
Chapter 2 
 

Ex. 2.1: 

𝑦𝑗𝑘 ∼ 𝑁(𝜇𝑗 , 𝜎
2);  𝑗 = 1,2 

i.e. 𝑦1𝑘 ∼ 𝑁(𝜇1, 𝜎
2);  𝑘 = 1,… , 𝑛1 and 𝑦2𝑘 ∼ 𝑁(𝜇2, 𝜎

2); 𝑘 = 1,2, … , 𝑛2 

𝑦𝑗𝑘 are independent. 

𝐻0: 𝜇1 = 𝜇2 = 𝜇 

𝐻1: 𝜇1 ≠ 𝜇2 

(a) use Minitab. 

 

Group 

Trteatment control 

𝑦‾1. = 4.86 𝑦‾2. = 4.726 

𝑠1
2 = 0.626 𝑠2

2 = 0.746 

𝑛1 = 20 𝑛2 = 20 

 

𝑁 = 𝑛1 + 𝑛2 = 40 

𝑦‾.. = 4.793 

𝑠2 = 0.673 

𝑠𝑝
2 = 0.686 

𝑠𝑝 = 0.82825 

𝑑𝑓 = 𝑛1 + 𝑛2 − 2 = 38 

 

(b) T-test: 

𝑡 =
𝑦‾1. − 𝑦‾2.

𝑠𝑝√
1
𝑛1
+
1
𝑛2

=
4.86 − 4.726

0.82825√
1
20 +

1
20

=
0.134

0.2619156
= 0.5116 

𝑡𝛼
2
(𝑛1+𝑛2−2)

= 𝑡0,025(38) = 2.0244 

|𝑡| = 0.5116 < 𝑡0.025(38) 
 

 
 

⇒ Do not reject to 𝐻0: 𝜇1 = 𝜇2 at significance Lavel 𝛼 = 0,05 

 

(c)  

(i) MLE: (Maximum Likelihood Estimatim):  

First: For Model under 𝐻0: 𝜇1 = 𝜇2 = 𝜇0. 

𝑓(𝑦𝑗𝑘; 𝜇) =
1

√2𝜋𝜎2
𝑒
−
1
2𝜎2

(𝑦𝑗𝑘−𝜇)
2

 

⇒ ln 𝑓(𝑦𝑗𝑘; 𝜇) = ln [
1

√2𝜋𝜎2
] −

1

2𝜎2
(𝑦𝑗𝑘 − 𝜇)

2
 



𝑙(𝜇) =∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

 ln 𝑓(𝑦𝑗𝑘; 𝜇) =∑  

𝑗

 ∑  

𝑘

  {ln (
1

√2𝜋𝜎2
) −

1

2𝜎2
(𝑦𝑗𝑘 − 𝜇)

2
} 

⇒
𝜕𝑙(𝜇)

𝜕𝜇
 = −

1

2𝜎2
∑ ∑ 2(𝑦𝑗𝑘 − 𝜇)(−1) =

1

𝜎2
∑ ∑ (𝑦𝑗𝑘 − 𝜇) 

𝜕𝑙(𝜇)

𝜕𝜇
=

 set 
0 ⇔ 

1

𝜎2
∑ ∑ (𝑦𝑗𝑘 − 𝜇) = 0 ⇔ ∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝜇) = 0 ⇔ ∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

 𝑦𝑗𝑘 − 𝐽𝐾𝜇 = 0 

                             ⇔ ∑  ∑  𝑦𝑗𝑘 = 𝐽𝐾𝜇 ⇔ 𝜇̂ =
∑  ∑  𝑦𝑗𝑘

𝐽𝑘
=
∑  ∑  𝑦𝑗𝑘

𝑁
= 𝑦‾... 

𝐽 = 2;  𝑘 = 20 ⇒ 𝑁 = 𝐽𝐾 = (2)(20) = 40 

∴ 𝑀𝐿𝐸 of 𝜇 (under 𝐻0 ) is: 

𝜇̂ = 𝑦‾.. 
 

Second: For Model under 𝐻1: 𝜇1 ≠ 𝜇2 : 

𝑓(𝑦𝑗𝑘; 𝜇𝑗) =
1

√2𝜋𝜎2
𝑒
−

1

2𝜎2
(𝑦𝑗𝑘−𝜇𝑗)

2

; 𝑗 = 1,2 ,𝑘 = 1,⋯ ,20 

⇒ ln 𝑓(𝑦𝑗𝑘; 𝜇𝑗) = ln [
1

√2𝜋𝜎2
] −

1

2𝜎2
(𝑦𝑗𝑘 − 𝜇𝑗)

2
 

          ℓ(𝜇1, 𝜇2) =∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  ln(𝑦𝑗𝑘; 𝜇𝑗) =∑ ∑ {ln [
1

√2𝜋𝜎2
] −

1

2𝜎2
(𝑦𝑗𝑘 − 𝜇𝑗)

2
}   

=∑  

𝐽

𝑗=1

 ∑  

𝑘

𝑘=1

 ln [
1

√2𝜋𝜎2
] −

1

2𝜎2
∑ 

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝜇𝑗)
2

=∑ ∑ [
1

√2𝜋𝜎2
] −

1

2𝜎2
[∑  

𝐾

𝑘=1

  (𝑦1𝑘 − 𝜇1)
2 +∑  

𝐾

𝑘=1

  (𝑦2𝑘 − 𝜇2)
2] 

⇒
𝜕𝑙(𝜇1, 𝜇2)

𝜕𝜇1
=
1

𝜎2
∑ 

𝐾

𝑘=1

  (𝑦1𝑘 − 𝜇1) and 
𝜕𝑙(𝜇1, 𝜇2)

𝜕𝜇2
=
1

𝜎2
∑ 

𝐾

𝑘=1

  (𝑦2𝑘 − 𝜇2) 

𝜕ℓ(𝜇1, 𝜇2)

𝜕𝜇1
=

 set 
0 and

𝜕ℓ(𝜇1, 𝜇2)

𝜕𝜇2
=

 set 
0 

⇒
1

𝜎2
∑  𝐾
𝑘=1   (𝑦1𝑘 − 𝜇1) = 0 and 

1

𝜎2
∑  𝐾
𝑘=1   (𝑦2𝑘 − 𝜇2) = 0 

⇒ ∑  𝐾
𝑘=1   (𝑦1𝑘 − 𝜇1) = 0  and   ∑  𝐾

𝑘=1   (𝑦2𝑘 − 𝜇2) = 0 

⇒ ∑  𝐾
𝑘=1  𝑦1𝑘 − 𝐾𝜇1 = 0 and ∑  𝐾

𝑘=1  𝑦2𝑘 − 𝐾𝜇2 = 0 

⇒ ∑  𝐾
𝑘=1  𝑦1𝑘 = 𝐾𝜇1 and  ∑  𝐾

𝑘=1  𝑦2𝑘 = 𝐾𝜇2 

𝜇̂1 =
∑  𝐾
𝑘=1  𝑦1𝑘
𝐾

= 𝑦‾1. and 𝜇̂2 =
∑  𝐾
𝑘=1  𝑦2𝑘
𝐾

= 𝑦‾2.  

∴ The MLE of 𝜇1 and 𝜇2 under 𝐻1 are 

𝜇̂1 = 𝑦‾1.
𝜇̂2 = 𝑦‾2.

 

(ii) LSE (Least Square Estimation): 

First: For Model under 𝐻0: 𝜇1 = 𝜇2 = 𝜇 : 



𝑆0 =∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝜇)
2

 

⇒
𝜕𝑆0
𝜕𝜇

= −2∑ ∑ (𝑦𝑗𝑘 − 𝜇) 

𝜕𝑆0
𝜕𝜇

=
 set 
0 ⇔ −2∑ ∑ (𝑦𝑗𝑘 − 𝜇) = 0 ⇔∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝜇) = 0 ⇔∑ 

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

 𝑦𝑗𝑘 − 𝐽𝐾𝜇 = 0 

⇔  𝜇 =
∑  ∑  𝑦𝑗𝑘

𝐽𝐾
=
∑  ∑  𝑦𝑗𝑘

𝑁
= 𝑦‾..     (as 𝑁 = 𝐽𝐾 where 𝐽 = 2 and 𝐾 = 20) 

∴ The LSE of 𝜇 under 𝐻0 is: 

𝜇̂ = 𝑦‾..  (same as 𝑀𝐿𝐸) 
Second: For Model under 𝐻1: 𝜇1 ≠ 𝜇2 : 

𝑆1 =∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝜇𝑗)
2
=∑  

𝐾

𝑘=1

  (𝑦1𝑘 − 𝜇1)
2 +∑  

𝐾

𝑘=1

  (𝑦2𝑘 − 𝜇2)
2 

⇒
𝜕𝑆1

𝜕𝜇1
= −2∑  𝐾

𝑘=1   (𝑦1𝑘 − 𝜇1) and  
𝜕𝑆1

𝜕𝜇2
= −2∑  𝐾

𝑘=1   (𝑦2𝑘 − 𝜇2) 

𝜕𝑆1

𝜕𝜇1
=

 set 
0  and  

𝜕𝑆1

𝜕𝜇2
=

 set 
0  

⇒ −2Σ(𝑦1𝑘 − 𝜇1) = 0 and −2Σ(𝑦2𝑘 − 𝜇1) = 0 

⇒ ∑  𝐾
𝑘=1   (𝑦1𝑘 − 𝜇1) = 0 and ∑  𝐾

𝑘=1   (𝑦2𝑘 − 𝜇2) = 0 

⇒ ∑  𝐾
𝑘=1  𝑦1𝑘 − 𝐾𝜇1 = 0 and ∑  𝐾

𝑘=1  𝑦2𝑘 − 𝐾𝜇2 = 0 

⇒ ∑  𝐾
𝑘=1  𝑦1𝑘 = 𝐾𝜇1 and ∑  𝐾

𝑘=1  𝑦2𝑘 = 𝐾𝜇2 

⇒ 𝜇1 =
∑  𝐾
𝑘=1  𝑦1𝑘

𝐾
= 𝑦‾1. and 𝜇2 =

∑  𝐾
𝑘=1  𝑦2𝑘

𝐾
= 𝑦‾2. 

∴ The LSE of 𝜇1 and 𝜇2 under 𝐻1 are: 

𝜇̂1 = 𝑦‾1. and 𝜇̂2 = 𝑦‾2. 

which is the same as MLE 

 

(d) Recall: 

• The LSE of 𝜇 under ( 𝐻0: 𝜇1 = 𝜇2 = 𝜇 ) is 𝜇̂ = 𝑦‾..  
• The LSE of 𝜇1 and 𝜇2 under (𝐻1: 𝜇1 ≠ 𝜇2) are: 

𝜇̂1 = 𝑦‾1. and 𝜇̂2 = 𝑦‾2.  

(i) The minimum value of 𝑆0 = ∑  ∑  (𝑦𝑗𝑘 − 𝜇)
2
is: 

𝑆̂0 = ∑  𝐽
𝑗=1  ∑  𝐾

𝑘=1   (𝑦𝑗𝑘 − 𝜇̂)
2
= ∑  𝐽

𝑗=1  ∑  𝐾
𝑘=1 (𝑦𝑗𝑘 − 𝑦‾..)

2
 ; 𝑦‾.. =

∑  ∑  𝑌𝑗𝑘

𝐽𝐾
 (grand average) 

 

(ii) The minimum value of 𝑆1 = ∑  ∑  (𝑦𝑗𝑘 − 𝜇𝑗)
2
is: 

𝑆̂1 =∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

 (𝑦𝑗𝑘 − 𝜇̂𝑗)
2
=∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝑦‾𝑗.)
2
 ;  𝑦‾𝑗. =

∑  𝐾
𝑘=1  𝑦𝑗𝑘

𝐾
 

                                     = ∑  𝐾
𝑘=1   (𝑦1𝑘 − 𝑦‾1.)

2 + ∑  𝐾
𝑘=1   (𝑦2𝑘 − 𝑦‾2.)

2 

(e)  

(1) 



𝑆1 =∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝜇𝑗)
2
  ; (under 𝐻1: 𝜇1 ≠ 𝜇2) 

     = ∑ ∑ (𝑦𝑗𝑘 − 𝑦‾𝑗. + 𝑦‾𝑗. − 𝜇𝑗)
2
 ; (𝑦‾𝑗. =

∑  𝐾
𝑘=1  𝑦𝑗𝑘

𝐾
; 𝑗 = 1,2 ) 

     = ∑ ∑ [(𝑦𝑗𝑘 − 𝑦‾𝑗.) + (𝑦‾𝑗. − 𝜇𝑗)]
2
  

     = ∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝑦‾𝑗 . )
2
+∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

 (𝑦‾𝑗. − 𝜇𝑗)
2
+ 2∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝑦‾𝑗.)(𝑦‾𝑗. − 𝜇𝑗) 

     = ∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝑦‾𝑗.)
2
+ 𝐾∑  

𝐽

𝑗=1

  (𝑦‾𝑗. − 𝜇𝑗)
2
+ 2∑  

𝐽

𝑗=1

  (𝑦‾𝑗. − 𝜇𝑗)∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝑦‾𝑗.)
⏟          

=0

 

Note that: 

∑ 

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝑦‾𝑗.) = 0  for 𝑗 = 1,… , J 

⇒ 𝑆1 =∑ ∑ (𝑦𝑗𝑘 − 𝑦‾𝑗.)
2
+ 𝐾∑ (𝑦‾𝑗. − 𝜇𝑗)

2
 

or 

∑ 

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝜇𝑗)
2
=∑ ∑ (𝑦𝑗𝑘 − 𝑦‾𝑗.)

2
+ 𝐾∑ (𝑦‾𝑗. − 𝜇𝑗)

2
 

                                  ⇔∑  

𝑗

 ∑  

𝑘

  (𝑦𝑗𝑘 − 𝑦‾𝑗.)
2

⏟            

=∑  

𝑗

 ∑  

𝑘

  (𝑦𝑗𝑘 − 𝜇𝑗)
2
− 𝐾∑  

𝑗

  (𝑦‾𝑗. − 𝜇𝑗)
2

 

                                  ⇔ 𝑆̂1 =∑  

𝑗

 ∑  

𝑘

  (𝑦𝑗𝑘 − 𝜇𝑗)
2
− 𝐾∑  

𝑗

  (𝑦‾𝑗. − 𝜇𝑗)
2
 

                                  ⇔  
𝑆̂1
𝜎2
=
1

𝜎2
∑ ∑ (𝑦𝑗𝑘 − 𝜇𝑗)

2
−
𝐾

𝜎2
∑ 

𝑗

 (𝑦‾𝑗. − 𝜇𝑗)
2

 

Note:  

LSE of 𝜇𝑗 is 𝜇̂𝑗 = 𝑦‾𝑗. under 𝐻1 : 

𝑆̂1 =∑ ∑ (𝑦𝑗𝑘 − 𝜇̂𝑗)
2
=∑ ∑ (𝑦𝑗𝑘 − 𝑦‾𝑗.)

2
 

 

Distribution of 
𝑆̂1
2

𝜎2
 (under 𝐻1):We found that: 

1

𝜎2
𝑆̂1 =

1

𝜎2
∑ ∑ (𝑦𝑗𝑘 − 𝜇𝑗)

2
−
𝐾

𝜎2
∑ 

𝑗

  (𝑦‾𝑗. − 𝜇𝑗)
2
=∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (
𝑦𝑗𝑘 − 𝜇𝑗

𝜎
)
2

−∑  

𝑗=1

 (
𝑦‾𝑗. − 𝜇𝑗

𝜎/√𝐾
)

2

 

 

Recall: 

If 𝑦1, 𝑦2, ⋯ , 𝑦𝑛 iid 𝑁(𝜇, 𝜎2) then 𝑦‾~𝑁 (𝜇,
𝜎2

𝑛
) since 𝑦𝑗𝑘 are independent and 𝑦𝑗𝑘 ∼ 𝑁(𝜇𝑗, 𝜎

2), 

(1) We have 𝑦‾𝑗 . ~𝑁 (𝜇𝑗 ,
𝜎2

𝐾
) ;  𝑗 = 1,2 ⇒

𝑦‾𝑗.−𝜇𝑗
𝜎

√𝐾

∼ 𝑁(0,1)  (
𝑦‾𝑗.−𝜇𝑗

𝜎

√𝐾

)

2

=
𝐾

𝜎2
( 𝑦‾𝑗 . −𝜇𝑗)

2
∼ 𝜒(1)

2  



⇒∑  

2

𝑗=1

(
𝑦‾𝑗 . −𝜇𝑗

𝜎/√𝐾
)

2

∼ 𝜒(2)
2  

(2) 𝑦𝑗𝑘 ∼ 𝑁(𝜇𝑗, 𝜎
2)  ⇒

 𝑦𝑗𝑘−𝜇𝑗

𝜎
∼ 𝑁(0,1) ⇒ (

𝑦𝑗𝑘−𝜇𝑗

𝜎
)
2

∼ 𝜒(1)
2 ⇒ ∑  𝐽

𝑗=1 ∑  𝐾
𝑘=1 (

𝑦𝑗𝑘−𝜇𝑗

𝜎
)
2

∼ 𝜒(𝐽𝐾)
2  

Therefore:  

1

𝜎2
𝑆̂1 = 𝜒(𝐽𝐾)

2 − 𝜒(2)
2 ⇒ 𝜒(𝐽𝐾)

2 =
𝑆̂1
𝜎2
+ 𝜒(2)

2 ⇒
𝑆̂1
𝜎2
~𝜒(𝐽𝐾−2)

2  

(2) 

𝑆0 =∑ ∑ (𝑦𝑗𝑘 − 𝜇)
2
 ; ( under 𝐻0: 𝜇1 = 𝜇2 = 𝜇) 

     = ∑ ∑ (𝑦𝑗𝑘 − 𝑦‾.. + 𝑦‾.. − 𝜇)
2
=∑ ∑ [(𝑦𝑗𝑘 − 𝑦‾..) + (𝑦‾.. − 𝜇)]

2
 ; (𝑦‾.. =

∑  ∑  𝑦𝑗𝑘

𝐽𝐾
) 

     = ∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝑦‾..)
2
+∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦‾.. − 𝜇)
2 + 2∑  

J

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝑦‾..)(𝑦‾.. − 𝜇) 

     = ∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (𝑦𝑗𝑘 − 𝑦‾..)
2
+ 𝐽𝐾(𝑦‾.. − 𝜇)

2 + 2(𝑦‾.. − 𝜇)∑ ∑ (𝑦𝑗𝑘 − 𝑦‾..)⏟            
=0

 

⇒ 𝑆0 =∑ ∑ (𝑦𝑗𝑘 − 𝑦‾..)
2
+ 𝐽𝐾(𝑦‾.. − 𝜇)

2 

or  

∑ ∑ (𝑦𝑗𝑘 − 𝜇)
2
=∑ ∑ (𝑦𝑗𝑘 − 𝑦‾..)

2
+ 𝐽𝐾(𝑦‾.. − 𝜇)

2 

⇔∑ ∑ (𝑦𝑗𝑘 − 𝑦‾..)
2

⏟            
=∑ ∑ (𝑦𝑗𝑘 − 𝜇)

2
− 𝐽𝐾(𝑦‾.. − 𝜇)

2 

𝑆̂0
ˆ = ∑ ∑ (𝑦𝑗𝑘 − 𝜇)

2
− 𝐽𝐾(𝑦‾.. − 𝜇)

2 

⇔ 
𝑆̂0
𝜎2
=
1

𝜎2
∑ ∑ (𝑦𝑗𝑘 − 𝜇)

2
−
𝐽𝐾

𝜎2
(𝑦‾.. − 𝜇)

2 

Note:  

The LSE of 𝜇 is 𝜇̂ = 𝑦‾.. under 𝐻0: 

𝑆̂0 =∑ ∑ (𝑦𝑗𝑘 − 𝜇̂)
2
=∑ ∑ (𝑦𝑗𝑘 − 𝑦‾..)

2
 

Distribution of 
𝑆̂0

𝜎2
 under 𝐻0: 

We have found that 

𝑆̂0
𝜎2
=
1

𝜎2
∑ ∑ (𝑦𝑗𝑘 − 𝜇)

2
−
𝐽𝑘

𝜎2
(𝑦‾.. − 𝜇)

2 

=∑  

𝐽

𝑗=1

 ∑  

𝐾

𝑘=1

  (
𝑦𝑗𝑘 − 𝜇

𝜎
)
2

⏟            

− (
𝑦‾.. − 𝜇

𝜎/√𝐽𝑘
)

2

⏟      
 

                                                                     = 𝜒(𝐽𝐾)
2 − 𝜒(1)

2  

⇔ 𝜒(𝐽𝐾)
2 =

𝑆̂0
𝜎2
+ 𝜒(1)

2 ⇒
𝑆̂0
𝜎2
∼ 𝜒(𝐽𝐾−1)

2  



 

(f) We have found that 

𝑆̂0
𝜎2
∼ 𝜒(𝐽𝐾−1)

2  ( under 𝐻0)

𝑆̂1
𝜎2
∼ 𝜒(𝐽𝐾−2)

2  (under 𝐻1)   ⟶∗

 

Now, if 𝐻0 is true, 
𝑆̂0−𝑆̂1

𝜎2
∼ 𝜒(1)

2   (as (𝐽𝐾 − 1) − (𝐽𝐾 − 2) = 1)   ⟶∗∗ 

From *and **: 

𝐹 =

𝑆̂0 − 𝑆̂1
𝜎2

/(1)

𝑆̂1
𝜎2
/(𝐽𝐾 − 2)

=
𝑆̂0 − 𝑆̂1

𝑆̂1/(𝐽𝐾 − 2)
~𝐹(1, 𝐽𝐾 − 2) 

(g) 

𝐻0: 𝜇1 = 𝜇2 = 𝜇 

𝐻1: 𝜇1 ≠ 𝜇2 

∑ ∑ 𝑦𝑗𝑘 = 191.73, 𝑁 = 𝐽𝐾 = (2)(20) = 40 

                      𝑆̂0 =∑ ∑ (𝑦𝑗𝑘 − 𝜇̂)
2
=∑ ∑ (𝑦𝑗𝑘 − 𝑦‾..)

2
=∑ ∑ 𝑦𝑗𝑘

2 − 𝐽𝐾(𝑦‾..)
2

=∑ ∑ 𝑦𝑗𝑘
2 − (2)(20)(𝑦‾..)

2 = 945.241 − (40)(4.793)2 = 26.32704 

                     𝑆̂1 =∑  

2

𝑗=1

 ∑  

20

𝑘=1

  (𝑦𝑗𝑘 − 𝑦‾𝑗.)
2
=∑  

20

𝑘=1

  (𝑦1𝑘 − 𝑦‾1.)
2 +∑  

20

𝑘=1

  (𝑦2𝑘 − 𝑦‾2.)
2

= [∑  

20

𝑘=1

 𝑦1𝑘
2 − 𝐾(𝑦‾1. )

2] + [∑  

20

𝑘=1

 𝑦2𝑘
2 − 𝐾(𝑦‾2. )

2]

= [484.278 − (20)(4.86)2] + [460.964 − (20)(4.726)2] 

𝐹0 =
𝑆̂0 − 𝑆̂1

𝑆̂1/( 𝐽𝐾-2) 
=
26.32704 − 26.14848

26.14848/38
= 0.2595 

𝐹0 = 0.2595 < 𝐹0,05(1,38) = 4.098 

𝐹0 ∈ 𝐴𝑅 

∴  We do not reject 𝐻0 

 
(h) 

𝐹0 = 0.2595 (∼ 𝐹(1,38))
𝑡0 = 0.5116 (∼ 𝑡(38))  

𝑡0
2 = (0.5116)2 = 0.2617 

𝑡0
2 = 𝐹0  (The difference is because of rounding errors) 



 

(i) Calculating the residuals: 𝑒𝑗𝑘 = 𝑦𝑗𝑘 − 𝑦‾...  

[Minitab For Model 𝐻0]. 

The residuals are consistent with the assumptions of independence, equal variances and Normality. 

 

 

Ex. 2.2 
(a) 

𝐻0: 𝜇1 = 𝜇2
𝐻1: 𝜇1 ≠ 𝜇2

 

Unpaired t-test: 

 

Before   After 

𝑦‾1 = 103.25 𝑦‾2 = 100.60 

𝑠1
2 = 182.72 𝑠2

2 = 155.61 

𝑛1 = 20 𝑛2 = 20 

 

𝑁 = 𝑛1 + 𝑛2 = 40 

𝑦‾.. = 4.793 

𝑠2 = 0.673 

𝑠𝑝
2 =

(𝑛1 − 1)𝑠1
2 + (𝑛2 − 1)𝑠2

2

𝑛1 + 𝑛2 − 2
= 169.165 

𝑠𝑝 = 13.006 

𝑑𝑓 = 𝑛1 + 𝑛2 − 2 = 38 

𝑡0 =
𝑦‾1 − 𝑦‾2

𝑠𝑝√
1
𝑛1
+
1
𝑛2

=
103.25 − 100.60

13.006√
1
20 +

1
20

= 0.644 

|𝑡0| < 𝑡0.025,(38) = 2.024 

𝑡0 ∈ 𝐴𝑅 

∴ We do not reject  𝐻0: 𝜇1 = 𝜇2 at significance level 𝛼 = 0,05. 

 
 

(b) 𝜇𝐷 = 𝜇1 − 𝜇2; 𝐸(𝐷) = 𝐸(𝑦1 − 𝑦2) = 𝐸(𝑦1) − 𝐸(𝑦2) = 𝜇1 − 𝜇2 

𝐻0: 𝜇𝐷 = 0 

𝐻1: 𝜇𝐷 ≠ 0 

paired t-test 



 

𝑡0 =
𝐷‾

𝑆𝐷/√𝑛
=
𝐷‾

𝑆𝐷‾
=
2.645

0.9206
= 2.873 

𝐷‾ = 2.645 

𝑆𝐷‾ =
𝑆𝐷

√𝑛
=
4.117

√20
= 0.9206 

𝑆𝐷
2 = 16.947 ⇒ 𝑆𝐷 = 4.117 

|𝑡0| > 𝑡0,025(19) = 2.093

𝑡0 ∈ 𝑅𝑅
 

∴ we reject 𝐻0: 𝜇1 = 𝜇2 at significance level 𝛼 = 0.05. 

 
 

(c) The conclusions are: 

       (1) For 𝑡-test: {
𝐻0: 𝜇1 = 𝜇2 is not rejected 

 at 𝛼 = 0.05
 

      (2) For paired t-test: {
𝐻0: 𝜇1 = 𝜇2 is rejected 

 at 𝛼 = 0.05
 

 

(d) 

• We reached different conclusions. 

• The paired 𝑡-test is more approprite than 𝑡-test. 

• Assumptions: 

(1) For t-test: {

1. 𝑦𝑗𝑘 ∼ 𝑁(𝜇𝑗, 𝜎𝑗
2)

2.
3.

𝑦𝑗𝑘 are independent

𝜎1
2 = 𝜎2

2  
 

i.e. For (a) it is assumed that the 𝑌𝑗𝑘 's are independent and 𝑌𝑗𝑘 ∼ 𝑁(𝜇𝑗 , 𝜎
2) for all 𝑗 and for all 𝑘. 

(2) For paired t-test {

1. 𝑦𝑗𝑘 ∼ 𝑁(𝜇𝑗 , 𝜎𝑗
2)

2. 𝑦11, … , 𝑦1𝑘 are independent 

3. 𝑦21, … , 𝑦2𝑘 ane independent 

  

but 𝑦1𝑘 and 𝑦2𝑘 are not independent. 

i.e. For (b) it is assumed that the 𝐷𝑘 's are independent with 𝐷𝑘 ∼ 𝑁(𝜇𝐷 , 𝜎𝐷
2). The analysis in (b) does not 

involve assuming that 𝑦1𝑘 and 𝑦2𝑘 (i.e., 'before' and 'after' weights for the same man) are independent, so it is 

more appropriate. 

 



Ex 2.4:  

𝐸(𝑦) = ln  (𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2) 

⇒ 𝑒𝐸(𝑦) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 

⇒ 𝑔[𝐸(𝑦)] = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2; (𝑔(𝑥) = 𝑒𝑥) 

⇒ 𝑔[𝐸(𝑦
∼
)] = 𝑥  𝛽

∼
 

 

                                                                                     𝛽0     𝛽1       𝛽2 

𝑦
∼
=

[
 
 
 
 
 
3.15
4.85
6.50
7.20
8,25
16.50]

 
 
 
 
 

 , 𝑥 =

[
 
 
 
 
 
 
1 1.0 1.0
1 1.2 1.44
1 1.4 1.96
1 1.6 2.56
1 1.8 3.24
1 2.0 4.00

𝑥 𝑥2 ]
 
 
 
 
 
 

, 𝛽
∼
= [

𝛽0
𝛽1
𝛽2

] 

 

Ex 2.5: 

𝐸(𝑦𝑗𝑘) = 𝜇𝑗𝑘 = 𝜇 + 𝛼𝑗 + 𝛽𝑘  {
𝑦𝑗𝑘 ∼ 𝑁(𝜇𝑗𝑘, 𝜎

2); 𝑗 = 1,2 and 𝑘 = 1,2,3 

 independent 
 

⇒ E(𝑦
∼
) = 𝑥 𝛽

∼
 

constraints: 

 ∑  𝛼𝑗 = 0 ⇔ 𝛼2 = −𝛼1

 ∑  𝛽𝑘 = 0 ⇔ 𝛽3 = −𝛽1 − 𝛽2

 

 

                                                                                      𝜇      𝛼1      𝛽
1

     𝛽
2
     

𝑦
∼
=

[
 
 
 
 
 
𝑦11
𝑦12
𝑦13
𝑦21
𝑦22
𝑦23]
 
 
 
 
 

, 𝑥 =

[
 
 
 
 
 
1 1 1 0

1 1 0 1

1 1 −1 −1

1 −1 1 0

1 −1 0 1

1 −1 −1 −1]
 
 
 
 
 

 and 𝛽
∼
= [

𝜇

𝛼1
𝛽
1

𝛽
2

]. 

 


