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Lecture 1: Convergent Sequences

Definition

A sequence is a function
a : N −→ R,

which assigns to each natural number n a real number an.

A sequence is simply a list of numbers written in a specific order. The index n

tells us the position of a number in the list.

A sequence is usually written as

{an}∞n=1 = a1, a2, a3, . . .

Each number an is called the nth term of the sequence.

Examples of Sequences

Example

• an = 1
n
⇒ {1, 1

2 ,
1
3 , . . . } The terms become smaller and smaller.

• an = (−1)n ⇒ {−1, 1,−1, 1, . . . } The sequence alternates between two val-
ues.

• an = n2 ⇒ {1, 4, 9, 16, . . . } The terms grow rapidly.

Convergence of a Sequence

Definition

A sequence {an} converges to a real number L if

∀ε > 0, ∃N ∈ N such that n ≥ N ⇒ |an − L| < ε.

We write
lim

n→∞
an = L or simply an → L.

Convergence means that the terms of the sequence get closer and closer to a fixed
number L, and after some point they stay close to it forever.
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n

an

L
L+ ε

L− ε

an → L

After some index N , all the terms of the sequence lie inside a narrow horizontal
band around the limit L.

Divergent Sequences
Important

If a sequence does not converge to any real number, it is said to diverge.

Example

• an = n diverges to infinity because the terms grow without bound.

• an = (−1)n = −1, 1,−1, 1, . . . does not converge.

The second sequence oscillates between two values and never settles near a single
number. Therefore, it has no limit.

Properties of Convergent Sequences
Rule

If an → a and bn → b, then:

• an + bn → a+ b

• anbn → ab

• If b 6= 0 and bn 6= 0, then an

bn

→ a

b

• |an| → |a|

These properties allow us to compute limits using familiar algebraic rules. Instead
of using the definition of convergence every time, we can work directly with limits.
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Lecture 2: Rational Sequences

Rational Sequences

A rational sequence is a sequence of the form

an = P (n)
Q(n) ,

where P (n) and Q(n) are polynomials in n and Q(n) 6= 0.

A First Example

Example

Consider the sequence
an = 2n2 − 3n

3n2 + 5n+ 3 .

To make the dominant terms visible, divide the numerator and denominator by n2:

an =
2− 3

n

3 + 5
n

+ 3
n2
.

Since
1
n
→ 0 and 1

n2 → 0,

all lower-order terms disappear in the limit. Therefore,

lim
n→∞

an = 2
3 .

Interpretation

For large n, the sequence behaves like

2n2

3n2 .

General Rule for Rational Sequences
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Rule

Let
an = P (n)

Q(n) .

Then:

• If degP < degQ, then lim
n→∞

an = 0

• If degP = degQ, the limit equals the ratio of leading coefficients

• If degP > degQ, the sequence diverges to +∞ or −∞

Illustrative Examples

degP < degQ

Consider
an = 3n+ 5

n2 + 1 .

Dividing by n2,

an =
3
n

+ 5
n2

1 + 1
n2
.

All terms in the numerator tend to zero, hence

lim
n→∞

an = 0.

degP = degQ

Consider
an = 4n2 − n+ 1

2n2 + 3 .

Dividing by n2,

an =
4− 1

n
+ 1

n2

2 + 3
n2

.

Only the leading coefficients remain, so

lim
n→∞

an = 2.

degP > degQ

Consider
an = n3 + 1

n2 − 1 .
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The numerator grows faster than the denominator, so

lim
n→∞

an = +∞.

Now consider
an = −3n3 + n

2n2 + 1 .

The dominant term in the numerator is negative, therefore

lim
n→∞

an = −∞.

The sign of the leading term determines whether the sequence diverges to +∞ or
−∞.
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Lecture 3: Geometric Sequences

Definition

A geometric sequence is a sequence of the form

an = rn,

where r is a real number called the ratio.

Case 1: 0 ≤ r < 1 (Decay to Zero)

Example: r = 1
2

(
1
2

)1
= 1

2 ,
(

1
2

)2
= 1

4 ,
(

1
2

)3
= 1

8 , . . .

The sequence is decreasing and converges to zero.
Conclusion

When 0 ≤ r < 1, rn → 0.

Case 2: r = 1 (Constant Sequence)

1n = 1 for all n.

Conclusion

The sequence is constant, so
lim

n→∞
rn = 1.

Case 3: r > 1 (Growth to Infinity)

Example: r = 2

21 = 2, 22 = 4, 23 = 8, 24 = 16, . . .

Each multiplication increases the size of the terms rapidly.
Conclusion

When r > 1, the sequence grows without bound:

rn → +∞.
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Case 4: −1 < r < 0

Example: r = −1
2

−1
2 , +1

4 , −1
8 , + 1

16 , . . .

The sign alternates, but the absolute value decreases to zero.

Conclusion

Although the signs alternate, the terms still approach zero:

rn → 0.

Case 5: r = −1 (Oscillation)

(−1)n = −1, 1, −1, 1, . . .

Conclusion

The sequence oscillates between two values and never approaches a single number.
The limit does not exist.

Case 6: r < −1 (Alternating and Unbounded)

Example: r = −2

−2, 4, −8, 16, . . .

The magnitude grows without bound, while the sign alternates.

Conclusion

The sequence is unbounded and diverges.

Summary
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Let an = rn. Then:

|r| < 1⇒ rn → 0 (terms converge to zero),

r = 1⇒ rn = 1 (constant sequence),

r > 1⇒ rn → +∞ (grows without bound),

−1 < r < 0⇒ rn → 0 (alternating but convergent),

r = −1⇒ rn oscillates between − 1 and 1 (no limit),

r < −1 (alternating and unbounded, no limit).

The nth Root of a Positive Number

If α > 0, then
lim

n→∞
n
√
α = 1.

Let
an = n

√
α.

Taking logarithms,
ln an = lnα

n
.

Since lnα is constant and 1
n
→ 0, we get

ln an → 0.

Exponentiating,
an = eln an → e0 = 1.

The Sequence n
√
n

The sequence n
√
n converges to 1:

lim
n→∞

n
√
n = 1.

Let
an = n

√
n.

Then
ln an = lnn

n
.



10

Since the logarithm grows much more slowly than n,

lnn
n
→ 0.

Hence,
an = eln an → e0 = 1.
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Lecture 4: Monotone Sequences
Definition

A sequence {an} is said to be:

• Increasing if an+1 ≥ an for all n,

• Decreasing if an+1 ≤ an for all n,

• Monotone if it is either increasing or decreasing.

Monotone Convergence Theorem

If a sequence is monotone and bounded, then it converges.

Why this theorem is important

This theorem allows us to prove convergence without explicitly computing the limit.
It is enough to check two simple properties: monotonicity and boundedness.

Example: An Increasing and Bounded Sequence
Example

Consider the sequence
an = 1− 1

n
.

• Since 1
n+1 ≤

1
n
, we have

an+1 = 1− 1
n+ 1 ≥ 1− 1

n
= an,

so the sequence is increasing.

• For all n, we have an < 1, so the sequence is bounded above by 1.

Conclusion

By the Monotone Convergence Theorem, the sequence (an) is convergent.

n

an

L = 1

Monotone Increasing Sequence
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Example: Sequence of Partial Sums

Given a sequence (an), the associated sequence of partial sums is defined by

SN =
N∑

k=1
ak.

This definition means that we add the terms one by one:

S1 = a1,

S2 = a1 + a2,

S3 = a1 + a2 + a3,

...

Key Identity

SN+1 = SN + aN+1.

Case: Non-Negative Terms

Assume that
an ≥ 0 for all n.

Since aN+1 ≥ 0, we have

SN+1 = SN + aN+1 ≥ SN .

Conclusion

When all terms are non-negative, the sequence of partial sums (SN) is increasing.

Bounded Partial Sums

If there exists a number M such that

SN ≤M for all N,

then the partial sums increase but never exceed M .
By the Monotone Convergence Theorem, the sequence (SN) converges.

Unbounded Partial Sums

If no such upper bound exists, the partial sums keep increasing without limit.

lim
N→∞

SN = +∞.
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Case : Non-Positive Terms

If instead
an ≤ 0 for all n,

then each new term subtracts a non-positive quantity from the sum.

In this case,
SN+1 = SN + aN+1 ≤ SN ,

so the sequence of partial sums (SN) is decreasing.
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Lecture 5: The Squeeze Theorem

Squeeze Theorem

Let (an), (bn), (cn) be sequences such that

an ≤ bn ≤ cn for all n ≥ N,

for some integer N . If
lim

n→∞
an = lim

n→∞
cn = L,

then
lim

n→∞
bn = L.

If a sequence is always trapped between two other sequences that both approach
the same limit, then it is forced to approach that limit as well.

Example:

Show that
lim

n→∞

sinn
n

= 0.

Finding Bounds

For every real number x, we know that

−1 ≤ sin x ≤ 1.

This inequality is also true when x = n.

Dividing by the positive number n, we obtain

− 1
n
≤ sinn

n
≤ 1
n
.

Behavior of the Bounds

The two bounding sequences
− 1
n

and 1
n

are simple and easy to analyze.

Since
lim

n→∞

(
− 1
n

)
= 0 and lim

n→∞

1
n

= 0,
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both bounds converge to the same limit.
Conclusion

By the Squeeze Theorem,
lim

n→∞

sinn
n

= 0.
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Exercises

Exercise 1

Decide whether the following sequences converge or diverge. If they converge, find
the limit:

an = 5n
en
, bn = n2

2n + 1 , cn = lnn
n
.

Solution

(1) an = 5n
en

Consider the function f(x) = 5x
ex . As x → ∞, both numerator and denominator

tend to infinity.

By L’Hopital’s rule,
lim

x→∞

5x
ex

= lim
x→∞

5
ex

= 0.

Therefore,
lim

n→∞
an = 0.

(2) bn = n2

2n+1

Applying L’Hopital’s rule twice,

lim
x→∞

x2

2x + 1 = lim
x→∞

2x
2x ln 2 = lim

x→∞

2
(ln 2)2 2x

= 0.

Hence,
lim

n→∞
bn = 0.

(3) cn = ln n
n

Using L’Hopital’s rule,
lim

x→∞

ln x
x

= lim
x→∞

1/x
1 = 0.

Thus,
lim

n→∞
cn = 0.
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Exercise 2

Discuss the convergence of the following sequences:

(i) (−1.2)n (ii) 1
2n

(iii) cos2(n)
3n

(iv) 4n3 + 5n+ 1
2n3 + n2 + 5 (v)

(
1 + 1

n

)n

(vi) n1/n

Solution

(i) (−1.2)n

This is a geometric sequence with common ratio r = −1.2.

Since |r| = 1.2 > 1, the absolute value of the terms grows without bound. Therefore,
the sequence diverges.

(ii) 1
2n

This can be written as a geometric sequence

1
2n

=
(1

2

)n

.

Here |r| = 1
2 < 1, so the sequence converges and

lim
n→∞

1
2n

= 0.

(iii) cos2(n)
3n

Since 0 ≤ cos2(n) ≤ 1, we have

0 ≤ cos2(n)
3n

≤ 1
3n
.

Because 1
3n → 0, the squeeze theorem gives

lim
n→∞

cos2(n)
3n

= 0.
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(iv) 4n3+5n+1
2n3+n2+5

Dividing numerator and denominator by n3, we obtain

4 + 5
n2 + 1

n3

2 + 1
n

+ 5
n3
−→ 4

2 = 2.

Hence the sequence converges to 2.

(v)
(
1 + 1

n

)n

This is a classical sequence that defines the number e.

Let
en =

(
1 + 1

n

)n

.

Taking logarithms,

ln(en) = n ln
(

1 + 1
n

)
=

ln
(
1 + 1

n

)
1
n

.

Let x = 1
n
. As n→∞, we have x→ 0+, and

ln(en) = ln(1 + x)
x

.

Using the standard limit
lim
x→0

ln(1 + x)
x

= 1,

we obtain
lim

n→∞
ln(en) = 1.

Since ln(en)→ 1, it follows that

en = eln(en) → e.

(vi) n1/n

Taking logarithms,
ln
(
n1/n

)
= lnn

n
.

As n→∞, this quotient tends to 0, so

n1/n → e0 = 1.
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Exercise 3

Decide whether the following sequences converge or diverge:

an =
√
n+ 1−

√
n, bn = n2

2n− 1 −
n2

2n+ 1 .

Solution
(1) an =

√
n+ 1−

√
n

an = 1√
n+ 1 +

√
n
≤ 1

2
√
n
→ 0.

By the squeeze theorem,
lim

n→∞
an = 0.

(2) bn = n2

2n−1 −
n2

2n+1

bn = 2n2

4n2 − 1 →
1
2 .
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Infinite Series

Lecture 1: What Is an Infinite Series?

An infinite series is the sum of the terms of a sequence:

∞∑
n=1

an = a1 + a2 + a3 + · · ·

Partial Sums

The sequence of partial sums is defined by

SN =
N∑

k=1
ak.

S1 = a1, S2 = a1 + a2, S3 = a1 + a2 + a3, . . .

Definition of Convergence

The series ∑∞n=1 an converges if the sequence (SN) converges to a finite limit. In
that case,

∞∑
n=1

an = lim
N→∞

SN .

Divergence

If the sequence of partial sums has no finite limit, the series diverges.

Telescoping Series

Example

Evaluate the series ∞∑
n=1

1
n(n+ 1) .

21
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We first rewrite the general term using partial fractions:

1
n(n+ 1) = 1

n
− 1
n+ 1 .

Consider the partial sum

SN =
N∑

n=1

( 1
n
− 1
n+ 1

)
.

SN =
(1

1 −
1
2

)
+
(1

2 −
1
3

)
+
(1

3 −
1
4

)
+ · · ·

+
( 1
N
− 1
N + 1

)
.

Telescoping Effect

All intermediate terms cancel. Only the first and the last terms remain.

SN = 1− 1
N + 1 .

Limit

Taking the limit as N →∞,
lim

N→∞
SN = 1.

∞∑
n=1

1
n(n+ 1) = 1

General Rule: Telescoping Series

Telescoping Rule

If a sequence satisfies
an = bn − bn+1,

then
SN =

N∑
n=1

an = b1 − bN+1.

If limN→∞ bN+1 exists, then

∞∑
n=1

an = b1 − lim
N→∞

bN+1.
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The Geometric Series
∞∑

n=0
rn

For which real numbers r does the series
∞∑

n=0
rn

converge, and what is its value?

Partial Sums

To answer this question, we study the sequence of partial sums

SN =
N∑

n=0
rn.

(1− r)
N∑

n=0
rn =

N∑
n=0

(
rn − rn+1

)
= (r0 − r1) + (r1 − r2) + · · ·+ (rN − rN+1)

= r0 − rN+1 = 1− rN+1.

Dividing both sides by 1− r, we obtain the formula for the partial sum:

N∑
n=0

rn = 1− rN+1

1− r , r 6= 1.

The behavior of the infinite series depends entirely on the limit of rN+1 as N →∞.

|r| < 1 ⇒ rN+1 → 0,

|r| ≥ 1 ⇒ rN+1 diverges .

Geometric Series Test
∞∑

n=0
rn converges if and only if |r| < 1.
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Sum of the Series

If |r| < 1, then
∞∑

n=0
rn = lim

N→∞
SN = 1

1− r .

If |r| ≥ 1, the series diverges.

Example
∞∑

n=0

(1
2

)n

= 1
1− 1

2
= 2.

Basic Properties of Series

Linearity

If both series converge, then:

∞∑
n=1

(an + bn) =
∞∑

n=1
an +

∞∑
n=1

bn,

∞∑
n=1

c an = c
∞∑

n=1
an.

Exercises

Exercise

Evaluate the series ∞∑
n=3

1
n(n+ 1) .

Use the known value of the full series starting at n = 1.

∞∑
n=1

1
n(n+ 1) = 1.

∞∑
n=3

1
n(n+ 1) = 1−

( 1
1 · 2 + 1

2 · 3

)
.

1
2 + 1

6 = 3
6 + 1

6 = 4
6 = 2

3 .
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Answer
∞∑

n=3

1
n(n+ 1) = 1

3 .

Exercises

Evaluate:
(a)

∞∑
n=0

2n+1

3n−2 , (b)
∞∑

n=0

2n + 3n

5n
.

Solution (a)

Rewrite the general term:
2n+1

3n−2 = 18
(2

3

)n

.

∞∑
n=0

2n+1

3n−2 = 18
∞∑

n=0

(2
3

)n

.

Since |2/3| < 1,
∞∑

n=0

(2
3

)n

= 1
1− 2

3
= 3.

Answer
∞∑

n=0

2n+1

3n−2 = 54 .

Solution (b)

Use linearity to split the series:

∞∑
n=0

2n + 3n

5n
=
∞∑

n=0

(2
5

)n

+
∞∑

n=0

(3
5

)n

.

∞∑
n=0

(2
5

)n

= 5
3 ,

∞∑
n=0

(3
5

)n

= 5
2 .

Answer
∞∑

n=0

2n + 3n

5n
= 25

6 .

Necessary Condition for Convergence
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Statement of the Necessary Condition

If the series ∞∑
n=1

an

converges, then
lim

n→∞
an = 0.

Fundamental Identity of Partial Sums

Let
Sn =

n∑
k=1

ak

be the sequence of partial sums. Then, for every n ≥ 2,

an = Sn − Sn−1 .

Assume now that the series converges. Then the sequence of partial sums (Sn) con-
verges to a finite limit S, where

S =
∞∑

n=1
an.

Using the fundamental identity,

an = Sn − Sn−1.

Taking limits on both sides,

lim
n→∞

an = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

Important

The converse is false.
Even if an → 0, the series

∞∑
n=1

an

may still diverge.
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Lecture 2 : Convergence Tests for Positive Series

Positive Series

We study series of the form
∞∑

n=1
an,

where
an ≥ 0 for all n.

Such series are called positive series.

(a) The nth-Term Test

The nth-Term Test

If
lim

n→∞
an 6= 0 or the limit does not exist,

then the series ∞∑
n=1

an

diverges.

Example 1

an = 1.

Here
lim

n→∞
an = 1 6= 0.

Partial sums:

S1 = 1, S2 = 2, S3 = 3, . . . , SN = N →∞.

Hence, the series
∞∑

n=1
1

diverges.
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Example 2

an = (−1)n.

The limit limn→∞(−1)n does not exist (the terms oscillate). Partial sums:

S1 = −1, S2 = 0, S3 = −1, S4 = 0, . . .

The sequence (Sn) does not converge, so the series diverges.

Example 3

Consider ∞∑
n=1

n

n+ 1 .

We compute
lim

n→∞

n

n+ 1 = lim
n→∞

1
1 + 1

n

= 1 6= 0.

By the nth-term test, the series diverges.

Why This Test Is One-Way

The condition an → 0 is necessary but not sufficient.
For example,

an = 1
n
→ 0,

but the harmonic series ∞∑
n=1

1
n

diverges.

(b) Integral Test
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Integral Test

Let f : [1,∞)→ R satisfy:

• f is continuous,

• f(x) ≥ 0 for all x ≥ 1,

• f is decreasing on [1,∞),

• f(n) = an for all integers n ≥ 1.

Then ∞∑
n=1

an converges ⇐⇒
∫ ∞

1
f(x) dx converges.

Application: The p-Series

The p-Series

Consider ∞∑
n=1

1
np
, p > 0.

Let
f(x) = 1

xp
,

which is continuous, positive, and decreasing on [1,∞).

∫ ∞
1

1
xp
dx = lim

t→∞

∫ t

1

1
xp
dx.

Case p 6= 1. ∫ t

1

1
xp
dx =

[
x1−p

1− p

]t

1
= t1−p − 1

1− p .

• If p > 1, then t1−p → 0 and the integral converges.

• If p < 1, then t1−p →∞ and the integral diverges.

Case p = 1. ∫ t

1

1
x
dx = ln t→∞.
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Final Conclusion

∞∑
n=1

1
np

=


Converges, p > 1,

Diverges, p ≤ 1.

Examples of the p-Series Test

•
∞∑

n=1

1
n2 Converges, since p = 2 > 1.

•
∞∑

n=1

1
n

Diverges (harmonic series), since p = 1.

•
∞∑

n=1

1√
n

Diverges, since p = 1
2 < 1.

(c) Comparison Test

Comparison Test

Let (an) and (bn) be sequences with

0 ≤ an ≤ bn for all n.

• If
∑

bn converges, then
∑

an also converges.

• If
∑

an diverges and 0 ≤ an ≤ bn, then
∑

bn also diverges.

Idea: A series smaller than a convergent one must converge. A series larger than
a divergent one must diverge.
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Example (Direct Comparison)

Let
an = 1

n2 + 1 , bn = 1
n2 .

Since n2 + 1 ≥ n2, we have

0 ≤ an ≤ bn for all n.

The series ∞∑
n=1

1
n2

is a p-series with p = 2 > 1, hence it converges. Therefore, by the Comparison
Test,

∞∑
n=1

1
n2 + 1 converges.

(d) Limit Comparison Test

Limit Comparison Test

Let an > 0 and bn > 0. If

lim
n→∞

an

bn

= c with 0 < c <∞,

then the series ∑ an and ∑ bn either both converge or both diverge.

How to Use the Limit Comparison Test

1. Choose a comparison series ∑ bn that you already know.

2. Compute L = lim
n→∞

an

bn

.

3. If 0 < L <∞, both series behave the same.

4. If L = 0 and ∑ bn converges, then ∑ an converges.

5. If L =∞ and ∑ bn diverges, then ∑ an diverges.

Examples: Rational Terms (Comparison with a p-Series)
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Example 1 (Convergent)

Consider ∞∑
n=1

2n3 + 5
9n5 + 1 .

Compare with the p-series ∑ 1
n2 .

lim
n→∞

2n3 + 5
9n5 + 1

1/n2 = lim
n→∞

2n5 + 5n2

9n5 + 1 = 2
9 .

Since ∑ 1
n2 converges, the given series also converges.

Example 2 (Divergent)

Consider ∞∑
n=1

7n+ 4
3n2 + 1 .

Compare with the harmonic series ∑ 1
n
:

lim
n→∞

7n+ 4
3n2 + 1

1/n = lim
n→∞

7n2 + 4n
3n2 + 1 = 7

3 .

Since ∑ 1
n

diverges, the given series diverges.

Examples: Comparison with a Geometric Series

Example 3 (Convergent)

Let
an = 3n + 2

6n + 1 .

Compare with the geometric series bn =
(

1
2

)n
:

lim
n→∞

an

bn

= lim
n→∞

(3n + 2)2n

6n + 1 = 1.

Since ∑(
1
2

)n
converges, the series ∑ an also converges.
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Example 4 (Divergent)

Let
cn = 8n − 1

5n
.

Compare with dn =
(

8
5

)n
:

lim
n→∞

cn

dn

= lim
n→∞

(
1− 1

8n

)
= 1.

Since ∑(
8
5

)n
diverges (ratio > 1), the series ∑ cn diverges.

• Polynomial terms ⇒ compare with a p-series.

• Exponential terms ⇒ compare with a geometric series.

• The limit comparison test is often faster than direct comparison.

(e) Ratio Test

Ratio Test

Let (an) be a series with an > 0. Define

L = lim
n→∞

an+1

an

.

• If L < 1, the series converges.

• If L > 1 or L =∞, the series diverges.

• If L = 1, the test is inconclusive.

When to Use the Ratio Test

The Ratio Test is especially effective when the terms involve:

• factorials (n!),

• exponential terms (cn),

• products of powers and exponentials.
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Convergent Cases (L < 1)

(a) an = 5n

n!
an+1

an

= 5
n+ 1 −→ 0 < 1.

Hence, ∑ an converges.

(b) an = n

3n

an+1

an

= n+ 1
n
· 1

3 −→
1
3 < 1.

Thus, ∑ an converges.

Divergent Cases (L > 1)

(c) an = 2n

n
an+1

an

= 2 · n

n+ 1 −→ 2 > 1.

Hence, ∑ an diverges.

(d) an = n!
an+1

an

= n+ 1 −→∞.

Therefore, ∑ an diverges.

(f) Root Test

Root Test (Rule)

Let an > 0. Define
L = lim

n→∞
n
√
an.

• If L < 1, the series converges.

• If L > 1 or L =∞, the series diverges.

• If L = 1, the test gives no conclusion.

• See n!: use the Ratio Test.

• See (something)n: use the Root Test.

• If the limit equals 1, the test fails – try another method.
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Lecture 3: Absolute and Conditional Convergence

Definitions

• A series ∑ an is said to be absolutely convergent if

∑
|an| converges.

• A series ∑ an is said to be conditionally convergent if

∑
an converges, but

∑
|an| diverges.

Theorem (Absolute Convergence)

If the series ∑ |an| converges, then the original series ∑ an also converges.

Remark. The converse is not true.

Classical Example

Consider the alternating harmonic series:

∞∑
n=1

(−1)n+1

n
= 1− 1

2 + 1
3 −

1
4 + · · ·

This series converges, but

∞∑
n=1

∣∣∣∣∣(−1)n+1

n

∣∣∣∣∣ =
∞∑

n=1

1
n

diverges.

Hence, the alternating harmonic series is conditionally convergent.

(g) Alternating Series Test (Leibniz Test)
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Alternating Series Test

Let an > 0. If:

• an is decreasing, and

• limn→∞ an = 0,

then the alternating series
∞∑

n=1
(−1)n+1an

converges.

Examples

•
∑ (−1)n

n2 Absolutely convergent (use the p-series test).

•
∑ (−1)n

lnn Conditionally convergent (use the Leibniz test).

•
∑ n!

nn
Convergent (use the Ratio or Root Test).

Exercises

Instructions

Decide whether each series converges or diverges. If it converges, state whether the
convergence is absolute or conditional, and find the sum when possible.



37

Problems

1.
∞∑

n=1

1
n p

(p > 0)

2.
∞∑

n=2

1
n(lnn)p

(p > 0)

3.
∞∑

n=2

lnn
n2

4.
∞∑

n=1

n

n2 + 1

5.
∞∑

n=1

n2 + 3
n3 − 1

6.
∞∑

n=1

1
n(n+ 1)
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Solutions

1.
∞∑

n=1

1
n p

Integral test. For p > 0, set f(x) = x−p, positive and decreasing on [1,∞).
Then ∫ ∞

1
x−p dx =


1

p− 1 , p > 1,

∞, p ≤ 1.

Hence the series converges iff p > 1.

2.
∞∑

n=2

1
n(lnn)p

Using the integral test with u = ln x,

∫ ∞
2

dx

x(ln x)p
=


(ln 2)1−p

p− 1 , p > 1,

∞, 0 < p ≤ 1.

Thus the series converges iff p > 1.

3.
∞∑

n=2

lnn
n2

∫ ∞
2

ln x
x2 dx = ln 2 + 1

2 <∞,

so the series converges absolutely.

4.
∞∑

n=1

n

n2 + 1
Limit comparison with ∑ 1

n
gives divergence.

5.
∞∑

n=1

n2 + 3
n3 − 1

Limit comparison with ∑ 1
n

gives divergence.

6.
∞∑

n=1

1
n(n+ 1)

Telescoping:
∞∑

n=1

1
n(n+ 1) = 1.
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Problems

1.
∞∑

n=0

(3
5

)n

2.
∞∑

n=1

n

3n

3.
∞∑

n=0

2n

n!

4.
∞∑

n=1

(−1)n−1

n

5.
∞∑

n=1

(−1)n

√
n

6.
∞∑

n=1

(3n+ 1
2n− 1

)n

7.
∞∑

n=1

(
1 + 1

n

)n

n2

8.
∞∑

n=1
sin
( 1
n

)

9.
∞∑

n=2
(−1)n−1 lnn

n

10.
∞∑

n=1

np

2n
(p ∈ R)

11.
∞∑

n=1

(−1)n−1

n p
(p > 0)
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Solutions

1.
∞∑

n=0

(3
5

)n

Geometric series; sum = 5
2.

2.
∞∑

n=1

n

3n

Ratio test gives convergence; sum = 3
4.

3.
∞∑

n=0

2n

n!
Ratio test; sum = e2.

4.
∞∑

n=1

(−1)n−1

n

Alternating harmonic series: converges conditionally.

5.
∞∑

n=1

(−1)n

√
n

Leibniz test applies; convergence is conditional.

6.
∞∑

n=1

(3n+ 1
2n− 1

)n

Root test gives limit = 3
2 > 1; diverges.

7.
∞∑

n=1

(1 + 1
n
)n

n2

Comparison with ∑ e
n2 ; converges absolutely.

8.
∞∑

n=1
sin
( 1
n

)
Limit comparison with ∑ 1

n
shows divergence.

9.
∞∑

n=2
(−1)n−1 lnn

n

Leibniz test gives convergence; absolute series diverges.

10.
∞∑

n=1

np

2n

Ratio test gives absolute convergence for all p ∈ R.

11.
∞∑

n=1

(−1)n−1

np

Alternating series converges for p > 0; absolute iff p > 1.


