Sequences



Lecture 1: Convergent Sequences

A sequence is a function

a:N—R

which assigns to each natural number n a real number a,,.

A sequence is simply a list of numbers written in a specific order. The index n

tells us the position of a number in the list.

A sequence is usually written as

{an}zozl = a1,0a2,0a3, ...

Each number a,, is called the nth term of the sequence.

Examples of Sequences

1
e a,=—={1,4,3,...} The terms become smaller and smaller.
n
e a, =(—1)" = {—1,1,—1,1,...} The sequence alternates between two val-

ues.

e a,=n>= {1,4,9,16, ...} The terms grow rapidly.

Convergence of a Sequence

A sequence {a,} converges to a real number L if

Ve >0, IN € N such that n > N = |a, — L| < e.

We write

T}1_>11010 a, =L orsimply a, — L.

Convergence means that the terms of the sequence get closer and closer to a fixed

number L, and after some point they stay close to it forever.
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After some index NNV, all the terms of the sequence lie inside a narrow horizontal
band around the limit L.

Divergent Sequences

Important

If a sequence does not converge to any real number, it is said to diverge.

Example

e a, = n diverges to infinity because the terms grow without bound.
e a,=(—1)"=—-1,1,—1,1,... does not converge.

The second sequence oscillates between two values and never settles near a single

number. Therefore, it has no limit.

Properties of Convergent Sequences

Rule

If a,, — a and b,, — b, then:
e a,+b, —>a-+b
e a,b, — ab

. Ifb7é0andbn7éo,thenz—”_>%

® |an| = o]

These properties allow us to compute limits using familiar algebraic rules. Instead

of using the definition of convergence every time, we can work directly with limits.

\.
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Lecture 2: Rational Sequences

Rational Sequences

A rational sequence is a sequence of the form

where P(n) and Q(n) are polynomials in n and Q(n) # 0.

A First Example

Consider the sequence

_ 2n% — 3n
C 3n2+5n+3

Qn

To make the dominant terms visible, divide the numerator and denominator by n?:

9_3
R WS
Since |
——0 and — —0,
n

all lower-order terms disappear in the limit. Therefore,

lim a, = =
n—oo n

Interpretation

For large n, the sequence behaves like

o2n?

3n2’

General Rule for Rational Sequences
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Let

Then:
o [f deg P < deg @, then nh_)rrolo a, =0

o [f deg P = deg (), the limit equals the ratio of leading coefficients

e If deg P > deg (), the sequence diverges to 400 or —oo

Illustrative Examples

deg P < deg @
Consider
_3n+5
o241
Dividing by n?,
T
a, = 0
1+ 5

All terms in the numerator tend to zero, hence

lim a, = 0.
n—oo

Consider
4n? —n+1
ay, =
2n? 4+ 3
Dividing by n?,
4-2+ L
ap, =
24+ 5%

Only the leading coefficients remain, so

lim a,, = 2.
n—oo

deg P > deg ()

Consider
nd+1

n2—1

anp =




The numerator grows faster than the denominator, so
lim a, = 4+o0.
n—oo
Now consider
—3n®+n
2n2+1

The dominant term in the numerator is negative, therefore

Ay =

lim a, = —o0.
n—oo

The sign of the leading term determines whether the sequence diverges to 400 or

—0OQ.




Lecture 3: Geometric Sequences

A geometric sequence is a sequence of the form

ap = T,n7

where r is a real number called the ratio.

Case 1: 0 <r <1 (Decay to Zero)

Example: r = %

The sequence is decreasing and converges to zero.

When 0 <7 <1, r" — 0.

Case 2: r =1 (Constant Sequence)

1" =1 forall n.

The sequence is constant, so

lim " = 1.
n—oo

Case 3: r > 1 (Growth to Infinity)

ol =2 22=4 22=8 2%=16,

Each multiplication increases the size of the terms rapidly.

When r > 1, the sequence grows without bound:

r" — 4o0.




Case 4: -1 <r<90

The sign alternates, but the absolute value decreases to zero.

Although the signs alternate, the terms still approach zero:

r" — 0.

Case 5: r = —1 (Oscillation)

(—1)"=-1,1, -1, 1,...

The sequence oscillates between two values and never approaches a single number.

The limit does not exist.

Case 6: 7 < —1 (Alternating and Unbounded)

Example: r

The magnitude grows without bound, while the sign alternates.

The sequence is unbounded and diverges.

Summary



Let a,, = r"™. Then:
Irl<1=7r"—0
r=1=r"=1
r>1=r"— 400
-1<r<0=7r"=0
r = —1 = r" oscillates between — 1 and 1

r< —1

(terms converge to zero),
(constant sequence),

(grows without bound),
(alternating but convergent),

(no limit),

(alternating and unbounded, no linTt).

The nth Root of a Positive Number

If a > 0, then

n—oo

lim /o = 1.

Let

apn = \77&

Taking logarithms,

In v
Ina, = —.
n
Since In «r is constant and % — 0, we get
Ina, — 0.

Exponentiating,

ap =™ = ¥ = 1.

The Sequence /n

The sequence ¥/n converges to 1:

n—oo

lim ¢/n=1.

Let

Then



10

Since the logarithm grows much more slowly than n,

Hence,



11

Lecture 4: Monotone Sequences

Definition

A sequence {a,} is said to be:
e Increasing if a,.1 > a, for all n,
e Decreasing if a,,.1 < a, for all n,

e Monotone if it is either increasing or decreasing.

Monotone Convergence Theorem

If a sequence is monotone and bounded, then it converges.

Why this theorem is important

This theorem allows us to prove convergence without explicitly computing the limit.

It is enough to check two simple properties: monotonicity and boundedness.

r
.

Example: An Increasing and Bounded Sequence

Consider the sequence

e Since 4 < L we have

n+l — n’

1 1
1__:an7
n—+1 n

Up41 = 1—

so the sequence is increasing.

e For all n, we have a,, < 1, so the sequence is bounded above by 1.

By the Monotone Convergence Theorem, the sequence (a,,) is convergent.

Qn,

Monotone Increasing Sequence
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Example: Sequence of Partial Sums

Given a sequence (a,), the associated sequence of partial sums is defined by

N
SN = Z Qg .
k=1

This definition means that we add the terms one by one:

Slzala
SQ = ay + ag,
S3 = a1 + az + as,

Key Identity

SN+1 = SN + ant1.

|

Case: Non-Negative Terms

Assume that
an, > 0 for all n.

Since ayy1 > 0, we have

Sn+1 =Sy +an+1 > S

Conclusion

When all terms are non-negative, the sequence of partial sums (Sy) is increasing.

|

Bounded Partial Sums

If there exists a number M such that
Sy <M forall N,

then the partial sums increase but never exceed M.

By the Monotone Convergence Theorem, the sequence (Sy) converges.

Unbounded Partial Sums

|

If no such upper bound exists, the partial sums keep increasing without limit.

All_r)réo Sy = +00.
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Case : Non-Positive Terms

If instead
a, <0 for all n,

then each new term subtracts a non-positive quantity from the sum.

In this case,

Snt1 = Sy + any1 < S,

so the sequence of partial sums (Sy) is decreasing.
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Lecture 5: The Squeeze Theorem

Squeeze Theorem

Let (ay,), (bn), (¢,) be sequences such that
a, <b, <c¢, foralln>N,

for some integer N. If

lim a, = lim ¢, = L
nooo v n=oo ’

then
lim b, = L.

n—o0

If a sequence is always trapped between two other sequences that both approach

the same limit, then it is forced to approach that limit as well.

\.

Example:

J

Show that _
sinn

0.

lim
n—00 n

Finding Bounds

For every real number z, we know that

—1 <sinz < 1.

This inequality is also true when x = n.

Dividing by the positive number n, we obtain

Behavior of the Bounds

The two bounding sequences

and

S|

are simple and easy to analyze.

\.

Since

lim <—1) —0 and lim - =0,
n—oo n n—o0 n
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both bounds converge to the same limit.

By the Squeeze Theorem,
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Exercises

Decide whether the following sequences converge or diverge. If they converge, find

the limit:

Solution

Consider the function f(z) = 2£. As x — oo, both numerator and denominator

ex

tend to infinity.

By L’Hopital’s rule,

5 5

lim 2% = lim — = 0.

T—00 et Tz—00 %

Therefore,
59,00 = 0.
Applying L’Hopital’s rule twice,
2 2 2
T i L lm 2 =0,

li = =
250020 ] a0 20In2 | @500 (In2)2 29

Hence,

lim b, = 0.
n—oo

Using L’Hopital’s rule,

1 1
T L A VL
TrT—00 "L‘ T— 00
Thus,
lim ¢, = 0.

n—oo
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Exercise 2

Discuss the convergence of the following sequences:

i) (=1.2)" (i) 2% (iii) Cozn(n)
0

Solution

This is a geometric sequence with common ratio r = —1.2.

Since |r| = 1.2 > 1, the absolute value of the terms grows without bound. Therefore,

the sequence diverges.

This can be written as a geometric sequence

Here |r| = § < 1, so the sequence converges and

li ! =0
Jim o2 =0.

Since 0 < cos?(n) < 1, we have

Because Sin — 0, the squeeze theorem gives

2
i S°8 (n)
n—oo 3n

=0.
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471?—5—511,4-1
2n3+n2+5

(63%

Dividing numerator and denominator by n3, we obtain

1+ 5+ %
24+ 14+ 5

Hence the sequence converges to 2.

This is a classical sequence that defines the number e.

Let

Taking logarithms,

1 In(1+ n
In(e,) =nln <1 + —) = M
n n
Let z = 2. As n — oo, we have  — 07, and
In(1
In(en) = In(1+2)
x
Using the standard limit
lim In(1 + z) 1,
x—0 x

we obtain
lim In(e,) = 1.

n—o0

Since In(e,) — 1, it follows that

e, = emen) 5 e

Taking logarithms,

ln(nl/”) = 1117n

As n — oo, this quotient tends to 0, so

n'/m el =1.
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Decide whether the following sequences converge or diverge:

2 2

a, =vVn+1—+/n, by, n "

“om—1 2n+1

Solution

By the squeeze theorem,

lim a, = 0.
n—oo

2n2 .
"4qn2—1 2
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Infinite Series

Lecture 1: What Is an Infinite Series?

An infinite series is the sum of the terms of a sequence:

Zan:a1+a2+a3+~~

n=1

Partial Sums

The sequence of partial sums is defined by

N
SN = Z Qg .
k=1

S = ay, Sy = a; + ag, Sz = a; + ay + as,

Definition of Convergence

The series Yo% | a,, converges if the sequence (Sy) converges to a finite limit. In
that case,

(e¢]

Z a, = lim Sy.
N—o0

n=1

Divergence

If the sequence of partial sums has no finite limit, the series diverges.

Telescoping Series

Evaluate the series

o 1
nz::ln(n—i-l)'

21
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We first rewrite the general term using partial fractions:

1 1 1

nn+1) n n+1

Consider the partial sum

Taking the limit as N — oo,

General Rule: Telescoping Series

Telescoping Rule

If a sequence satisfies
Qp = bn - bn+1)
then
N
SN = Zan = bl - bN+1.

n=1

If limpy o0 byy1 exists, then

00
Z ap = bl — lim bNJrl.
ne1 N—roc0
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o0
The Geometric Series > "
n=0

For which real numbers r does the series
o0
>
n=0
converge, and what is its value?

Partial Sums

To answer this question, we study the sequence of partial sums

N
SN = ZT”.
n=0

(1=r)> rm=> (r" —r”“)

n=0 n=0
Ry o I o (e R R A (.
=0 N =1 pNH

Dividing both sides by 1 — r, we obtain the formula for the partial sum:

N 1—7“N+1

S

n=0

, r#1

1—r

N+1

The behavior of the infinite series depends entirely on the limit of r as N — oo.

rl<1 = ¥t

r|>1 = ¥t diverges .

Geometric Series Test

> r™ converges if and only if |r| < 1.
n=0
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Sum of the Series
1

If |r| < 1, then
Zr"— lim SN: 5
1—7r

If |r| > 1, the series diverges.
= /1\" 1
R

Basic Properties of Series

If both series converge, then:

n=1
o o0
S ea=ca,
n=1 n=1
- v

Exercises
Evaluate the series - .
2 T i)
Use the known value of the full series starting at n = 1.
©° 1
> =1
n=1 n(n + 1)
S (A
“nn+1) 1-2 2.3
1 n I 3 . I 4 2
2 6 6 6 6 3
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Answer

i 1 |1
“nn+1) |3
Evaluate: ont1 . 9
o M o n_l_ n
@ o k) X
n=0 n=0

Rewrite the general term:

3n-2 3
oo 2n+1 [ee) 2\ "
> 513 (3)
n=0 3" 2 n=0 3

Since [2/3| < 1,

MOEEE
n=0 3 1— %

00 2n+1

3n—2 - '
n=0

Solution (b)

Use linearity to split the series:

Y =2(5) +2(5)

Necessary Condition for Convergence
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Statement of the Necessary Condition

If the series
o
> an
n=1
converges, then

lim a, = 0.
n—oo

Fundamental Identity of Partial Sums

Let

n
Sn = Z Qe
k=1

be the sequence of partial sums. Then, for every n > 2,

Ay = Sn_Sn—l 5

J

r

Assume now that the series converges. Then the sequence of partial sums (S,,) con-

verges to a finite limit .S, where
o0
S = Z Q.
n=1

Using the fundamental identity,
Ay = Sn — Snfl.
Taking limits on both sides,

lim a, = lim S,, — lim S,_; =5 -5 =0.
n—o00 n—00 n—00

Important

The converse is false.

Even if a,, — 0, the series
oo

> a,

n=1

may still diverge.
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Lecture 2 : Convergence Tests for Positive Series

Positive Series

We study series of the form
o0
> an,
n=1

where
a, > 0 for all n.

Such series are called positive series.

(a) The n**-Term Test

The nt*-Term Test
If

nh_}ralo a, # 0 or the limit does not exist,
then the series -
> an
n=1
diverges.
Example 1
a, =1
Here
nh—{& a, =1+#0.
Partial sums:
Slzl, 52:2, 53—3, 9 SN:N—>OO
Hence, the series
o0
M1
n=1
diverges.
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Example 2

a, = (—1)".

The limit lim,, ,o,(—1)" does not exist (the terms oscillate). Partial sums:

=1 =0 G=-1 S=0 ...

The sequence (S,,) does not converge, so the series diverges.

Example 3
Consider -
Z n
—n+1
We compute
lim —— = lim — 140

S =

By the n'-term test, the series diverges.

Why This Test Is One-Way

The condition a,, — 0 is necessary but not sufficient.

For example,

but the harmonic series

diverges.

(b) Integral Test
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Let f:[1,00) — R satisfy:
e f is continuous,
o f(x)>0forall z >1,
e f is decreasing on [1, 00),
e f(n) = a, for all integers n > 1.

Then

co 00

> a, converges <> / f(z) dx converges.
1

n=1

Application: The p-Series

Consider = q
— >0
nz::l — P
Let
1
f(l?) - ﬁa

which is continuous, positive, and decreasing on [1,00).

o ] t 1
/ —dx = lim —dx.
1

xP t—oo J1 P

Case p # 1.

t ] e R by |
/ —dxr = [ ] = .
1 P l-p], 1—0p
e If p > 1, then =7 — 0 and the integral converges.

e If p < 1, then "7 — oo and the integral diverges.

Case p=1.

t]
/—dx:lnt—>oo.
1 x
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Final Conclusion

o 1 Converges, p > 1,

Diverges, p<1.

e > — Diverges (harmonic series), since p = 1.

o
1
e > —— Diverges, since p=13 < 1.

(c) Comparison Test

Comparison Test

Let (a,) and (b,) be sequences with
0<a,<b, foralln.
o If Z b, converges, then Z a, also converges.

o If Z a, diverges and 0 < a,, < b,,, then Z b, also diverges.

Idea: A series smaller than a convergent one must converge. A series larger than

a divergent one must diverge.
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Example (Direct Comparison)

Let

Since n? + 1 > n?, we have
0<a,<b, foralln.

The series

is a p-series with p = 2 > 1, hence it converges. Therefore, by the Comparison

Test,
i L converges
—n?+1 S

.

(d) Limit Comparison Test

Limit Comparison Test

Let a,, > 0 and b, > 0. If

. a .
lim = =c¢ with 0 < ¢ < oo,
n—oo h

then the series Y a, and b, either both converge or both diverge.

How to Use the Limit Comparison Test

1. Choose a comparison series >_ b, that you already know.

2. Compute L = nh_)ngo dn.
3. If 0 < L < oo, both series behave the same.
4. If L =0 and > b, converges, then Y a,, converges.

5. If L =00 and )b, diverges, then ) a,, diverges.

.

Examples: Rational Terms (Comparison with a p-Series)
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Example 1 (Convergent)

Consider
i 2n3 +5
= md+1
Compare with the p-series #
2n3 +5

2n° +5n% 2
i M2 +1 e Anmont 2
n—oo  1/n? n—=o0 9nd + 1 9

Since Y n% converges, the given series also converges.

Example 2 (Divergent)

Consider

i ™+ 4
n2+1

n=1

Compare with the harmonic series > %:

m+4

. 3n24+1 . Tn?+4n 7
lim 1= = lim ———— = —.
B S i grel 2

Since Z% diverges, the given series diverges.

Examples: Comparison with a Geometric Series

Example 3 (Convergent)

Let
3 +2

S 6n+ 1

an

Compare with the geometric series b,, = (%)n:

lim dn _ lim —(3 el =
n—00 bn n—oo BN 4 1

n
Since Y (%) converges, the series ) a,, also converges.

\.
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Example 4 (Divergent)

Let
" —1

5n

Cp =

n

Compare with d,, = (%) :

im0 = b (1—i>:1.
8n

n%a)dn n—00

Since Y (%)n diverges (ratio > 1), the series ¢, diverges.

e Polynomial terms = compare with a p-series.

e Exponential terms = compare with a geometric series.

e The limit comparison test is often faster than direct comparison.

(e) Ratio Test

Ratio Test

Let (a,) be a series with a,, > 0. Define

. An41
L = lim .
n—oo an

o If I <1, the series converges.
e If L > 1 or L =00, the series diverges.

o If I =1, the test is inconclusive.

The Ratio Test is especially effective when the terms involve:
e factorials (n!),
e exponential terms (¢"),

e products of powers and exponentials.

When to Use the Ratio Test

\.
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Convergent Cases (L < 1)

(a) an =",
Gl _ O Lg<q
an n+1
Hence, 3" a,, converges.
(b) an = 5
an+1:n—|—1.1 1 1
a, n 3 3
Thus, > a, converges.

Divergent Cases (L > 1)

c) a, = —
(c) an=— ) :
ntl— 9 — 2> 1.
an, n+1
Hence, Y a,, diverges.
(d) a, =n!
Gntl _ n+1— oo.
Qp,

Therefore, Y a,, diverges.

(f) Root Test

Root Test (Rule)

Let a,, > 0. Define

L = lim a,.

n—00

If L <1, the series converges.

If L >1or L = o0, the series diverges.

If L =1, the test gives no conclusion.

e See n!: use the Ratio Test.

See (something)”: use the Root Test.

If the limit equals 1, the test fails — try another method.
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Lecture 3: Absolute and Conditional Convergence

e A series Y a, is said to be absolutely convergent if
> la,| converges.

e A series Y a, is said to be conditionally convergent if

> a, converges, but »_ |a,| diverges.

Theorem (Absolute Convergence)

If the series Y |a,| converges, then the original series Y a,, also converges.

Remark. The converse is not true.

Classical Example

Consider the alternating harmonic series:

i(—m“_l L1 1,
~ n 2 3 4

This series converges, but

diverges.

Hence, the alternating harmonic series is conditionally convergent.

(g) Alternating Series Test (Leibniz Test)
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Alternating Series Test

Let a,, > 0. If:
® a, is decreasing, and
e lim, .o a, = 0,

then the alternating series

converges.

—1)»
° Z ( n2) Absolutely convergent (use the p-series test).

—1)"
°« > (1—) Conditionally convergent (use the Leibniz test).
nn

|
° Z % Convergent (use the Ratio or Root Test).

Exercises

Decide whether each series converges or diverges. If it converges, state whether the

convergence is absolute or conditional, and find the sum when possible.
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Integral test. For p > 0, set f(x) = xP, positive and decreasing on [1,00).

Then ]
00 — P > 17
/ g Pdp =P~ 1
' 00, p<1l
Hence the series converges iff p > 1.
> 1
2.
2 oy
Using the integral test with u = In x,
(In2)t-7
/00 dx o1 p>1,
S =
2 x(Inz) o, 0<p<l.

Thus the series converges iff p > 1.

so the series converges absolutely.

oo

n
T

n=1

Limit comparison with % gives divergence.

* n? 43
5. an_l

n=1

Limit comparison with Z% gives divergence.

> 1
6. 2, n(n+1)

n=1
Telescoping:

> 1
PRCES VI

n=1 n
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o0 3 n
1. —
> (5)

2. —

n=2
10. > = (p € R)

11. i(_i
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o0 3 n
1. —
>(5)

. . 5)
Geometric series; sum = X

> n
2. —
25

3

Ratio test gives convergence; sum = 1

Ratio test; sum = €.

0o (_1)n—1

4y

n=1 n

Alternating harmonic series: converges conditionally.
5.

2

Leibniz test applies; convergence is conditional.

> /3n+ 1\"
6. ( )

Z 2n —1

n=1

Root test gives limit = % > 1; diverges.

Tl
n=1

Comparison with }° -5; converges absolutely.

8. f: sin(l)

n=1 n

Limit comparison with Z% shows divergence.

> Inn
9. Y (-1 —
n=2 n
Leibniz test gives convergence; absolute series diverges.
10. -
n=1 2

Ratio test gives absolute convergence for all p € R.

00 (_1)n71
11.

Alternating series converges for p > 0; absolute iff p > 1.




