Introduction to Real Analysis Sequences

Ibraheem Alolyan

King Saud University

Table of Contents

- Sequences and Convergence
- 2 Properties of convergence sequences
- 3 Monotonic Sequences
- 4 Cauchy Criterion
- 5 Subsequences
- 6 Open and Closed Sets

Sequences and Convergence

Definition

A sequence is a function whose domain is \mathbb{N} .

$$x:\mathbb{N}\to\mathbb{R}$$

$$x(n) = x_n$$

$$\begin{array}{c} (x_1,x_2,x_3,\ldots) \\ (x_n)_{n=1}^\infty \\ (x_n) \end{array}$$

 $\{x_n:n\in\mathbb{N}\}$ is the range of the sequence.

Image: A mathematical states and a mathem

Examples

$$(2) = (2, 2, 2, ...)$$

2
$$(2n) = (2, 4, 6, ...)$$

 $\label{eq:constraint} \begin{array}{l} \bullet \\ ((-1)^n) = (-1,1,-1,\ldots) \mbox{ is a sequence whose range is} \\ \{-1,1\} \end{array}$

•
$$(\frac{1}{n}) = (1, \frac{1}{2}, \frac{1}{3}, ...)$$

The sequence can be defined by induction

$$a_1=1, \quad a_{n+1}=a_n+\frac{1}{n}, \quad n\in \mathbb{N}$$

(日)

Sequences and Convergence

Definition

A sequence is a function whose domain is \mathbb{N} .

$$x:\mathbb{N}\to\mathbb{R}$$

$$x(n) = x_n$$

$$\begin{array}{c} (x_1,x_2,x_3,\ldots) \\ (x_n)_{n=1}^\infty \\ (x_n) \end{array}$$

 $\{x_n:n\in\mathbb{N}\}$ is the range of the sequence.

Image: A mathematical states and a mathem

Sequences and Convergence

Properties of convergence sequences Monotonic Sequences Cauchy Criterion Subsequences Open and Closed Sets

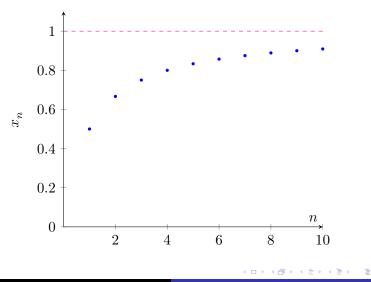
$$\begin{aligned} x_n &= \frac{n}{n+1} \\ 1 & 2 & 3 & 4 & 5 & 6 & \dots & n & \dots \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \frac{1}{2} & \frac{2}{3} & \frac{3}{4} & \frac{4}{5} & \frac{5}{6} & \frac{6}{7} & \dots & \frac{n}{n+1} & \dots \end{aligned}$$

< ロ > < 部 > < き > < き > <</p>

æ

Sequences and Convergence

Properties of convergence sequences Monotonic Sequences Cauchy Criterion Subsequences Open and Closed Sets



Ibraheem Alolyan Real Analysis

Sequences and Convergence Properties of convergence sequences Monotonic Sequences

Subsequences Open and Closed Sets

・ロト ・四ト ・ヨト ・ヨト

æ

Convergence

Definition

The sequence (x_n) is said to be convergent if there is $x \in \mathbb{R}$ such that

$$\begin{aligned} \forall \varepsilon > 0 \ \ \exists N \in \mathbb{N}: \\ |x_n - x| < \varepsilon \qquad \forall n \geq N \end{aligned}$$

and we write

$$\lim_{n \to \infty} x_n = x$$

$$\lim x_n = x$$

Sequences and Convergence

Properties of convergence sequences Monotonic Sequences Cauchy Criterion Subsequences Open and Closed Sets

Neighborhood

Definition

If $a\in\mathbb{R}$ then $V\subset\mathbb{R}$ is called a neighboorhood of a if there is $\varepsilon>0$ such that

$$(a-\varepsilon,a+\varepsilon)\subset V$$

(日)

글 > 글

Remarks

$\ \, {\rm If we found} \ N \in \mathbb{N} \ {\rm such \ that} \\$

$$|x_n - x| < \varepsilon \qquad \forall \ n \ge N$$

then any number greater than N will satisfy the condition.

- 2 If we change ε we might need to change N.
- $\textcircled{0} \ \ \text{If} \ (x_n) \ \text{satisfies for all} \ \varepsilon > 0 \ \text{there exists} \ N \in \mathbb{N} \ \text{and a} \\ \text{constant} \ C > 0 \ \text{such that} \end{aligned}$

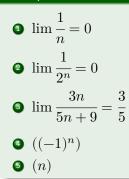
$$|x_n - x| < C\varepsilon \qquad \forall \ n \ge N$$

then $x_n \to x$.

Sequences and Convergence

operties of convergence sequences Monotonic Sequences Cauchy Criterion Subsequences Open and Closed Sets

Examples



æ

イロト イヨト イヨト イヨト

Sequences and Convergence

Properties of convergence sequences Monotonic Sequences Cauchy Criterion Subsequences Open and Closed Sets

Uniquness

Theorem

If the sequence (x_n) is convergent then its limit is unique.

• □ ▶ • < </p>
• □ ▶ • < </p>

Bounded sequences

Definition

A sequence (x_n) is bounded if there is a K > 0 such that

$$|x_n| \le K \qquad \forall n \in \mathbb{N}$$

Theorem

If a sequence is convergent then it is bounded.

The converse is not true.

Algebraic operations on sequences

Theorem

If $x_n \to x \neq 0$ then there exists M > 0 and $N \in \mathbb{N}$ such that

$$|x_n| > M \qquad \forall n \ge N$$

< ロ > < 同 > < 三 > < 三 > 、

э

Algebraic operations on sequences

Theorem

If $\left(x_{n}\right)$ converges to x and $\left(y_{n}\right)$ converges to y then

$$\label{eq:converges} \mathbf{0} \ (x_n+y_n) \text{ converges to } x+y.$$

2
$$(x_n y_n)$$
 converges to xy .

3 If
$$y_n \neq 0$$
 for all $n \in \mathbb{N}$ and $y \neq 0$ then $(\frac{x_n}{y_n})$ converges to $\frac{x}{y}$.

< (17) > <

э

Convergent Sequences

Theorem

If $x_n \to x \text{ and } y_n \to y \text{ and If}$

$$x_n \le y_n \quad \forall n \in \mathbb{N}$$

then $x \leq y$

э

∃ >

(日)

Squeeze Theorem

Theorem

lf

$$x_n \le y_n \le z_n \quad \forall n \ge N_0$$

and $\lim x_n = \lim z_n = l$ then (y_n) converges to l

æ

(日)

Binomial Theorem

$$(x+y)^n = \sum_{k=0}^n {n \choose k} x^{n-k} y^k$$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Examples

- If x_n → x then |x_n| → |x| Is the converse true?
 If 0 < a < 1 then lim aⁿ = 0
 If c > 0 then lim c^{1/n} = 1
- If $x_n \ge 0$ for all $n \in \mathbb{N}$ and $x_n \to x$ then $\sqrt{x_n} \to \sqrt{x}$
- **()** $\lim n^{\frac{1}{n}} = 1$

< □ > < 同 > < 回 >

Monotonic sequences

Definition

A sequence $\left(x_{n}\right)$ is

increasing if

$$x_{n+1} \ge x_n \quad \forall n \in \mathbb{N}$$

strictly increasing if

$$x_{n+1} > x_n \quad \forall n \in \mathbb{N}$$

decreasing if

$$x_{n+1} \leq x_n \quad \forall n \in \mathbb{N}$$

strictly decreasing if

æ

Monotonic Sequences

Theorem

A monotonic sequence is convergent iff it is bounded.

() if (x_n) is increasing and bounded then

$$\lim x_n = \sup \left\{ x_n : n \in \mathbb{N} \right\}$$

2 If (x_n) is decreasing and bounded then

$$\lim x_n = \inf \left\{ x_n : n \in \mathbb{N} \right\}$$

Examples

Prove that $x_1=1,\ x_{n+1}=\sqrt{2x_n}$ is convergent then find its limit

æ

(日)

Extended Real Number System

$\bar{\mathbb{R}}=\mathbb{R}\bigcup\{-\infty,\infty\}=[-\infty,\infty]$

Ibraheem Alolyan Real Analysis

Cauchy sequence

Definition

A sequence (x_n) is called a Cauchy sequence if

$$\begin{aligned} \forall \varepsilon > 0 \ \ \exists N \in \mathbb{N}: \\ |x_n - x_m| < \varepsilon \qquad \forall n, m \geq N \end{aligned}$$

Cauchy criterion

Theorem

A sequence $\left(x_{n}\right)$ is convergent iff it is a Cauchy sequence

Ibraheem Alolyan Real Analysis

• □ ▶ • < </p>
• □ ▶ • < </p>

Cluster Point

Definition

A point x ∈ ℝ is called a cluster (an accumulation) point of A ⊂ ℝ if every neighborhood V of x contains an element in A different than x.

The set of all cluster point is \widehat{A} .

A point in A which is not a cluster point of A is an isolated point of A.

Cluster Point

Examples

- **1** {1, 2, 3}
- **2** Z
- **3** [0, 1)

$$\textcircled{}{} \{\frac{1}{n}: n \in \mathbb{N}\}$$

Ibraheem Alolyan Real Analysis

æ

Bolzano - Weierstrass

Theorem

Every infinite and bounded subset of $\mathbb R$ has at least one cluster point in $\mathbb R.$

Ibraheem Alolyan Real Analysis

• • • • • • • •

Cauchy sequences

Examples

Show that

$$x_n = \frac{2n}{3n+1}$$

is a Cauchy sequence

2 If
$$x_1 = 1, x_2 = 2$$

$$x_n = \frac{1}{2}(x_{n-1} + x_{n-2}), \quad n = 3, 4, \dots$$

Prove that (x_n) is convergent.

Subsequence

Definition

If $\left(x_{n}\right)$ is a sequence, and $\left(n_{k}\right)$ is strictly increasing sequence of natural numbers

$$n_1 < n_2 < n_3 < \ldots$$

then the sequence

$$(x_{n_k})=(x_{n_1},x_{n_2},\ldots)$$

is a subsequence of (x_n)

• □ ▶ • < </p>
• □ ▶ • < </p>

Subsequences

Examples

$$\bullet \ (x_4, x_5, x_6, \ldots)$$

2
$$(x_1, x_3, x_5, ...)$$

• Is
$$(\frac{1}{2}, 1, \frac{1}{5}, ...)$$
 a subsequence of $(\frac{1}{n})$

• Is
$$(4, 8, 9, ...)$$
 a subsequence of $(2n)$

9
$$(rac{1}{k^2})$$
 is a subsequence of $(rac{1}{n})$

æ

Subsequence

Theorem

If (\boldsymbol{x}_n) converges to $\boldsymbol{x},$ then every subsequence of (\boldsymbol{x}_n) converges to \boldsymbol{x}

Theorem

If (\boldsymbol{x}_n) is convergent and has a subsequence that converges to $\boldsymbol{x},$ then (\boldsymbol{x}_n) converges to \boldsymbol{x}

Theorem: Bolzano-Weierstrass

Every bounded sequence has a convergent subsequence.

• □ ▶ • < </p>
• □ ▶ • < </p>

Definition

A set $A\subset\mathbb{R}$ is open if for all $x\in A$ the is $\varepsilon>0$ such that $(x-\varepsilon,x+\varepsilon)\subset A$

Ibraheem Alolyan Real Analysis

< □ > < 同 > < 回 >

Examples

- $\textcircled{\ } \mathbb{R} \backslash \{y\} \text{ where } y \in \mathbb{R}$
- ${\small ③ } \ [a,b)$

❹ ℤ

9 Q

æ

イロト イヨト イヨト イヨト

Theorem

- $\textcircled{0} \ \mathbb{R} \text{ and } \phi \text{ are both open}$
- **2** Any union of open sets in \mathbb{R} is open
- **③** Any finite intersection of open sets in \mathbb{R} is open

• • • • • • • •

э

Definition

A set $F \subset \mathbb{R}$ is closed if its complement A^c is open.

Ibraheem Alolyan Real Analysis

æ

Image: A mathematical states and a mathem

Examples

Ibraheem Alolyan Real Analysis

・ロト ・ 同ト ・ ヨト ・

포 🛌 포