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Chapter 1 
Ex. 1.1: 

𝑦1 ∼ 𝑁(1,3) and 𝑦2 ∼ 𝑁(2,5) independent   
𝑤1 = 𝑦1 + 2𝑦2 

𝑤2 = 4𝑦1 − 𝑦2 

 

⇒ 𝐸(𝑤1) = 𝐸(𝑦1 + 2𝑦2) = 𝐸(𝑦1) + 2𝐸(𝑦2) = 1 + (2)(2) = 5

𝐸(𝑤2) = 𝐸(4𝑦1 − 𝑦2) = 4𝐸(𝑦1) − 𝐸(𝑦2) = (4)(1) − 2 = 2
 

Var(𝑤1) = Var(𝑦1 + 2𝑦2) = Var(𝑦1) + 4Var(𝑦2) = 3 + (4)(5) = 23 

Var(𝑤2) = Var(4𝑦1 − 𝑦2) = 16Var(𝑦1) + Var(𝑦2) = (16)(3) + 5 = 53 

Cov(𝑤1, 𝑤2) = Cov(𝑦1 + 2𝑦2, 4𝑦1 − 𝑦2) = Cov(𝑦1, 4𝑦1) + Cov(𝑦1, −𝑦2) + Cov(2𝑦2, 4𝑦1) + Cov(2𝑦2, −𝑦2) 
                        = 4𝐶𝑜𝑣(𝑦1, 𝑦1) − 𝐶𝑜𝑣(𝑦1, 𝑦2) + (2)(4)𝐶𝑜𝑣(𝑦2, 𝑦1) − (2)𝐶𝑜𝑣(𝑦2, 𝑦2) 
                          = 4Var(𝑦1) − 0 + 0 − 2Var(𝑦2) = (4)(3) − (2)(5) = 12 − 10 = 2 

 

𝑤∼ = (
𝑤1
𝑤2
)  

𝐸(𝑤∼) = [
𝐸(𝑤1)

𝐸(𝑤2)
] = [

5
2
] = 𝜇

∼
∗ 

Cov(𝑤∼) = [
Var(𝑤1) Cov(𝑤1, 𝑤2)

Cov(𝑤1, 𝑤2) Var(𝑤2)
] = [

23 2
2 53

] = 𝑣∗ 

𝑤∼ ∼ MVN(𝜇∼
∗ , 𝑣∗) 

Another Solution: 

 

𝑤∼ = (
𝑤1
𝑤2
) = (

𝑦1 + 2𝑦2
4𝑦1 − 𝑦2

) = [
1 2
4 −1

] [
𝑦1
𝑦2
] = 𝐴 𝑦

∼
 

𝐸(𝑤∼) = 𝐸(𝐴 𝑦∼
) = 𝐴𝐸(𝑦

∼
) = [

1 2
4 −1

] [
1
2
] = [

5
2
] = 𝜇

∼
∗ 

 

Cov(𝑤∼) = Cov(𝐴 𝑦∼
) = 𝐴 Cov(𝑦

∼
) 𝐴′ 

Cov(𝑦
∼
) = [

Var(𝑦1) Cov(𝑦1, 𝑦2)

Cov(𝑦1, 𝑦2) Var(𝑦1)
] = [

3 0
0 5

] 

Note: 𝑦1 and 𝑦2 are independent ⇒ Cov(𝑌1, 𝑌2) = 0 

∴ Cov(𝑤∼) = [
1 2
4 −1

] [
3 0
0 5

] [
1 4
2 −1

] = [
3 10
12 −5

] [
1 4
2 −1

] = [
23 2
2 53

] = 𝑣∗ 

 

𝑦
∼
∼ MVN(𝜇

∼
, 𝑣 ), 𝐸(𝑦

∼
) = 𝜇

∼
= [
1
2
] , Var(𝑦

∼
) = 𝑣 = [3 0

0 5
] 

∴ 𝑤∼ ∼ MVN(𝜇∼
∗ , 𝑣∗) 

 

Another Solution: 

𝑤1 = 𝑦1 + 2𝑦2 = (1 2) (
𝑦1
𝑦2
) = 𝑎1

′

∼
𝑦
∼

 

𝑤2 = 4𝑦1 − 𝑦2 = (4 − 1) (
𝑦1
𝑦2
) = 𝑎2

′

∼
𝑦
∼

 

 

⇒ 𝐸(𝑦
∼
) = 𝜇

∼
= [
1
2
] , Var(𝑦

∼
) = 𝑣 = [3 0

0 5
] 

𝐸(𝑤1) = 𝐸 (𝑎1
′

∼
𝑦
∼
) = 𝑎1

′

∼
𝐸(𝑦
∼
) = 𝑎1

′

∼
𝜇
∼
= (1 2) (

1

2
) = 1 + 4 = 5 

𝐸(𝑤2) = 𝐸 (𝑎2
′

∼
𝑦
∼
) = 𝑎2

′

∼
𝐸(𝑦
∼
) = 𝑎1

′

∼
𝜇
∼
= (4 −1) (

1

2
) = 4 − 2 = 2 
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∴ 𝜇
∼
∗ = 𝐸(𝑤∼) = (

5

2
)   where 𝑤∼ = (

𝑤1
𝑤2
) 

 

Var(𝑤1) = Var (𝑎1
′

∼
𝑦
∼
) = 𝑎1

′

∼
Cov(𝑦

∼
)𝑎1∼

= (1 2) (
3 0
0 5

) (
1

2
) = 23 

Var(𝑤2) = Var (𝑎2
′

∼
𝑦
∼
) = 𝑎2

′

∼
Cov(𝑦

∼
)𝑎2∼

= (4 −1) (
3 0
0 5

) (
4

−1
) = 53 

𝐶ov(𝑤1, 𝑤2) = 𝐶ov (𝑎1
′

∼
𝑦
∼
,𝑎2
′

∼
𝑦
∼
) = 𝑎1

′

∼
Cov(𝑦

∼
)𝑎2∼

= (1 2) (
3 0
0 5

) (
4

−1
) = 2 

 

∴ 𝑣∗ = Cov(𝑤∼) = (
23 2
2 53

) 

∴ 𝑤∼ ∼ MVN(𝜇∼
∗ , 𝑣∗) 

--------------------------------------------------------------------------------------------------------------------------------------- 
Ex 1.2: 

𝑌1 ∼ 𝑁(0,1)
𝑦2 ∼ 𝑁(3,4)

}  independent ⇒ Cov(𝑦1, 𝑦2) = 0 

𝑦
∼
= (

𝑦1
𝑦2
) , 𝜇
∼
= 𝐸(𝑦

∼
) = (

0

3
) , 𝑣 = Cov(𝑦

∼
) = [

1 0
0 4

] 

𝑦
∼
∼ MVN(𝜇

∼
, 𝑣 ) 

 

(a) 𝑦1 ∼ 𝑁(0,1) ⇒ 𝑦1
2 ∼ 𝜒1

2 

(b) Let 𝑤∼ = [
𝑦1
𝑦2−3

2

] 

Note: 𝑦2 ∼ 𝑁(3,4) ⇔
𝑦2−3

2
∼ 𝑁(0,1) ⇔ (

𝑦2−3

2
)
2
∼ 𝜒1

2 

 

𝑤∼
′𝑤∼ = (𝑦1,

𝑦2 − 3

2
)(

𝑦1
𝑦2 − 3
2

) = 𝑦1
2 + (

𝑦2 − 3

2
)
2

= 𝜒1
2 + 𝜒1

2 

and as 𝑦1
2 and (

𝑦2−3

2
)
2
are independent, so, 

∴ 𝑤∼
′𝑤∼ ∼ 𝜒2

2 

(c) 

𝑦
∼
= (

𝑦1
𝑦2
) ;  𝜇

∼
= [
0
3
] ; 𝑣 = [

1 0
0 4

] ; 𝑣−1 = [
1 0

0
1

4

] 

𝑥 = 𝑦′
∼
𝑣−1 𝑦

∼
= (𝑦1, 𝑦2) [

1 0

0
1

4

] (
𝑦1
𝑦2
) = (𝑦1,

𝑦2
4
) (
𝑦1
𝑦2
) = 𝑦1

2 +
1

4
𝑦2
2 

𝑥 = 𝑦′
∼
𝑣−1 𝑦

∼
∼ 𝑋2(2, 𝜆) ;  𝜆 = 𝜇

∼
′ 𝑣−1 𝜇

∼
= (0,3) (

1 0

0
1

4

) (
0

3
) = (0,

3

4
) (
0

3
) =

9

4
= 2.25 

 

--------------------------------------------------------------------------------------------------------------------------------------- 
Ex 1.3: 

𝑦
∼
= (𝑦1

𝑦2
) ;  𝑦

∼
∼ MVN(𝜇

∼
, 𝑣 ) ; 𝜇

∼
= [
2
3
] ;𝑣 = [4 1

1 9
]; 𝑣−1 =

1

4(9)−12
[
9 −1
−1 4

] =
1

35
[
9 −1
−1 4

] 

(a) 

(𝑦
∼
− 𝜇
∼
)
′
𝑣−1(𝑦

∼
− 𝜇
∼
) ∼? 

 

(𝑦
∼
− 𝜇
∼
)
′
= (

𝑦1
𝑦2
) − [

2
3
] = (

𝑦1 − 2

𝑦2 − 3
) 
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⇒ (𝑦
∼
− 𝜇
∼
)
′
𝑣−1(𝑦

∼
− 𝜇
∼
) = (

𝑦1 − 2

𝑦2 − 3
)
′ 1

35
[
9 −1
−1 4

] (
𝑦1 − 2

𝑦2 − 3
) =

1

35
[9(𝑦1 − 2)

2 − 2(𝑦1 − 2)(𝑦2 − 3) + 4(𝑦2 − 3)
2] 

Note that: 

𝑥∼
′ 𝐴 𝑥∼ = (𝑥1, 𝑥2) [

𝑎11 𝑎12
𝑎21 𝑎22

] (
𝑥1
𝑥2
) =∑  

2

𝑖=1

∑ 

2

𝑗=1

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 

and as 𝐴′ = 𝐴 symmetric (𝑎𝑖𝑗 = 𝑎𝑗𝑖), 

⇒ 𝑥∼
′ 𝐴 𝑥∼ =∑ 

2

𝑖=1

𝑎𝑖𝑖𝑥𝑖
2 + 𝑎12𝑥1𝑥2 + 𝑎21𝑥2𝑥1 =∑ 

2

𝑖=1

 𝑎𝑖1𝑥𝑖
2 + 2𝑎12𝑥1𝑥2 = 𝑎11𝑥1

2 + 𝑎22𝑥2
2 + 2𝑎12𝑥1𝑥2 

 

∴ (𝑦
∼
− 𝜇
∼
)
′
𝑣−1(𝑦

∼
− 𝜇
∼
) ∼ 𝜒2

2 

(b) 

𝑦
∼
′ 𝑣−1 𝑦

∼
 = (𝑦1, 𝑦2)

1

35
(
9 −1
−1 4

)(
𝑦1
𝑦2
) =

1

35
[9𝑦1

2 + 4𝑦2
2 − 2𝑦1𝑦2]

 

 

⇒ 𝑦
∼

′ 𝑣−1 𝑦
∼
∼ 𝑋2(2, 𝜆) 

where  

𝜆 = 𝜇
∼
′ 𝑣−1 𝜇

∼
= (2,3)

1

35
[
9 −1
−1 4

] (
2

3
) =

1

35
[(9)(2)2 + (4)(3)2 − (2)(2)(3)] =

37

35
 

--------------------------------------------------------------------------------------------------------------------------------------- 
 
Ex 1.4: 
𝑦1, 𝑦2, … , 𝑦𝑛 are imdependent and 𝑦𝑖 ∼ 𝑁(𝜇1𝜎

2). 

𝑦‾ =
1

𝑛
∑  

𝑛

𝑖=1

 𝑦𝑖  ;  𝑆
2 =

1

𝑛 − 1
∑  

𝑛

𝑖=1

  (𝑦𝑖 − 𝑦‾)
2; 𝑦
∼
= (

𝑦1
⋮
𝑦𝑛
) ; 𝜇
∼
= 𝐸(𝑦

∼
) = [

𝜇
⋮
𝜇
] ;  Cov(𝑦

∼
) = [

𝜎2 0
⋮ 0
02 𝜎2

] = 𝜎2𝐼 

 
 
(a) 

𝑦‾ =
1

𝑛
∑  

𝑛

𝑖=1

 𝑦𝑖 

⇒ 𝐸(𝑦‾) =
1

𝑛
∑  

𝑛

𝑖=1

 𝐸(𝑦𝑖) =
1

𝑛
∑  

𝑛

𝑖=1

 𝜇 =
1

𝑛
(𝑛𝜇) = 𝜇 

⇒ Var(𝑦‾) = Var(
1

𝑛
∑  

𝑛

𝑖=1

 𝑦𝑖) =
1

𝑛2
Var(∑  

𝑛

𝑖=1

 𝑦𝑖) =
1

𝑛2
∑ 

𝑛

𝑖=1

 Var(𝑦𝑖) =
1

𝑛2
∑ 

𝑛

𝑖=1

 𝜎2 =
𝑛

𝑛2
𝜎2 =

𝜎2

𝑛
 

∴ 𝑦‾ ∼ 𝑁(𝜇,
𝜎2

𝑛
) 

Another Solution : 

𝑦‾ =
1

𝑛
∑  

𝑛

𝑖=1

 𝑦𝑖 =
1

𝑛
(1,… ,1) (

𝑦1
⋮
𝑦𝑛
) =

1

𝑛
1∼
′ 𝑦
∼
  ; 1∼ = (

1
⋮
1
) 

⇒ 𝐸(𝑦‾) = 𝐸 (
1

𝑛
1∼
′ 𝑦
∼
) =

1

𝑛
1∼
′ 𝐸(𝑦

∼
) =

1

𝑛
1∼
′ 𝜇
∼
=
1

𝑛
(1,… ,1) (

𝜇
⋮
𝜇
) =

1

𝑛
∑  

𝑛

𝑖=1

 𝜇 =
𝑛

𝑛
𝜇 = 𝜇 

⇒ Var(𝑦‾) = Var (
1

𝑛
1∼
′ 𝑦
∼
) =

1

𝑛2
Var(1∼

′ 𝑦
∼
) =

1

𝑛2
1′∼ Cov(𝑦∼

) 1∼ =
1

𝑛2
1′∼ (𝜎

2𝐼) 1∼ =
𝜎2

𝑛2
1′∼ 1∼ =

𝜎2

𝑛2
(1, … ,1) (

1
⋮
1
) 
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                         =
𝜎2

𝑛2
(𝑛) =

𝜎2

𝑛
 

(b) 

  𝑠2 =
1

𝑛−1
∑  𝑛
𝑖=1   (𝑦𝑖 − 𝑦‾)

2 =
1

𝑛−1
∑  𝑛
𝑖=1   (𝑦𝑖 − 𝜇 + 𝜇 − 𝑦‾)

2 =
1

𝑛−1
∑  𝑛
𝑖=1   [(𝑦𝑖 − 𝜇) − (𝑦‾ − 𝜇)]

2 

      =
1

𝑛−1
∑  𝑛
𝑖=1   [(𝑦𝑖 − 𝜇)

2 + (𝑦‾ − 𝜇)2 − 2(𝑦𝑖 − 𝜇)(𝑦‾ − 𝜇)] 

      =
1

𝑛−1
[∑  𝑛
𝑖=1   (𝑦𝑖 − 𝜇)

2 + ∑  𝑛
𝑖=1   (𝑦‾ − 𝜇)

2 − 2∑  𝑛
𝑖=1   (𝑦𝑖 − 𝜇)(𝑦‾ − 𝜇)] 

      =
1

𝑛−1
[∑  𝑛
𝑖=1   (𝑦𝑖 − 𝜇)

2 + 𝑛(𝑦‾ − 𝜇)2 − 2(𝑦‾ − 𝜇)∑  𝑛
𝑖=1   (𝑦𝑖 − 𝜇)] 

      =
1

𝑛−1
{∑  𝑛

𝑖=1 (𝑦𝑖 − 𝜇)
2 + 𝑛(𝑦‾ − 𝜇)2 − 2(𝑦‾ − 𝜇)[∑  𝑛

𝑖=1  𝑦𝑖 − ∑  𝑛
𝑖=1 𝜇]} 

      =
1

𝑛−1
{∑  𝑛

𝑖=1 (𝑦𝑖 − 𝜇)
2 + 𝑛(𝑦‾ − 𝜇)2 − 2(𝑦‾ − 𝜇)[𝑛𝑦‾ − 𝑛𝜇]} 

      =
1

𝑛−1
[∑  𝑛
𝑖=1 (𝑦𝑖 − 𝜇)

2 + 𝑛(𝑦‾ − 𝜇) − 2(𝑦‾ − 𝜇)𝑛(𝑦‾ − 𝜇)] 

      =
1

𝑛−1
[∑  𝑛
𝑖=1   (𝑦𝑖 − 𝜇)

2 − 𝑛(𝑦‾ − 𝜇)2] 

 
(c) 

𝑆2 =
1

𝑛 − 1
[∑  

𝑛

𝑖=1

  (𝑦𝑖 − 𝜇)
2 − 𝑛(𝑦‾ − 𝜇)2] 

⇒ (𝑛 − 1)𝑆2 =∑ 

𝑛

𝑖=1

  (𝑦𝑖 − 𝜇)
2 − 𝑛(𝑦‾ − 𝜇)2 

⇒∑ 

𝑛

𝑖=1

  (𝑦𝑖 − 𝜇)
2 = (𝑛 − 1)𝑆2 + 𝑛(𝑦‾ − 𝜇)2 

⇒∑ 

𝑛

𝑖=1

 
(𝑦𝑖 − 𝜇)

2

𝜎2
=
(𝑛 − 1)𝑆2

𝜎2
+
𝑛(𝑦‾ − 𝜇)2

𝜎2
 

⇒∑ 

𝑛

𝑖=1

  (
𝑦𝑖 − 𝜇

𝜎
)
2

=
(𝑛 − 1)𝑆2

𝜎2
+ (

𝑦‾ − 𝜇

𝜎/√𝑛
)

2

 

Note: 

1. 𝑌𝑖 ∼ 𝑁(𝜇, 𝜎
2) ⇔

𝑦𝑖−𝜇

𝜎
∼ 𝑁(0,1) ⇔ (

𝑌𝑖−𝜇

𝜎
)
2
∼ 𝜒(1)

2  , (𝑖 = 1,2,⋯ , 𝑛) 

𝑦1, 𝑦2, … , 𝑦𝑛 are independent ⇒ (
𝑌1−𝜇

𝜎
)
2
, … , (

𝑦𝑛−𝜇

𝜎
)
2
 are independent 

∴  ∑  

𝑛

𝑖=1

(
𝑦𝑖 − 𝜇

𝜎
)
2

∼ 𝜒2(𝑛) 

2. 𝑦‾ ∼ 𝑁 (𝜇,
𝜎2

𝑛
) ⇔

𝑦‾−𝜇

𝜎/√𝑛
∼ 𝑁(0,1) ⇔ (

𝑦‾−𝜇

𝜎/√𝑛
)
2
∼ 𝜒(1)

2  

Now; 

∑ 

𝑛

𝑖=1

  (
𝑦𝑖 − 𝜇

𝜎
)
2

=
(𝑛 − 1)𝑆2

𝜎2
+ (

𝑦‾ − 𝜇

𝜎√𝑛𝑛
)

2

 

𝑋(𝑛)
2 = 𝑋(𝑛−1)

2 + 𝜒(1)
2   (Cochran's Theorem) 

Therefore, 
(𝑛−1)𝑆2

𝜎2
∼ 𝜒2(𝑛 − 1) and 

(𝑛−1)𝑠2

𝜎2
 and (

𝑦‾−𝜇

𝜎/√𝑛
)
2
 are independent ⇒ 𝑆2 and 𝑦‾ are independent 

Note: This can also show by Cochran's Theorem. 
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(d) From (c), we have shown that 

(𝑛 − 1)𝑠2

𝜎2
∼ 𝜒2(𝑛 − 1) 

This can also be shown by Cocharn's Theorem. 

 

(e)  
𝑦‾−𝜇

𝑠/√𝑛
∼ ? 

Note: 

1. 
𝑦‾−𝜇

𝜎/√𝑛
∼ 𝑁(0,1) 

2. 
(𝑛−1)𝑠2

𝜎2
∼ 𝜒2(𝑛 − 1) 

3. 𝑌‾  and 𝑆2 are indepondat 

4. If 𝑍 ∼ 𝑁(0,1), 𝑋 ∼ 𝜒2(𝑚), and 𝑍 and 𝑋 are independent, then 

𝑡 =
𝑧

√𝑥/𝑚
∼ 𝑡(𝑚) 

Now, 

𝑡 =

𝑦‾ − 𝜇

𝜎/√𝑛

√(𝑛 − 1)𝑠
2

𝜎2
/(𝑛 − 1)

=

√𝑛(𝑦‾ − 𝜇)
𝜎

√𝑠
2

𝜎2

=

√𝑛(𝑦‾ − 𝜇)
𝜎
𝑠
𝜎

=
√𝑛(𝑦‾ − 𝜇)

𝑠
=
𝑦‾ − 𝜇

𝑠/√𝑛
∼ 𝑡(𝑛 − 1) 

--------------------------------------------------------------------------------------------------------------------------------------- 
 

Ex 1.5: (See Example in Section 1.6.2) 
𝑦1, 𝑦2, … , 𝑦𝑛 are independent, and 𝑦𝑖 ∼ Poisson(𝜃) ⇔ 𝑦1, 𝑦2, … , 𝑦𝑛 iid Poisson( 𝜃 ) (random sample) 
 
(a) Suppose that 𝑦 ∼ Poissin ( 𝜃 ) The pmf is 

𝑓𝑦(𝑦; 𝜃) =
𝑒−𝜃𝜃𝑦

𝑦!
; 𝑦 = 0,1,2,⋯ 

𝐸(𝑦) = ∑  

∞

𝑦=0

 𝑦𝑓𝑦(𝑦; 𝜃) = ∑  

∞

𝑦=0

 𝑦
𝑒−𝜃𝜃𝑦

𝑦!
= 𝑒−𝜃∑   𝑦

∞

𝑦=0

 
𝜃𝑦

𝑦!
= 𝑒−𝜃∑  

∞

𝑦=1

 
𝑦𝜃𝑦

𝑦!
= 𝑒−𝜃∑  

∞

𝑦=1

 
𝑦𝜃𝑦

𝑦(𝑦 − 1)!
= 𝑒−𝜃∑  

∞

𝑦=1

 
𝜃𝑦

(𝑦 − 1)!
 

                   = 𝑒−𝜃𝜃∑  

∞

𝑦=1

 
𝜃𝑦−1

(𝑦 − 1)!
= 𝜃𝑒−𝜃∑  

∞

𝑘=0

 
𝜃𝑘

𝑘
 ; (𝑘 = 𝑦 − 1) 

Result: 

∑  

∞

𝑘=0

 
𝑥𝑘

𝑘!
= 𝑒𝑥 [ Mclaurin Expansion of 𝑓(𝑥) = 𝑒𝑥] 

∴ 𝐸(𝑦) = 𝜃𝑒−𝜃∑  

∞

𝑘=0

 
𝜃𝑘

𝑘
= 𝜃𝑒−𝜃𝑒𝜃 = 𝜃𝑒𝜃−𝜃 = 𝜃𝑒0 = 𝜃. 

 

(b)  𝜃 = 𝑒𝛽 ⇔ 𝛽 = ln (𝜃) 
We need to find the maximum likelihood estimator (MLE) of 𝛽. 
First: MLE of 𝜃 : (See Example in Section 1.62) 

𝑓(𝑦𝑖 , 𝜃) =
𝑒−𝜃𝜃𝑦𝑖

𝑦𝑖!
 𝑦𝑖 = 0,1,2, … 

ln 𝑓(𝑦𝑖 , 𝜃)  = ln (𝑒
−𝜃) + ln (𝜃𝑦𝑖) − ln (𝑦𝑖!) = −𝜃 + 𝑦𝑖ln (𝜃) − ln (𝑦𝑖!) 

The log-likelihood function is: 
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𝑙(𝜃; 𝑦
∼
) =∑  

𝑛

𝑖=1

 ln 𝑓(𝑦𝑖; 𝜃) =∑  

𝑛

𝑖=1

  [−𝜃 + 𝑦𝑖ln (𝜃) − ln (𝑦𝑖!)] = −𝜃𝑛 + ln (𝜃)∑  

𝑛

𝑖=1

 𝑦𝑖 −∑ 

𝑛

𝑖=1

 ln (𝑦𝑖!) 

⇒
𝜕𝑙(𝜃; 𝑦

∼
)

𝜕𝜃
= −𝑛 +

1

𝜃
∑  

𝑛

𝑖=1

 𝑦𝑖 

𝜕𝑙(𝜃; 𝑦
∼
)

𝜕𝜃
 0=

set ⇔ 0 = −𝑛 +
1

𝜃
∑  

𝑛

𝑖=1

 𝑦𝑖 ⇔ 
1

𝜃
∑  

𝑛

𝑖=1

 𝑦𝑖 = 𝑛 ⇔ 𝜃 =
∑  𝑛
𝑖=1  𝑦𝑖
𝑛

= y 

We need to make sure that 𝑦‾ maximize 𝑙(𝜃; 𝑦
∼
) not minimizing, 

𝜕2𝑙(𝜃; 𝑦
∼
)

𝜕𝜃2
|
𝜃=𝜃̂

=
𝜕

𝜕𝜃
[−𝑛 +

1

𝜃
∑  

𝑛

𝑖=1

 𝑦𝑖] = −
∑  𝑛
𝑖=1  𝑦𝑖
𝜃2

|
𝜃=𝑦‾

= −
∑  𝑦𝑖
𝑦‾2

= −
𝑛𝑦‾

𝑦‾2
= −

𝑛

𝑦‾
< 0 

as 𝑛 > 0  and y‾ > 0. 

 

∴ The MLE of 𝜃 is 𝜃̂ = 𝑦‾. 
Second: Using invariance property of MLE, 
The MLE of 𝛽 = ln (𝜃) is: 

𝛽̂ = ln (𝜃̂) = ln (𝑦‾). 
 

(c) 𝑠 = ∑  𝑛
𝑖=1 (𝑦𝑖 − 𝑒

𝛽)
2
 

we need to find the value of 𝛽 that minimizes 𝑠 : [Least Square Estimator of 𝛽 ]: 
 

𝜕𝑠

𝜕𝛽
=
𝜕

𝜕𝛽
∑  

𝑛

𝑖=1

  (𝑦𝑖 − 𝑒
𝛽)
2
=∑ 

𝑛

𝑖=1

 
𝜕

𝜕𝛽
(𝑦𝑖 − 𝑒

𝛽)
2
=∑  

𝑛

𝑖=1

 2(𝑦𝑖 − 𝑒
𝛽)(−𝑒𝛽) = −2𝑒𝛽∑ 

𝑛

𝑖=1

  (𝑦𝑖 − 𝑒
𝛽)

= −2𝑒𝛽 [∑  

𝑛

𝑖=1

 𝑦𝑖 − 𝑛𝑒
𝛽] 

𝜕𝑠

𝛾𝛽
 0=

set ⇔ −2𝑒𝛽 [∑  

𝑛

𝑖=1

 𝑦𝑖 − 𝑛𝑒
𝛽] = 0 ⇔∑ 𝑦𝑖 − 𝑛𝑒

𝛽 = 0 ⇔ ∑  

𝑛

𝑖=1

 𝑦𝑖 = 𝑛𝑒
𝛽 ⇔ 𝑒𝛽 =

∑  𝑛
𝑖=1  𝑦𝑖
𝑛

= 𝑦‾ 

⇔ 𝛽̂ = ln(𝑦‾) →  Same result as in (𝑏) 

We need to make sure that 𝛽̂ = ln (𝑦‾) minimizes 𝑠 not maximizing: 
𝜕2𝑠

𝜕𝛽2
|
𝛽=𝛽

=
𝜕

𝜕𝛽
[−2𝑒𝛽(Σ𝑦𝑖 − 𝑛𝑒

𝛽)]  = −2
𝜕

𝜕𝛽
[𝑒𝛽(Σ𝑦𝑖 − 𝑛𝑒

𝛽)] = −2{𝑒𝛽(Σ𝑦𝑖 − 𝑛𝑒
𝛽) + 𝑒𝛽(−𝑛𝑒𝛽)}            

= −2{𝑒𝛽Σ𝑦𝑖 − 𝑛𝑒
2𝛽 − 𝑛𝑒2𝛽} = −2[𝑒𝛽Σ𝑦𝑖 − 2𝑛𝑒

2𝛽] = −2𝑒𝛽[Σ𝑦𝑖 − 2𝑛𝑒
𝛽] 

⇒
𝜕2𝑠

𝜕𝛽2
|
𝛽̂=ln(𝑦‾)

= −2𝑒ln(𝑦‾)[Σ𝑦𝑖 − 2𝑛𝑒
ln(𝑦‾)] = −2𝑦‾(Σ𝑦𝑖 − 2𝑛𝑦‾) = −2𝑦‾(𝑛𝑦‾ − 2𝑛𝑦‾) = −2𝑦‾(−𝑛𝑦‾) = +2𝑦‾𝑛𝑦‾ 

                                      = 2𝑛(𝑦‾)2 > 0 

as 𝑦‾ ⩾ 0. 

∴ 𝛽̂ = ln (𝑦‾) minimizes 𝑠 = ∑  𝑛
𝑖=1 (𝑦𝑖 − 𝑒

𝛽)
2
, and 𝛽̂ is the least Squares Estimator of 𝛽. 

 

--------------------------------------------------------------------------------------------------------------------------------------- 
 
Ex 1.6: 
Table 1. 4  
𝑛𝑖 = number of eggs of the 𝑖-th insect. 
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𝑦𝑖 = number of female eggs of the 𝑖-th insect. 
𝑛𝑖 − 𝑦𝑖 = number of male eggs of the 𝑖-th insect. 
𝑖 = 1,2, … ,16 
 

 
(a) The proportion of female eggs of the 𝑖-th insect is: 

𝑝𝑖 =
𝑦𝑖
𝑛𝑖

 

{
 
 
 

 
 
 𝑝1 =

𝑦1
𝑛1
=
18

29
= 0.62

𝑝2 =
𝑦2
𝑛2
=
31

53
= 0.58

⋮

𝑝16 =
𝑦16
𝑛16

=
7

19
= 0,37

 

 
(b)  𝑦𝑖 = number of female eggs (successes) of the 
𝑛𝑖 = Total number of eggs of the 𝑖-th insect. 

{
𝑦𝑖 ∼ Binomial(𝜃)

𝑦1, 𝑦2, … 𝑦𝑛 are independent  

We need to find the MLE of 𝜃 : 

𝑓(𝑦𝑖 , 𝜃) = (
𝑛𝑖
𝑦𝑖
)𝜃𝑦𝑖(1 − 𝜃)𝑛𝑖−𝑦𝑖; 𝑦𝑖 = 0,… , 𝑛𝑖 

ln 𝑓(𝑦𝑖 , 𝜃) = ln (
𝑛𝑖
𝑦𝑖
) + ln (𝜃𝑦𝑖) + ln [(1 − 𝜃)𝑛𝑖−𝑦𝑖]  =ln (

𝑛𝑖
𝑦𝑖
) + 𝑦𝑖ln (𝜃) + (𝑛𝑖 − 𝑦𝑖)ln (1 − 𝜃). 

The log-likelikood function is: 

𝑙(𝜃; 𝑦
∼
) =∑  

𝑛

𝑖=1

  ln 𝑓(𝑦𝑖; 𝜃) =∑  

𝑛

𝑖=1

  {ln [(
𝑛𝑖
𝑦𝑖
)] + 𝑦𝑖 ln(𝜃) + (𝑛𝑖 − 𝑦𝑖) ln(1 − 𝜃)}                                                

= ∑  

𝑛

𝑖=1

 ln [(
𝑛𝑖
𝑦𝑖
)] + ln (𝜃)∑  

𝑛

𝑖=1

 𝑦𝑖 + ln (1 − 𝜃)∑  

𝑛

𝑖=1

  (𝑛𝑖 − 𝑦𝑖) 

       ⇒
𝜕ℓ(𝜃; 𝑦

∼
)

𝜕𝜃
=
∑  𝑦𝑖
𝜃

−
∑  (𝑛𝑖 − 𝑦𝑖)

1 − 𝜃
=
(1 − 𝜃)∑  𝑦𝑖 − 𝜃∑  (𝑛𝑖 − 𝑦𝑖)

𝜃(1 − 𝜃)

=
∑  𝑛
𝑖=1  𝑦𝑖 − 𝜃∑  𝑛

𝑖=1  𝑦𝑖 − 𝜃∑  𝑛
𝑖=1  𝑛𝑖 + 𝜃∑  𝑛

𝑖=1  𝑦𝑖
𝜃(1 − 𝜃)

=
∑  𝑦𝑖 − 𝜃∑  𝑛𝑖
𝜃(1 − 𝜃)

; (0 < 𝜃 < 1) 

⇒
𝜕𝑙(𝜃; 𝑦

∼
)

𝜕𝜃
=

 Set 
0 ⇔  Σ𝑦𝑖 = 𝜃Σ𝑛𝑖 ⇔ 𝜃̂ =

∑  𝑛
𝑖=1  𝑦𝑖
∑  𝑛
𝑖=1  𝑛𝑖

=
363

734
= 0.49455 ≈ 0.495 
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We need to make sure that 𝜃̂ maximizes the likelihood function not minimizing; 

  
𝜕2𝑙(𝜃,𝑦

∼
)

𝜕𝜃2
=

𝜕

𝜕𝜃
[
∑  𝑦𝑖−𝜃Σ𝑛𝑖]

𝜃(1−𝜃)
] =

1

𝜃2(1−𝜃)2
{𝜃(1 − 𝜃)[−Σ𝑛𝑖] − [Σ𝑦𝑖 − 𝜃Σ𝑛𝑖][1 − 2𝜃]} 

              =
1

𝜃2(1−𝜃)2
[−𝜃Σ𝑛𝑖 + 𝜃

2Σ𝑛𝑖 − Σ𝑦𝑖 + 2𝜃Σ𝑦𝑖 + 𝜃Σ𝑛𝑖 − 2𝜃Σ𝑛𝑖
2] =

1

𝜃2(1−𝜃)2
[−2𝜃2∑  𝑛𝑖 + 2𝜃 ∑  𝑦𝑖 − Σ𝑦𝑖] 

⇒
𝜕2𝑙(𝜃,𝑦

∼
)

𝜕𝜃2
|
𝜃̂= 

∑  𝑦𝑖
∑  𝑛𝑖

=
1

𝜃̂2(1−𝜃̂)2
[−2(

∑  𝑦𝑖

∑  𝑛𝑖
)
2
∑  𝑛𝑖 + 2(

∑  𝑦𝑖

∑  𝑛𝑖
)∑  𝑦𝑖 − ∑  𝑦𝑖]  =

1

𝜃̂2(1−𝜃̂)2
[−2

(∑  𝑦𝑖)
2

∑  𝑛𝑖
+ 2

(∑  𝑦𝑖)
2

∑  𝑛𝑖
− ∑  𝑦𝑖] 

                            = −
∑  𝑦𝑖

𝜃̂2(1−𝜃̂)2
< 0 ; as Σ𝑦𝑖 > 0 

∴ 𝜃̂ =
∑  𝑦𝑖

∑  𝑛𝑖
 is the MLE of 𝜃. 

 
(c)  
Numerical Method (Newton-Raphson Method):  
we need to solve 

𝜕𝑙(𝜃; 𝑦
∼
)

𝜕𝜃
= 0 ⇔

∑  𝑦𝑖 − 𝜃∑  𝑛𝑖
𝜃(1 − 𝜃)

= 0 ⇔
363 − 734𝜃

𝜃(1 − 𝜃)
= 0 

Let: 

𝑔(𝜃) =
363 − 734𝜃

𝜃(1 − 𝜃)
 

⇒ 𝑔′(𝜃) =
1

𝜃2(1 − 𝜃)2
[−(2)(734)𝜃2 + (2)(363)𝜃 − 363] =

1

𝜃2(1 − 𝜃)2
[726𝜃 − 1468𝜃2 − 363] 

The iterative procedure for  𝑟 = 1,2,3,…: 

𝜃̂(𝑟+1) = 𝜃̂(𝑟) −
𝑔(𝜃̂(𝑟))

𝑔′(𝜃̂(𝑟))
= 𝜃̂(𝑟) −

363 − 734𝜃̂(𝑟)

𝜃̂(𝑟)(1 − 𝜃̂(𝑟))

726𝜃̂(𝑟) − 1468(𝜃̂(𝑟))
2
− 363

(𝜃̂(𝑟))
2
(1 − (𝜃̂(𝑟)))

2

= 𝜃̂(𝑟) −
363 − 734𝜃̂(𝑟)

726𝜃̂(𝑟) − 1468(𝜃̂(𝑟))
2
− 363

𝜃̂(𝑟)(1 − 𝜃̂(𝑟))

 

We choose the initial value of 𝜃: 𝜃̂(0) = 0.4 

𝜃̂(1) = 0.4 −
363 − 734(0,4)

726(0,4) − 1468(0, 42) − 363
(0,4)(0,6)

= 0.4542 

𝜃̂(2) = 0.4542 −
363 − 734(0.4542)

726(0.4542) − 1468(0.4542)2 − 363
(0.4542)(0.5458)

= 0.4760 

 

𝜃̂(3) = ⋯ = 0.4857 

𝜃̂(4) = ⋯ = 0.4902 

𝜃(5) = ⋯ = 0.4924 

𝜃̂(6) = ⋯ = 0.4935 

𝜃̂(7) = ⋯ = 0.4940 

𝜃̂(8) = ⋯ = 0.4943 

𝜃̂(9) = ⋯ = 0.4944 

𝜃̂(10) = ⋯ = 0.4945 
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Bisection Method: 
The likelihood function is 

𝑙(𝜃; 𝑦
∼
) =∑ ln (

𝑛𝑖
𝑦𝑖
)

⏟        
𝑛𝑜𝑡 𝑑𝑒𝑝.  𝑜𝑛 𝜃

+ ln (𝜃)∑ 𝑦𝑖 + ln (1 − 𝜃)∑ (𝑛𝑖 − 𝑦𝑖)⏟                          
𝑑𝑒𝑝.  𝑜𝑛 𝜃 

 

Define:  

𝑙∗(𝜃) = ln (𝜃)∑ 𝑦𝑖 + ln (1 − 𝜃)∑ (𝑛𝑖 − 𝑦𝑖)  = 363ln (𝜃) + 371ln (1 − 𝜃) = 363ln (𝜃) + 371ln (1 − 𝜃) 

as ∑  𝑦𝑖 = 363 and ∑  𝑛𝑖 = 734. 

Let's strat with 𝜃(1) = 0.1 and 𝜃(2) = 0.9: 
 

 

 

 


