Introduction to Real Analysis Sequences

Ibraheem Alolyan

King Saud University

Table of Contents

- Sequences and Convergence
- 2 Properties of convergence sequences
- 3 Monotonic Sequences
- 4 Cauchy Criterion
- 5 Subsequences
- 6 Open and Closed Sets

Sequences and Convergence

Definition

A sequence is a function whose domain is \mathbb{N} .

$$x:\mathbb{N}\to\mathbb{R}$$

$$x(n) = x_n$$

$$\begin{array}{c} (x_1,x_2,x_3,\ldots) \\ (x_n)_{n=1}^\infty \\ (x_n) \end{array}$$

 $\{x_n:n\in\mathbb{N}\}$ is the range of the sequence.

Image: A mathematical states and a mathem

Examples

$$(2) = (2, 2, 2, ...)$$

2
$$(2n) = (2, 4, 6, ...)$$

 $\label{eq:constraint} \begin{array}{l} \bullet \\ ((-1)^n) = (-1,1,-1,\ldots) \mbox{ is a sequence whose range is } \\ \{-1,1\} \end{array}$

•
$$(\frac{1}{n}) = (1, \frac{1}{2}, \frac{1}{3}, ...)$$

The sequence can be defined by induction

$$a_1=1, \quad a_{n+1}=a_n+\frac{1}{n}, \quad n\in \mathbb{N}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Sequences and Convergence

Properties of convergence sequences Monotonic Sequences Cauchy Criterion Subsequences Open and Closed Sets

$$\begin{aligned} x_n &= \frac{n}{n+1} \\ 1 & 2 & 3 & 4 & 5 & 6 & \dots & n & \dots \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \frac{1}{2} & \frac{2}{3} & \frac{3}{4} & \frac{4}{5} & \frac{5}{6} & \frac{6}{7} & \dots & \frac{n}{n+1} & \dots \end{aligned}$$

< ロ > < 部 > < き > < き > <</p>

Sequences and Convergence

Properties of convergence sequences Monotonic Sequences Cauchy Criterion Subsequences Open and Closed Sets

Ibraheem Alolyan Real Analysis

Sequences and Convergence Properties of convergence sequences Monotonic Sequences

Subsequences Open and Closed Sets

・ロト ・四ト ・ヨト ・ヨト

Convergence

Definition

The sequence (x_n) is said to be convergent if there is $x\in \mathbb{R}$ such that

$$\begin{aligned} \forall \varepsilon > 0 \ \ \exists N \in \mathbb{N}: \\ |x_n - x| < \varepsilon \qquad \forall n \geq N \end{aligned}$$

and we write

$$\lim_{n \to \infty} x_n = x$$
$$\lim_{n \to \infty} x_n = x$$
$$x_n \to x$$

イロト イボト イヨト イヨト

Sequences and Convergence

Properties of convergence sequences Monotonic Sequences Cauchy Criterion Subsequences Open and Closed Sets

Examples

 $\lim \frac{1}{n} = 0$

.

Neighborhood

Definition

If $a\in\mathbb{R}$ then $V\subset\mathbb{R}$ is called a neighboorhood of a if there is $\varepsilon>0$ such that

 $(a-\varepsilon,a+\varepsilon)\subset V$

(日)

э

Remarks

 $\bullet~$ If we found $N\in\mathbb{N}$ such that

$$|x_n - x| < \varepsilon \qquad \forall \ n \ge N$$

then any number greater than ${\cal N}$ will satisfy the condition.

• If we change ε we might need to change N.

・ロト ・ 同ト ・ ヨト ・

포 🛌 포

Remarks

• If (x_n) satisfies for all $\varepsilon>0$ there exists $N\in\mathbb{N}$ and a constant C>0 such that

$$|x_n - x| < C\varepsilon \qquad \forall \ n \ge N$$

then $x_n \to x$.

(日)

Sequences and Convergence

Properties of convergence sequences Monotonic Sequences Cauchy Criterion Subsequences Open and Closed Sets

Examples

Im
$$\frac{1}{2^n} = 0$$
 Im $\frac{3n}{5n+9} = \frac{3}{5}$
 ((-1)ⁿ)
 (n)

< ロ > < 部 > < き > < き > <</p>

Sequences and Convergence

Properties of convergence sequences Monotonic Sequences Cauchy Criterion Subsequences Open and Closed Sets

Uniquness

Theorem

If the sequence (x_n) is convergent then its limit is unique.

• □ ▶ • < </p>
• □ ▶ • < </p>

Bounded sequences

Definition

A sequence (x_n) is bounded if there is a K > 0 such that

$$|x_n| \le K \qquad \forall n \in \mathbb{N}$$

Theorem

If a sequence is convergent then it is bounded.

The converse is not true.

Algebraic operations on sequences

Theorem

.

If $x_n \to x \neq 0$ then there exists M > 0 and $N \in \mathbb{N}$ such that

 $|x_n| > M \qquad \forall n \geq N$

イロト イポト イヨト イヨト

э

Algebraic operations on sequences

Theorem

If $\left(x_{n}\right)$ converges to x and $\left(y_{n}\right)$ converges to y then

$$\label{eq:converges} \mathbf{0} \ (x_n+y_n) \text{ converges to } x+y.$$

2
$$(x_n y_n)$$
 converges to xy .

3 If
$$y_n \neq 0$$
 for all $n \in \mathbb{N}$ and $y \neq 0$ then $(\frac{x_n}{y_n})$ converges to $\frac{x}{y}$.

< (17) > <

э

Convergent Sequences

Theorem

If $x_n \to x \text{ and } y_n \to y \text{ and If}$

$$x_n \le y_n \quad \forall n \in \mathbb{N}$$

then $x \leq y$

э

∃ >

(日)

Squeeze Theorem

Theorem

lf

$$x_n \le y_n \le z_n \quad \forall n \ge N_0$$

and $\lim x_n = \lim z_n = l$ then (y_n) converges to l

æ

< ロ > < 同 > < 回 > < 回 > < 回 > <

Binomial Theorem

$$(x+y)^n = \sum_{k=0}^n {n \choose k} x^{n-k} y^k$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Examples

.

• If
$$x_n \to x$$
 then $|x_n| \to |x|$ is the converse true?

イロン イヨン イヨン ・

Examples

.

• If 0 < a < 1 then $\lim a^n = 0$

Examples

.

• If
$$c > 0$$
 then $\lim c^{\frac{1}{n}} = 1$

Ξ.

Examples

.

 $\bullet \mbox{ If } x_n \geq 0 \mbox{ for all } n \in \mathbb{N} \mbox{ and } x_n \rightarrow x \mbox{ then } \sqrt{x_n} \rightarrow \sqrt{x}$

・ロト ・回 ト ・ ヨト ・ ヨト …

Examples

.

•
$$\lim n^{\frac{1}{n}} = 1$$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Ξ.

Monotonic sequences

Definition

- A sequence $\left(x_{n}\right)$ is
 - increasing if

$$x_{n+1} \ge x_n \quad \forall n \in \mathbb{N}$$

strictly increasing if

$$x_{n+1} > x_n \quad \forall n \in \mathbb{N}$$

< 4 → < <

Monotonic sequences

Definition

A sequence $\left(x_{n}\right)$ is

decreasing if

$$x_{n+1} \leq x_n \quad \forall n \in \mathbb{N}$$

estrictly decreasing if

$$x_{n+1} < x_n \quad \forall n \in \mathbb{N}$$

if a sequence is increasing or decreasing, it is called monotonic sequence.

Note: (x_n) is increasing iff $(-x_n)$ is decreasing

・ロン ・回 と ・ ヨ と ・ ヨ と …

Monotonic Sequences

Theorem

A monotonic sequence is convergent iff it is bounded.

() if (x_n) is increasing and bounded then

$$\lim x_n = \sup \left\{ x_n : n \in \mathbb{N} \right\}$$

2 If (x_n) is decreasing and bounded then

$$\lim x_n = \inf \left\{ x_n : n \in \mathbb{N} \right\}$$

Examples

.

Prove that $x_1 = 1, \ x_{n+1} = \sqrt{2x_n}$ is convergent then find its limit

・ロン ・回 と ・ ヨ と ・ ヨ と …

Extended Real Number System

$\bar{\mathbb{R}}=\mathbb{R}\bigcup\{-\infty,\infty\}=[-\infty,\infty]$

Ibraheem Alolyan Real Analysis

Cauchy sequence

Definition

A sequence (x_n) is called a Cauchy sequence if

$$\begin{aligned} \forall \varepsilon > 0 \ \ \exists N \in \mathbb{N}: \\ |x_n - x_m| < \varepsilon \qquad \forall n, m \geq N \end{aligned}$$

• □ ▶ • < </p>
• □ ▶ • < </p>

Cauchy criterion

Theorem

A sequence $\left(x_{n}\right)$ is convergent iff it is a Cauchy sequence

Ibraheem Alolyan Real Analysis

• □ ▶ • < </p>
• □ ▶ • < </p>

Cluster Point

Definition

A point x ∈ R is called a cluster (an accumulation) point of A ⊂ R if every neighborhood V of x contains an element in A different than x.

The set of all cluster point is \widehat{A} .

A point in A which is not a cluster point of A is an isolated point of A.

Cluster Point

Examples

- **1** {1, 2, 3}
- **2** Z
- **3** [0, 1)

$$\textcircled{}{} \{\frac{1}{n}: n \in \mathbb{N}\}$$

Ibraheem Alolyan Real Analysis

Bolzano - Weierstrass

Theorem

Every infinite and bounded subset of $\mathbb R$ has at least one cluster point in $\mathbb R.$

Ibraheem Alolyan Real Analysis

Cauchy sequences

Examples

• Show that

$$x_n = \frac{2n}{3n+1}$$

is a Cauchy sequence

æ

• □ ▶ • □ ▶ • □ ▶

Cauchy sequences

Examples

.

$$\bullet~\mbox{If}~x_1=1, x_2=2$$
 ,

$$x_n = \frac{1}{2}(x_{n-1} + x_{n-2}), \quad n = 3, 4, \dots$$

Prove that (x_n) is convergent.

æ

イロト イヨト イヨト イヨト

Subsequence

Definition

If $\left(x_{n}\right)$ is a sequence, and $\left(n_{k}\right)$ is strictly increasing sequence of natural numbers

$$n_1 < n_2 < n_3 < \ldots$$

then the sequence

$$(x_{n_k})=(x_{n_1},x_{n_2},\ldots)$$

is a subsequence of (x_n)

• □ ▶ • < </p>
• □ ▶ • < </p>

Subsequences

Examples

$$\bullet \ (x_4, x_5, x_6, \ldots)$$

2
$$(x_1, x_3, x_5, ...)$$

• Is
$$(\frac{1}{2}, 1, \frac{1}{5}, ...)$$
 a subsequence of $(\frac{1}{n})$

• Is
$$(4, 8, 9, ...)$$
 a subsequence of $(2n)$

9
$$(rac{1}{k^2})$$
 is a subsequence of $(rac{1}{n})$

Subsequence

Theorem

If $\left(x_{n}\right)$ converges to x, then every subsequence of $\left(x_{n}\right)$ converges to x

Subsequence

Theorem

If $\left(x_{n}\right)$ converges to x, then every subsequence of $\left(x_{n}\right)$ converges to x

Theorem

If (\boldsymbol{x}_n) is convergent and has a subsequence that converges to \boldsymbol{x} , then (\boldsymbol{x}_n) converges to \boldsymbol{x}

Image: A math a math

∃ > _

Subsequence

Theorem

If (\boldsymbol{x}_n) converges to $\boldsymbol{x},$ then every subsequence of (\boldsymbol{x}_n) converges to \boldsymbol{x}

Theorem

If (\boldsymbol{x}_n) is convergent and has a subsequence that converges to $\boldsymbol{x},$ then (\boldsymbol{x}_n) converges to \boldsymbol{x}

Theorem: Bolzano-Weierstrass

Every bounded sequence has a convergent subsequence.

• □ ▶ • < </p>
• □ ▶ • < </p>

Definition

A set $A\subset\mathbb{R}$ is open if for all $x\in A$ there is $\varepsilon>0$ such that $(x-\varepsilon,x+\varepsilon)\subset A$

Ibraheem Alolyan Real Analysis

< □ > < 同 > < 回 >

Examples

- $\textcircled{\ } \mathbb{R} \backslash \{y\} \text{ where } y \in \mathbb{R}$
- ${\small ③ } [a,b)$

❹ ℤ

9 Q

æ

イロト イヨト イヨト イヨト

Theorem

- $\textcircled{0} \ \mathbb{R} \text{ and } \phi \text{ are both open}$
- **2** Any union of open sets in \mathbb{R} is open
- **③** Any finite intersection of open sets in \mathbb{R} is open

э

Definition

A set $F \subset \mathbb{R}$ is closed if its complement A^c is open.

Ibraheem Alolyan Real Analysis

æ

Image: A mathematical states and a mathem

Examples

Ibraheem Alolyan Real Analysis

・ロト ・ 同ト ・ ヨト ・

포 🛌 포

Exercises (Convergent sequences)

- Use the definition to show that • $\lim \frac{2n-1}{3n+2} = \frac{2}{3}$
 - $\lim \frac{n^3 + 1}{2n^3 + n} = \frac{1}{2}$
- $\ensuremath{ @ \textbf{ Prove that } \lim x_n = 0 $ if and only if \lim |x_n| = 0 $ } \label{eq:prove that } \ensuremath{ \| x_n \| = 0 $ } \en$
- (a) If the two sequences (x_n) and (y_n) converge to c, and we define the shuffled sequence (z_n) by

$$(z_1,z_2,z_3,z_4,\dots)=(x_1,y_1,x_2,y_2,\dots)$$

show that the sequence (z_n) also converges to c

Exercises (Convergent sequences)

- $\textcircled{0} Give an example of two sequences (x_n) and (y_n) such that (x_n+y_n) is convergent and (x_n) is divergent.}$
- If the sequences (x_n) and $(x_n + y_n)$ are both convergent, prove that (y_n) is also convergent and determine its limit. Can you state a corresponding result for the sequence $(x_n \cdot y_n)$?
- $\textcircled{\sc 0}$ Give an example of a divergent sequence (x_n) such that $(|x_n|)$ is convergent.

When does the convergence of $\left(|x_n|\right)$ imply the convergence of $\left(x_n\right)$,

and what is the relation between $\lim |x_n|$ and $\lim x_n$ when both exist?

• If
$$\lim \frac{x_n - 1}{x_n + 1} = 0$$
, prove that $\lim x_n = 1$

Exercises (Monotonic sequences)

9 Prove that
$$x_n = \frac{n^n}{n!}$$
 is monotonic

Prove that each of the following sequences is monotonic and bounded, then find its limit

$$\begin{array}{ll} \bullet & x_1 = 1, \ x_{n+1} = \sqrt{3 + x_n}, \mbox{ for all } n \in \mathbb{N} \\ \bullet & x_1 = 1, \ x_{n+1} = \frac{4x_n + 2}{x_n + 3}, \mbox{ for all } n \in \mathbb{N} \end{array}$$

 $\fbox{Given } x_n = \frac{1}{n} + \frac{1}{n+1} + \ldots + \frac{1}{2n} \text{ , prove that } (x_n) \text{ is decreasing and bounded then conclude it is convergent.}$

Exercises (Cauchy criterion)

 ${\small \bigcirc} \ \ \, {\rm Show \ by \ definition \ that} \ (x_n) \ \, {\rm is \ a \ Cauchy \ sequence}$

$$x_n = \frac{5n}{n+3}$$

2 If (x_n) satisfies

$$|x_{n+1}-x_n|<\frac{1}{2^n}$$

prove that (x_n) is a Cauchy Sequence.

If

$$x_n = \sum_{k=1}^n \frac{1}{k^2}$$

< ロ > < 同 > < 三 > < 三 >

prove that $\left(x_{n}\right)$ is a Cauchy sequence.

Exercises (Subsequences)

() Prove that the sequence (x_n) has a convergent subsequence

$$x_n = \frac{(n^2 + 20n + 30)\sin(n^3)}{n^2 + n + 1}$$

- Give an example of
 - a sequence with no convergent subsequence
 - ② an unbounded sequence which has a convergent subsequence
- (a) If every subsequence of (x_n) has a subsequence which converges to 0, prove that $\lim x_n = 0$