
UMLUML

Sequence Diagram Sequence Diagram
ExampleExample

1

Sequence DiagramSequence Diagram

�� Interaction Diagrams Interaction Diagrams -- Sequence diagramSequence diagram

�� Once the use cases are specified, and some of the core Once the use cases are specified, and some of the core
objects in the system are prototyped on class diagrams, objects in the system are prototyped on class diagrams,
we can start designing the dynamic behavior of the we can start designing the dynamic behavior of the
system.system.

�� Recall that a use case Recall that a use case encompasses an interaction between a encompasses an interaction between a
user and a systemuser and a system.. Typically, an Typically, an interaction diagraminteraction diagram
captures the behavior of a single case by showing the captures the behavior of a single case by showing the
collaboration of the objects in the system to accomplish collaboration of the objects in the system to accomplish
the task.the task.

2

Sequence DiagramSequence Diagram

�� These diagrams show These diagrams show objectsobjects in the system and the in the system and the
messagesmessages that are passed between them.that are passed between them.

�� Let's start with the simple example: a user logging onto Let's start with the simple example: a user logging onto
the system.the system.

3

Sequence DiagramSequence Diagram

�� The The LogonLogon use case can be specified by the following use case can be specified by the following
step:step:
1.1. Logon dialog is shownLogon dialog is shown

2.2. User enters user name and passwordUser enters user name and password

3.3. User clicks on OK or presses the enter keyUser clicks on OK or presses the enter key

4.4. The user name and password are checked and approvedThe user name and password are checked and approved

5.5. The user is allowed into the systemThe user is allowed into the system

�� Alternative: Logon Failed Alternative: Logon Failed -- if at step if at step 4 4 the user name and the user name and
password are not approved, allow the user to try againpassword are not approved, allow the user to try again

4

Sequence DiagramSequence Diagram

�� Now that we have a simple Use Case to work with, we can specify Now that we have a simple Use Case to work with, we can specify
some of the classes involved in the interaction.some of the classes involved in the interaction.

�� The The LogonDialogLogonDialog has public methods to show and hide the window, has public methods to show and hide the window,
and a private method that is called when the user presses the ok and a private method that is called when the user presses the ok
button or clicks enter.button or clicks enter. For our example (and indeed most cases) you For our example (and indeed most cases) you
need not specify the interface elements of the dialog.need not specify the interface elements of the dialog.

5

Sequence DiagramSequence Diagram

�� Our design also includes a Our design also includes a LogonManagerLogonManager class that will include one class that will include one
method that returns true if the logon is successful, false if it is not.method that returns true if the logon is successful, false if it is not.

�� A A DatabaseAccessDatabaseAccess class will allow us to run queries against our class will allow us to run queries against our
database.database. We can pass a query string and a We can pass a query string and a ResultSetResultSet of data will be of data will be
returned.returned.

6

Sequence DiagramSequence Diagram

�� Now that we have prototyped the classes involved in our Now that we have prototyped the classes involved in our
interaction, we can begin to make our interaction diagrams.interaction, we can begin to make our interaction diagrams.

7

Instances and MessagesInstances and Messages

�� Interaction diagrams are composed mainly of instances and Interaction diagrams are composed mainly of instances and
messages.messages. An An instanceinstance is said to be the realization of a class, that is is said to be the realization of a class, that is
if we have a class if we have a class DoctorDoctor, then the instances are , then the instances are Dr. JonesDr. Jones, , Dr. SmithDr. Smith, ,
etc..etc.. In an object oriented application, instances are what exist when In an object oriented application, instances are what exist when
you you instantiateinstantiate a class (create a new variable with the class as its a class (create a new variable with the class as its
datatypedatatype).).

�� In the UML, instances are represented as In the UML, instances are represented as rectanglesrectangles with a single with a single
label formatted as:label formatted as:

instanceNameinstanceName: : datatypedatatype

�� You can choose to name the instance or not, but the You can choose to name the instance or not, but the datatypedatatype should should
always be specified.always be specified.

8

Instances and MessagesInstances and Messages

�� Below the name, you can also list the attributes and their values.Below the name, you can also list the attributes and their values. In In
Visual Case, you can map attributes from your class and enter new Visual Case, you can map attributes from your class and enter new
values specific to that instance.values specific to that instance. Attributes need only be shown Attributes need only be shown
when they are important and you don't have to specify and show all when they are important and you don't have to specify and show all
of the attributes of a class.of the attributes of a class.

9

MessagesMessages

�� MessagesMessages represent operation calls.represent operation calls. That is, if an instance calls an That is, if an instance calls an
operation in itself or another class, a message is passed.operation in itself or another class, a message is passed. Also, upon Also, upon
the completion of the operation a return message is sent back to the the completion of the operation a return message is sent back to the
instance that initiated the call.instance that initiated the call.

The format for message labels is:The format for message labels is:

Sequence Iteration [Guard] : name (parameters)Sequence Iteration [Guard] : name (parameters)

10

MessagesMessages

The format for message labels is:The format for message labels is:

Sequence Iteration [Guard] : name (parameters)Sequence Iteration [Guard] : name (parameters)

�� SequenceSequence: : represents the order in which the message is called.represents the order in which the message is called. The The
sequence is redundant on sequence diagramssequence is redundant on sequence diagrams

�� IterationIteration:: an an asterixasterix ((**) is shown to represent iteration if the message) is shown to represent iteration if the message
is called repeatedlyis called repeatedly

�� GuardGuard:: an optional Boolean expression (the result is either true or an optional Boolean expression (the result is either true or
false) that determines if the message is calledfalse) that determines if the message is called

�� namename:: represents the operation being calledrepresents the operation being called

�� parametersparameters:: represent the parameters on the operation being calledrepresent the parameters on the operation being called

11

Sequence DiagramSequence Diagram

12

Things to NoteThings to Note

�� The flow of time is shown from top to bottom, that is messages The flow of time is shown from top to bottom, that is messages
higher on the diagram happen before those lower downhigher on the diagram happen before those lower down

�� The blue boxes are The blue boxes are instancesinstances of the represented classes, and the of the represented classes, and the
vertical bars below are vertical bars below are timelinestimelines

�� The arrows (links) are The arrows (links) are messagesmessages -- operation calls and returns from operation calls and returns from
operationsoperations

�� The hide and show messages use The hide and show messages use guardsguards to determine which to to determine which to
call.call. Guards are always shown in square braces Guards are always shown in square braces [][] and represent and represent
constraints on the message (constraints on the message (the message is sent only if the constraint the message is sent only if the constraint
is satisfiedis satisfied))

13

Things to NoteThings to Note

�� The messages are labeled with the operation being called and The messages are labeled with the operation being called and
parameters are shown.parameters are shown. You can choose to enter the parameters or You can choose to enter the parameters or
not not -- this is dependent upon their importance to the collaboration this is dependent upon their importance to the collaboration
being shownbeing shown

�� The sequence numbers are not shown on the messages as the The sequence numbers are not shown on the messages as the
sequence is intrinsic to the diagramsequence is intrinsic to the diagram

14

Asynchronous MessagesAsynchronous Messages

�� You can specify a message as You can specify a message as asynchronousasynchronous if processing can if processing can
continue while the message is being executed.continue while the message is being executed. In the example In the example
below, the asynchronous call does not block processing for the below, the asynchronous call does not block processing for the
regular call right below.regular call right below. This is useful if the operation being called This is useful if the operation being called
is run remotely, or in another thread.is run remotely, or in another thread.

15

