (Mortality Rote) Model: 

𝐸(𝜇𝑖) = 𝜇𝑖 = 𝑛𝑖𝑒
𝜃𝑖

 ⇔ 𝑔(𝜇𝑖) = ln (𝜇𝑖) = ln (𝑛𝑖) + 𝜃𝑖

 ⇔ ln (𝜇𝑖) − ln (𝑛𝑖) = 𝜃𝑖

 ⇔ ln (
𝜇𝑖
𝑛𝑖
) = 𝜃𝑖

 ⇔ 𝜇𝑖
∗ = 𝜃𝑖  whene 𝜇𝑖

∗ = ln (
𝜇𝑖
𝑛𝑖
)

 

age 

𝑥𝑖 
𝑦𝑖 𝑛𝑖 

𝑦𝑖
𝑛𝑖

 ln (
𝑦𝑖
𝑛𝑖
) 

30 1 17742 5.64 ∗ 10−5 -9.7837 

35 5 16554 3.02 ∗ 10−4 -8.1049 

⋮ ⋮ ⋮ ⋮ ⋮ 

65 65 9933 6.54 × 10−3 -5.0292 

 

Let 𝑦𝑖
∗ = ln (

𝑦𝑖

𝑛𝑖
) and 𝑥𝑖

∗ = ln (𝑥𝑖) 

Regnen 𝑦𝑖
∗ on 𝑖 using the model 

𝑦𝑖
∗ = 𝛽0 + 𝛽1𝑥𝑖

∗ (Simple linear Regression) 

𝛽̂0 = −13.182 and 𝛽̂1 = 0.1331 [by using computer] 

Fitted value for 𝑦𝑖
∗: 𝑦̂𝑖

∗ = 𝛽̂0 + 𝛽̂1𝑥𝑖
∗ = −13.182 + 0.1331𝑥𝑖

∗ 

Fitted values for 𝑦𝑖: 𝑦̂𝑖 = 𝑛𝑖𝑒
𝑦̂𝑖
∗
 

𝑅2 = 0.9685 ← ( good fit ) [see computer output] 

 

Ex. 3.7: 

• 𝑦𝑖 ∼ Bernoulli(𝜋𝑖) 
• 𝑦1, 𝑦2, … , 𝑦𝑁 are midependent. 

𝑓(𝑦𝑖, 𝜋𝑖) = 𝜋𝑖
𝑦𝑖(1 − 𝜋𝑖 )

1−𝑦𝑖
; 𝑦𝑖 = 0,1 

(a) 

             𝑓(𝑦, 𝜋) = 𝜋𝑦(1 − 𝜋)1−𝑦 = 𝑒ln (𝜋
𝑦)𝑒ln [(1−𝜋)

1−𝑦] = 𝑒𝑦ln (𝜋)𝑒(1−𝑦)ln (1−𝜋) = 𝑒𝑦ln (𝜋)+(1−𝑦)ln (1−𝜋)

= 𝑒𝑦ln (𝜋)+ln (1−𝜋)−𝑦ln (1−𝜋) = 𝑒𝑦[ln (𝜋)−ln (1−𝜋)]+ln (1−𝜋) = 𝑒𝑦ln (
𝜋
1−𝜋

)+ln (1−𝜋) ∈ 𝐸𝐹 

⇒ 𝑎(𝑦) = 𝑦 

𝑏(𝜋) = ln (
𝜋

1 − 𝜋
)  , 𝑐(𝜋) = ln (1 − 𝜋) 

𝑑(𝑦) = 0 

(b) Natural parameter is 

𝑏(𝜋) = ln (
𝜋

1 − 𝜋
) 



(c)  

𝐸(𝑦) = −
𝑐′(𝜋)

𝑏′(𝜋)
= −

(−
1

1 − 𝜋)

(
1

𝜋(1 − 𝜋)
)
= 𝜋 

where (see Ex. 3.4 Part (𝑐)) 

𝑐′(𝜋) = −
1

1 − 𝜋

𝑏′(𝜋) =
1

𝜋(1 − 𝜋)

 

Note: 
𝜋

1−𝜋
 is called odds (معامل الترجيح) 

(d) Link function 𝑔(𝜋) = ln (
𝜋

1−𝜋
) = 𝑥′∼ 𝛽∼

. 

ln (
𝜋

1 − 𝜋
) = 𝑥′∼ 𝛽∼

⇔𝑒ln (
𝜋
1−𝜋

) = 𝑒𝑥
′
∼𝛽∼ , (𝑒ln 𝑥 = 𝑥)

⇔
𝜋

1 − 𝜋
= 𝑒𝑥

′
∼𝛽∼

⇔𝜋 = (1 − 𝜋)𝑒𝑥
′
∼𝛽∼ = 𝑒𝑥

′
∼𝛽∼ − 𝜋𝑒𝑥

′
∼𝛽∼

 

⇔𝜋 + 𝜋𝑒𝑥
′
∼𝛽∼ = 𝑒𝑥

′
∼𝛽∼

⇔𝜋 (1 + 𝑒𝑥
′
∼𝛽∼) = 𝑒𝑥

′
∼𝛽∼

 

⇔ 𝜋 =
𝑒𝑥
′
∼𝛽∼

1+𝑒𝑥
′
∼𝛽∼

   (logistic Regression model) 

 

(e) For 𝑥′∼ 𝛽∼
= 𝛽1 + 𝛽2𝑥, we have 

𝜋 =
𝑒𝛽1+𝛽2𝑥

1 + 𝑒𝛽1+𝛽2𝑥
  (logisti cfunction)  

note: 𝑒𝛽1+𝛽2𝑥 > 0 

0 <
𝑒𝛽1+𝛽2𝑥

1 + 𝑒𝛽1+𝛽2𝑥
< 1

0 < 𝜋 < 1

 

                                    
 

Ex. 3.8: 

WLOG, let 𝜙 = 1 ( 𝜙 is nuisance parameter) and it is considered as fixed 

𝑓(𝑦; 𝜃) = 𝑒(𝑦−𝜃)−𝑒
(𝑦−𝜃)

= 𝑒𝑦−𝜃−𝑒
(𝑦−𝜃)

= 𝑒𝑦−𝜃−𝑒
𝑦𝑒−𝜃 = 𝑒𝑒

𝑦(−𝑒−𝜃)−𝜃+𝑦 = 𝑒𝑎(𝑦)𝑏(𝜃)+𝑐(𝜃)+𝑑(𝑦) 
𝑎(𝑦) = 𝑒𝑦; 𝑏(𝜃) = −𝑒−𝜃, 𝑐(𝜃) = −𝜃, 𝑑(𝑦) = 𝑦 

 

Ex. 3.9: 

𝑦1, 𝑦2, … , 𝑦𝑛 are independent. 

𝑦𝑖 ∼ Pareto(𝜃) ∴  𝑓(𝑦; 𝜃) = 𝜃𝑦
−𝜃−1 ∈ 𝐸𝐹 

⇒ 𝑎(𝑦) = ln (𝑦), 𝑏(𝜃) = −𝜃 − 1, 𝑐(𝜃) = ln (𝜃), 𝑑(𝑦) = 0  (See Ex 3.3(𝑎) ). 



⇒ 𝐸(𝑦𝑖) = 𝜇𝑖 = (𝛽0 + 𝛽1𝑥𝑖)
2

 ⇔ √𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖

𝑔(𝜇𝑖) = √𝜇𝑖   link function 

 

For Pareto,  𝑎(𝑦) = ln (𝑦) ≠ 𝑦 

one of the conditions of Generalized linear model is that 𝑎(𝑦) (Canonical form) 

Therefore, the model is not a generalized linear Model. 

 

Ex. 3.10: 

𝑦1, 𝑦2, … , 𝑦𝑁 are independent 

𝑦𝑖 ∼ 𝑁(𝜇𝑖, 𝜎
2) ∈ 𝐸𝐹 in canonical form. 

𝐸(𝑦𝑖) = 𝜇𝑖 = 𝛽0 + ln (𝛽1 + 𝛽2𝑥𝑖) 
𝜇𝑖 = 𝛽0 + ln (𝛽1 + 𝛽2𝑥𝑖) 

⇔ 𝑒𝜇𝑖 = 𝑒𝛽0+ln (𝛽1+𝛽2𝑥𝑖) = 𝑒𝛽0𝑒ln (𝛽1+𝛽2𝑥𝑖) = 𝑒𝛽0(𝛽1 + 𝛽2𝑥𝑖) = 𝛽1𝑒
𝛽0 + 𝛽2𝑥𝑖𝑒

𝛽0 = 𝛽1
∗ + 𝛽2

∗𝑥𝑖⏟      
linear combonent 

 

where 𝛽1
∗ = 𝛽1𝑒

𝛽0 and 𝛽2
∗ = 𝛽2𝑒

𝛽0.The model is a generalized linear model. 

 

Ex. 3.11: 

y ∼ Pareto(𝜃). 
𝑓(𝑦; 𝜃) = 𝜃𝑦−𝜃−1  (for one observation)  

Let 𝑦1, 𝑦2, … , 𝑦𝑛 are independent, and 𝑦𝑖 ∼ Pareto(𝜃)for 𝑖 = 1,2, … , 𝑛 

Likelihood function is: 

𝐿(𝜃; 𝑦
∼
) = 𝑓(𝑦

∼
; 𝜃) =∏  

𝑛

𝑖=1

𝑓(𝑦𝑖; 𝜃) 

log-likelihood function is: 

             𝑙(𝜃; 𝑦
∼
) = ln [𝐿(𝜃; 𝑦

∼
)] = ln [∏  

𝑛

𝑖=1

 𝑓(𝑦𝑖; 𝜃)] =∑  

𝑛

𝑖=1

 ln [𝑓(𝑦𝑖, 𝜃)] =∑  

𝑛

𝑖=1

 ln [𝜃𝑦𝑖
−𝜃−1]

= ∑  

𝑛

𝑖=1

  {ln (𝜃) + ln [𝑦𝑖
−𝜃−1]} = ∑  

𝑛

𝑖=1

  {ln (𝜃) + (−𝜃 − 1)ln (𝑦𝑖)}

= 𝑛ln (𝜃) − (𝜃 + 1)∑  

𝑛

𝑖=1

 ln (𝑦𝑖) 

The Score Statistic is: 

𝑈(𝜃, 𝑦
∼
) =

𝜕𝑙(𝜃; 𝑦
∼
)

𝜕𝜃
=
𝑛

𝜃
−∑  

𝑛

𝑖=1

 ln (𝑦𝑖) 

Recall: 𝐸[𝑈(𝜃, 𝑦
∼
)] = 0 

Information: 

𝐽 = Var(𝑢) = 𝐸(𝑢2) = −𝐸(𝑢′) = −𝐸 [
𝜕

𝜕𝜃
𝑢(𝜃; 𝑦

∼
)] = −𝐸 {

𝜕

𝜕𝜃
(
𝑛

𝜃
−∑  

𝑛

𝑖=1

 ln (𝑦𝑖))} = −𝐸 [−
𝑛

𝜃2
] =

𝑛

𝜃2
 

2nd Solution: 

For Pareto distr. , we have [ sec Ex.  3.3(𝑎)] 

𝑎(𝑦) = ln (𝑦) 

𝑏(𝜃) = −𝜃 − 1 

𝑐(𝜃) = ln (𝜃) 



⇒ 𝑏′(𝜃) = −1; 𝑏′′(𝜃) = 0 

𝑐′(𝜃) =
1

𝜃
; 𝑐′′(𝜃) = −

1

𝜃2
 

We know that 

𝐸[𝑎(𝑦)] = −
𝑐′(𝜃)

𝑏′(𝜃)
 

∴ 𝐸[ln (𝑦)] = −
1/𝜃

(−1)
=
1

𝜃
 

Note: 𝐸(𝑢) = 𝐸 [
𝑛

𝜃
− ∑  ln (𝑦𝑖)] =

𝑛

𝜃
− ∑  𝐸[ln (𝑦𝑖)] =

𝑛

𝜃
− ∑  

1

𝜃
=
𝑛

𝜃
−
𝑛

𝜃
= 0 

Var[𝑎(𝑦)] =
𝑏′′(𝜃)𝑐′(𝜃) − 𝑐′′(𝜃)𝑏′(𝜃)

[𝑏′(𝜃)]3
 

∴ 𝑉𝑎𝑟[ln (𝑦)] =
0 − (−1/𝜃2)(−1)

(−1)3
=
−1/𝜃2

−1
=
1

𝜃2
 

⇒ 𝐸{[ln (𝑦)]2}= 𝑉𝑎𝑟[ln(𝑦)] + {𝐸[ln (𝑦)]}2 =
1

𝜃2
+ (

1

𝜃
)
2

=
2

𝜃2
 

Now, 

                        𝐽 = Var(𝑢) = 𝐸(𝑢2) = 𝐸 {[
𝑛

𝜃
−∑ ln (𝑦𝑖)]

2

} = 𝐸 [(
𝑛

𝜃
)
2

+ [∑ ln (𝑦𝑖)]
2

− 2
𝑛

𝜃
∑ ln (𝑦𝑖)}

= (
𝑛

𝜃
)
2

+ 𝐸 {[∑  ln (𝑦𝑖)]
2

} − 2
𝑛

𝜃
𝐸 [∑ ln (𝑦𝑖)]

= (
𝑛

𝜃
)
2

+ [Var [∑  ln (𝑦𝑖)] + {𝐸 [∑ ln (𝑦𝑖)]}
2

] − 2
𝑛

𝜃
𝐸 [∑ ln (𝑦𝑖)]

= (
𝑛

𝜃
)
2

+∑  

𝑛

𝑖=1

 Van(ln (𝑦𝑖)) + [∑  

𝑛

𝑖=1

 𝐸(ln (𝑦𝑖))]

2

− 2
𝑛

𝜃
∑    𝐸[ln (𝑦𝑖)]

= (
𝑛

𝜃
)
2

+ [∑  

𝑛

𝑖=1

 
1

𝜃2
+ (∑  

𝑛

𝑖=1

 
1

𝜃
)

2

] − 2
𝑛

𝜃
∑  

𝑛

𝑖=1

 
1

𝜃
= (

𝑛

𝜃
)
2

+
𝑛

𝜃2
+ (
𝑛

𝜃
)
2

− 2
𝑛

𝜃
(
𝑛

𝜃
)

=
𝑛2

𝜃2
+
𝑛

𝜃2
+
𝑛2

𝜃2
− 2

𝑛2

𝜃2
=
𝑛

𝜃2
 

3rd  Solution: 

We know that 

 

Var(𝑢) =
𝑏′′(𝜃)𝑐′(𝜃)

𝑏′(𝜃)
− 𝑐′′(𝜃)  (for one observation) 

⇒ Var(𝑢) =
(0) (

1
𝜃)

(−1)
− (−

1

𝜃2
) =

1

𝜃2
 

 

∴  𝐽 = Var(𝑢)  (for all observations) 

⇒ 𝐽 = Var(𝑢) =∑  

𝑛

𝑖=1

 
1

𝜃2
=
𝑛

𝜃2
 

 

𝐸(𝑢) = 0: 

𝑢 =
𝑛

𝜃
−∑  

𝑛

𝑖=1

 ln (𝑦𝑖) 



⇒ 𝐸(𝑢) = 𝐸 [
𝑛

𝜃
−∑  

𝑛

𝑖=1

 ln (𝑦𝑖)] =
𝑛

𝜃
− 𝐸 [∑  

𝑛

𝑖=1

 ln (𝑦𝑖)] =
𝑛

𝜃
−∑  

𝑛

𝑖=1

 𝐸[ln (𝑦𝑖)] =
𝑛

𝜃
−∑  

𝑛

𝑖=1

 
1

𝜃
=
𝑛

𝜃
−
𝑛

𝜃
= 0 

where 𝐸(ln (𝑦𝑖)) =
1

𝜃
. 

 


