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Sequences

Definition

An infinite sequence (or a sequence) of real numbers is a
real-valued function defined on a set of integers {n ∈ N; n ≥ k}.
We call the values of the function the terms of the sequence. We
denote a sequence by listing its terms in order, (un)n≥k . (un is
called the general term of the sequence.)
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Definition

A sequence (un)n is called convergent to the real number ℓ if

∀ ε > 0, ∃N ∈ N such that |un − ℓ| < ε ∀n ≥ N.

ℓ will be called the limit of the sequence (un)n and denoted by
ℓ = lim

n→+∞
un.

A sequence which is not convergent is called divergent.
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Remarks

1 The limit of a sequence if it exists is unique.

2 If a sequence (un)n converges to a limit ℓ, then the sequence
(vn)n defined by vn = un+p converges also to ℓ.
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Definition

1 A sequence (un)n is called upper bounded, if there exists a
M ∈ R such that, un ≤ M, ∀n ∈ N.

2 A sequence (un)n is called lower bounded, if there exists a real
number m such that, un ≥ m, ∀ n ∈ N.

3 A sequence (un)n is called bounded, if it is upper and lower
bounded.
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Theorem

Any convergent sequence is bounded.
The sequence (un)n defined by: un = (−1)n+1 is bounded but not
convergent.
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Monotone Sequences

Definition

1 A sequence (un)n is called increasing if un ≤ un+1, ∀n ∈ N.
2 A sequence (un)n is called decreasing if un ≥ un+1, ∀ n ∈ N.
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Theorem

1 Any real upper bounded sequence is convergent.

2 Any decreasing lower bounded sequence is convergent.
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Subsequence

Definition

let (un)n be a sequence. A sequence (vn)n is called a subsequence
of the sequence (un)n if there exists a strictly increasing map
φ : N −→ N such that vn = uφ(n).

Mongi BLEL Infinite Series



Sequences
Subsequence

Cauchy Sequences
General Properties of Convergent series

Tests of Convergence
The Series Product

Radius of Convergence of Power Series

Example

(u2n)n, (u2n+1)n, (u3n)n are subsequences of (un)n.

Theorem

Any subsequence of a convergent sequence is convergent and
converges to the same limit.
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Remark

A sequence (un)n can be divergent and has a convergent subse-
quence.
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Example

un = (−1)n, with n ∈ N. u2n = 1 and u2n+1 = −1, the sequences
(u2n)n and (u2n+1)n are convergent, but the sequence (un)n diver-
gent.
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Theorem

[Bolzano-Weierstrass Theorem] Any bounded real sequence has a
convergent subsequence.
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Cauchy Sequences

Definition

A sequence (un)n is called a Cauchy sequence if

∀ε > 0 ∃ N ∈ N such that ∀ n,m ≥ N |un − um| ≤ ε. (1)
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Theorem

[Cauchy’s Convergence Criterion]
A real sequence is Cauchy sequence if and only if it is convergent.
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General Properties of Convergent series

Definition

1 Let (un)n∈N be a sequence of real numbers. We consider the

sequence (Sn)n defined by: Sn =
n∑

k=1

uk .

We say that the series
∑

n≥1 un is convergent if the sequence
(Sn)n is convergent.
The limit of the sequence (Sn)n if it exists is denoted by
+∞∑
n=1

un .

2 The series
∑
n≥1

un is called divergent if the sequence (Sn)n is

divergent.
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Remarks

1 If the series
∑

n≥1 un converges, then limn−→+∞ un = 0.
(un = Sn − Sn−1.)

2 The condition limn−→+∞ un = 0 is not, however, sufficient to
ensure the convergence of the series

∑
n≥1 un. For instance,

the series
∑

n≥1

√
n + 1−

√
n is divergent because for every

n ∈ N; Sn =
√
n + 1− 1 and limn→+∞ un = 0.
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Theorem

[Cauchy Criterion]
Let (un)n∈N be a sequence of real numbers. The series

∑
n≥1 un

converges if, and only, if,

∀ ε > 0, ∃ Nε ∈ N; ∀ q ≥ p ≥ Nε; |
q∑

n=p

un| ≤ ε.
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Definition

A series
∑

n≥1 un is called absolutely convergent if the series∑
n≥1 |un| converges.
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Remark

Any absolutely convergent series is convergent but the converse is

false, it suffices to take the series
∑

n≥1
(−1)n+1

n .

If Sn =
∑n

p=1
(−1)p+1

p , then S2n+1 − S2n = −1
2n+1

−−−−−−→
p→+∞

0. To

prove that the series
∑

n≥1
(−1)n+1

n converges, it suffices to prove
that the sequence (S2n)n is convergent.
We have S2n+2 − S2n = 1

2n+2 − 1
2n+1 ≤ 0 and S2n+1 − S2n−1 =

1
2n−

1
2n+1 ≥ 0, then the sequences (S2n)n and (S2n+1)n are adjacent,

which shows that the sequence (Sn)n is convergent.

We remark that
∑2n

k=n+1
1
k ≥ n

2n = 1
2 , thus the series

∑
n≥1

(−1)n+1

n
is not absolutely convergent.

Mongi BLEL Infinite Series



Sequences
Subsequence

Cauchy Sequences
General Properties of Convergent series

Tests of Convergence
The Series Product

Radius of Convergence of Power Series

Tests of Convergence

There are several standard tests for convergence of a series of non
negative terms:
The following comparison criterions are based primarily on the fact
that an increasing sequence is convergent if, and only, if, it is
bounded above. It follows that a series

∑
n≥1 un with non nega-

tive terms is convergent if, and only, if, the sequence (Sn)n defined
by Sn =

∑n
k=1 uk is bounded.
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Theorem

[Comparison Test]
Let (un)n and (vn)n be two sequences with non negative numbers.
Assume that there exists an integer k ∈ N such that for every
n ≥ k , un ≤ vn, then if the series

∑
n≥1 vn is convergent, the series∑

n≥1 un is also convergent.
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Corollary

Let (un)n and (vn)n be two sequences with non negative numbers.
Assume that there exists a > 0 and b > 0 such that
aun ≤ vn ≤ bun for every n ≥ k , then the series

∑
n≥1 un and∑

n≥1 vn have the same nature.

Mongi BLEL Infinite Series



Sequences
Subsequence

Cauchy Sequences
General Properties of Convergent series

Tests of Convergence
The Series Product

Radius of Convergence of Power Series

Corollary

Let (un)n and (vn)n be two sequences with non negative numbers.
Assume that

lim
n→+∞

un
vn

= ℓ.

1 If ℓ > 0, the series
∑

n≥1 un and
∑

n≥1 vn have the same
nature.

2 If ℓ = 0, the convergence of the series
∑

n≥1 vn involves the
convergence of the series

∑
n≥1 un.

3 If ℓ = +∞, the convergence of the series
∑

n≥1 un involves
the convergence of the series

∑
n≥1 vn.
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Integral Test

Theorem

[Integral Test]
Let f be a decreasing continuous function on [1,+∞[. For all
n ∈ N, we define un = f (n), then∫ +∞

1
f (x)dx converges ⇐⇒

∑
n≥1

un converges.
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Corollary

[Convergence of Riemann series]
The series

∑
n≥1

1
nα converges if, and only, if, α > 1.

Theorem

[Application Comparison with Riemann series]
Let (un)n be a sequence with non negative terms. Assume that
there exists 0 < a < b such that for every n large enough,
0 < a ≤ nαun ≤ b < +∞, then the series

∑
n≥1 un converges if,

and only, if, α > 1.

This Theorem results from Theorem 23
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Exercise

Show that the Bertrand series
∑

n≥2
1

nα lnβ n
converges if, and only,

if, α > 1 or α = 1 and β > 1.
Solution
If α ≤ 0, lim

n→+∞

n

nα(ln n)β
= +∞, then the series diverges.

If 0 < α < 1, we get α < γ < 1 and consider the sequence vn = 1
nγ .

lim
n→+∞

nγ

nα(ln n)β
= +∞, then the series

∑
n≥2

1

nα(ln n)β
diverges.
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If α > 1, we get 1 < γ < α and consider the sequence vn = 1
nγ ,

lim
n→+∞

nγ

nα(ln n)β
= 0, then the series

∑
n≥2

1

nα(ln n)β
converges.

If α = 1, we consider the sequence un =
1

n lnβ n
and f (x) =

1

x lnβ x
,

for x ≥ 2. f is decreasing for x large. Then the series
∑
n≥2

1

n(ln n)β

converges if and only if

∫ ∞

2

dx

x lnβ x
.

The integral ∫ ∞

2

dx

x lnβ x

t=ln x
=

∫ ∞

ln 2

dt

tβ

is convergent if and only if β > 1.
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Root Test or Cauchy Test

Theorem

[Root Test or the Cauchy Test]
Let (un)n∈N be a sequence of real numbers and
ℓ = limn→+∞

n
√
|un|.

1 If ℓ < 1, the series
∑
n≥1

un is absolutely convergent.

2 If ℓ > 1, the general term of the series does not tends to 0
and the series

∑
n≥1 un diverges.

3 If ℓ = 1, we can not conclude if the series is convergent or not.
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The Ratio Test or D’Alembert’s Test

Theorem

Let (un)n∈N be a sequence of real numbers. Assume that

lim
n−→+∞

|un+1

un
| = ℓ. Then

i) If ℓ < 1, the series
∑
n≥1

un is absolutely convergent.

ii) If ℓ > 1 the general term of the series does not tend to 0 and

the series
∑
n≥1

un diverges.

iii) If ℓ = 1 , we can not conclude if the series is convergent or not.
In this case,

lim
n−→+∞

n
√
|un| = ℓ.
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Examples

1 Let z ∈ C, the series
∑

n≥0
zn

n! is absolutely convergent on C,

because for every z ∈ C; |un+1

un
| = |z |

n + 1
−−−−−−→
n−→+∞

0. We

denote ez the sum of this series.

2 For |z | < 1, the series
∑

n≥1
zn

n is absolutely convergent.
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The Abel Test

Theorem

[The Abel Test]
Let (un)n be a sequence of real numbers and let (vn)n be a
sequence of non negative real numbers such that
i) the sequence (vn)n is decreasing and tends to 0 when n → +∞.

ii) the sequence
(
Sn =

n∑
k=1

uk

)
n
is bounded.

Then the series
∑
n≥1

unvn is convergent.
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Proof

we use the Cauchy criterion (19) for the existence of the limit. Let
q > p ≥ 1,

q∑
k=p+1

ukvk =

q∑
k=p+1

(Sk − Sk−1)vk =

q∑
k=p+1

Skvk −
q−1∑
k=p

Skvk+1

=

q−1∑
k=p+1

(vk − vk+1) + Sqvq − Spvp+1

Since |Sk | ≤ M, then we have

|
q∑

k=p+1

ukvk | ≤ 2Mvk+1 −−−−−−→
k→+∞

0.
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Remark

The result still true if the sequence (Sn)n is bounded and the se-

quence (bn)n tends to 0 and the series
+∞∑
n=0

(bn−bn+1) is convergent.
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Examples

1 Let bn =
(−1)[

√
n]

n
, for n ≥ 1 and an = e inθ for 0 < θ < 2π.

|
q∑

n=p

an| ≤
1

sin θ/2
and we can prove that∑

n≥2

|bn − bn−1| ≤
∑
n≥2

2

(n − 1)2
. It results that the series

∑
n≥1

(−1)[
√
n]e inθ

n
converges for all 0 < θ < 2π.

2 Let sn =
n∑

k=1

1

k
− ln n, n ≥ 1. We set u1 = S1 = 1 and for all

n ≥ 2; un = Sn − Sn−1 =
1

n
+ ln

n − 1

n
=

1

n
+ ln(1− 1

n
) =

1

n
+ (−1

n
− 1

2n2
+ o(

1

n2
)), then un = −1

2n2
+ o( 1

n2
), thus (sn)n

converges. We set γ = lim
n→+∞

sn, γ is called the ”Euler

constant.
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The Series Product

Definition

Let (un)n and (vn)n be two sequences of real numbers. For n ∈ N,
we set

cn =
n∑

k=1

ukvn−k . (2)

The series
∑
n≥1

cn is called the product of the two given series∑
n≥1

un and
∑
n≥1

vn.
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In this definition we are not interested in whether the product of the
series exists, because it depends of some conditions. Indeed we have
the following example
The series

∑
n≥1

(−1)n√
n+1

is convergent. The product of this series

with itself is a series with general term cn, such that

cn =
n∑

k=1

(−1)k√
k + 1

(−1)n−k

√
n − k + 1

= (−1)n
n∑

k=0

1√
k + 1

√
n − k + 1

.

(3)
But |cn| ≥ 1, thus the series

∑
n≥1 cn is divergent.

The following theorem affirms the existence of the series product
under certain conditions.
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Theorem

Let (un)n and (vn)n be two sequences of real numbers.

1 We assume that the series
∑
n≥1

un and
∑
n≥1

vn are absolutely

convergent. Then the series
∑
n≥1

cn is absolutely convergent

and one has

+∞∑
n=1

cn = (
+∞∑
n=1

un)(
+∞∑
n=1

vn). (4)

2 We assume that the series
∑
n≥1

un is absolutely convergent and

the series
∑
n≥1

vn is convergent. Then the series
∑
n≥1

cn is

convergent and we have

+∞∑
n=1

cn = (
+∞∑
n=1

un)(
+∞∑
n=1

vn). (5)
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Proof

It suffices to proves 2).
We set

An =
n∑

k=1

uk , Bn =
n∑

k=1

vk , Cn =
n∑

k=1

ck ,

A =
+∞∑
n=1

un, α =
+∞∑
n=1

|un| and B =
+∞∑
n=1

vn.

Mongi BLEL Infinite Series



Sequences
Subsequence

Cauchy Sequences
General Properties of Convergent series

Tests of Convergence
The Series Product

Radius of Convergence of Power Series

Then

Cn =
n∑

j=1

cj =
n∑

j=1

ujBn−j =
n∑

j=1

uj(Bn−j − B) + BAn.

Since limn→+∞ B.An = A.B, then to show that lim
n−→+∞

Cn = A.B,

it suffices to show that the sequence (∆n)n converges to 0, where

∆n =
n∑

j=1

aj(Bn−j − B).

Let ε > 0 ∃N ∈ N such that ∀ n ≥ N; |Bn − B| < ε
2α and

+∞∑
j=N

|aj | ≤
ε

2M
, thus for every n ≥ 2N,

|∆n| ≤
N∑
j=1

|aj ||Bn−j − B|+
n∑

j=N+1

|aj ||Bn−j − B| ≤ ε

2
+

ε

2
= ε.

Then it results that lim
n−→+∞

|∆n| = 0.
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Power Series

Definition

Let fn(x) = an(x − x0)
n; with (an)n a sequence of real numbers.

The series
∑
n≥1

an(x − x0)
n is called a power series centered at x0.

We denote S(x) =
+∞∑
n=1

an(x − x0)
n, whenever x where the series

converges.
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Let
∑
n≥1

an(x − x0)
n be a power series, we look for its domain of

convergence. The series converges at least for x = x0. In which
follows, we consider the series centered at 0.

Theorem

[Abel’s lemma]

If the power series
∑
n≥1

anx
n is convergent for x = x0, x0 ̸= 0, then

1 the series
∑
n≥1

anx
n is absolutely convergent on the interval

]− |x0|, |x0|[,
2 for every r < |x0|, the series

∑
n≥1

anx
n converges uniformly on

[−r , r ].
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Proof

1 Let x ∈]− |x0|, |x0|[,
+∞∑
n=1

|anxn| ≤
+∞∑
n=1

|anxn0 ||
x

x0
|n. Since the

series
∑

n≥1 anx
n
0 is convergent, the sequence (anx

n
0 )n is

bounded. Moreover the series
∑
n≥1

| x
x0

|n is convergent, then

the series
∑
n≥1

anx
n is absolutely convergent on ]− |x0|, |x0|[.

2 Let r < |x0| and x ∈ [−r , r ], |anxn| ≤ |an|rn and
+∞∑
n=1

|an|rn < +∞, thus the series
∑
n≥1

anx
n converges

uniformly on [−r , r ].
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Corollary

If the power series
∑
n≥1

anx
n diverges for x = x0, then it diverges for

every x such that |x | > |x0|.
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Radius of Convergence of Power Series

Theorem

For every power series
∑
n≥1

anx
n, there exists a unique R ∈ [0,+∞]

which fulfills

1 For every x ∈ R, such that |x | < R, the series
∑
n≥1

anx
n is

absolutely convergent.

2 For every x ∈ R, such that |x | > R, the sequence (anx
n)n is

not bounded and then the series
∑
n≥1

anx
n diverges.

The number R is called the radius of convergence of the
power series and ]− R,R[= {x ∈ R; |x | < R} is called the
interval of convergence of the power series.Mongi BLEL Infinite Series
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Proof

The uniqueness results from the Abel’s lemma. We set R = sup{r ≥
1;

∑+∞
n=1 |an|rn < +∞}.

If |x | < R, the series
∑
n≥1

anx
n is absolutely convergent.

If |x | > R, the series
∑
n≥1

anx
n diverges. If not the series

∑
n≥1

|an|rn

converges for every R < r < |x |, which is impossible.

Mongi BLEL Infinite Series



Sequences
Subsequence

Cauchy Sequences
General Properties of Convergent series

Tests of Convergence
The Series Product

Radius of Convergence of Power Series

Remark

By the proof of the Theorem 7, we deduce that if R is the radius

of convergence of the series
∑
n≥1

anx
n, then the series converges uni-

formly on any interval [−r , r ] with 0 < r < R.

Theorem

[Cauchy 1821, used by Hadamard] (Cauchy-Hadamard Rule) Let∑
n≥1

anx
n be a power series with R its radius of convergence. Then

1 R = sup{r > 0;
+∞∑
n=1

|an|rn < +∞} = sup{r ≥

0; the sequence (anr
n)nis bounded }.

2 If lim
n→+∞

| an
an+1

| = β ∈ [0,+∞], then R = β.

3 R =
1

limn→+∞
n
√
|an|

. (With R = +∞ if limn→+∞
n
√
|an| = 0

and R = 0 if limn→+∞
n
√
|an| = +∞.)
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Theorem

Let f be the function defined by the power series
∑
n≥0

anx
n which

has R > 0 as radius of convergence, then the function g defined by

the power series
∑
n≥1

nanx
n−1 has R as radius of convergence. The

function f is differentiable on ]− R,R[ and f ′(x) = g(x).

For the proof of this theorem, we need the following lemma

Lemma

Let x ∈ R and h ∈ R such that 0 < |h| ≤ r , then for any n ∈ N

|(x + h)n − xn − nhxn−1| ≤ |h|2

r2
(|x |+ r)n (6)

and

n|x |n−1 ≤ 1

r

(
2(|x |+ r)n + |x |n

)
(7)
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Proof

From the inequality (6)

∣∣(x + h)n − xn − nhxn−1
∣∣ =

∣∣∣∣∣
n∑

k=0

C k
n h

kxn−k − xn − nhxn−1

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=2

C k
n h

kxn−k

∣∣∣∣∣
≤ |h|2

n∑
k=2

C k
n |x |n−k |h|k−2 ≤ |h|2

r2

n∑
k=2

C k
n |x |n−k rk

≤ |h|2

r2
(|x |+ r)n.

We have |(x + h)n − xn − nhxn−1| ≥ nr |x |n−1 − |x |n − (|x |+ r)n.
From the relation (6), we deduce

nr |x |n−1 ≤ |x |n+(|x |+r)n+|(x+r)n−xn−nrxn−1| ≤ |x |n+2(|x |+r)n.
Mongi BLEL Infinite Series
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Proof of the theorem 49

We denote R ′ the radius of convergence of the power series
∑
n≥1

nanx
n−1.

It is obvious that R ′ ≤ R. Let r > 0 such that |x | + r < R. From

the lemma 49; we have |nanxn−1| ≤ 1

r

(
2|an|(|x | + r)n + |an||x |n

)
and thus

∑
n≥1

nanx
n−1 converges absolutely on ] − R,R[. Thus the

radius of convergence of the series defining g is greater than R.
Thus R = R ′.

From the inequality (6) one has | f (x + h)− f (x)

h
−g(x)| ≤ |h|

r

+∞∑
n=1

|an|(|x |+

r)n; this proves that when h tends to 0; f ′(x) = g(x); for any
x ∈]− R,R[.
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Corollary

If f (x) =
+∞∑
n=0

anx
n, then f is infinitely continuously differentiable

on ]− R,R[; an =
f (n)(0)

n!
and f (x) =

+∞∑
n=0

f (n)(0)

n!
xn. (This series

is called the Taylor’s series of f at 0.)
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Examples

ex =
+∞∑
n=0

xn

n!
∀x ∈ R.

e−x =
+∞∑
n=0

(−1)nxn

n!
∀x ∈ R.

cosh x =
+∞∑
n=0

x2n

(2n)!
∀x ∈ R.

sinh x =
+∞∑
n=0

x2n+1

(2n + 1)!
∀x ∈ R.

For |x | < 1,

1

1− x
=

+∞∑
n=0

xn and
1

1 + x
=

+∞∑
n=0

(−1)nxn.

Mongi BLEL Infinite Series



Sequences
Subsequence

Cauchy Sequences
General Properties of Convergent series

Tests of Convergence
The Series Product

Radius of Convergence of Power Series

By integration, we have

ln(1 + x) =
+∞∑
n=0

(−1)n
xn+1

(n + 1)
and ln(1− x) = −

+∞∑
n=0

xn+1

(n + 1)
.

tanh−1 x =
1

2
ln

1 + x

1− x
=

+∞∑
n=0

x2n+1

(2n + 1)
.

1

1 + x2
=

+∞∑
n=0

(−1)nx2n and tan−1 x =
+∞∑
n=0

(−1)n
x2n+1

(2n + 1)
, |x | < 1.
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cos x =
+∞∑
n=0

(−1)n
x2n

(2n)!
and sin x =

+∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
.

Let f (x) = (1 + x)α with α a real number, α ̸∈ N. For x ∈] −
1, 1[; f ′(x) = α(1+ x)α−1, then f satisfies the following differential
equation

(1 + x)y ′ − αy = 0. (8)
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We look for a power series
∑
n≥0

anx
n as solution of the differential

equation (8).

If S =
+∞∑
n=0

anx
n is a solution, we have

(1 + x)
+∞∑
n=0

nanx
n−1 − α

+∞∑
n=0

anx
n = 0,

then (n + 1)an+1 + nan − αan = 0 ⇐⇒ an+1 = α−n
n+1 an ∀n ≥ 0,

which yields that

an =
α(α− 1) . . . (α− n)

2.3 . . . (n + 1)
a0.

Then

S(x) = a0(1 +
+∞∑
n=1

α(α− 1) . . . (α− n + 1)

n!
xn).
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By the uniqueness of the solution of the differential equation

(1− x)α =
+∞∑
n=0

anx
n, for |x | < 1,

where an =
α(α− 1) . . . (α− n)

2.3 . . . (n + 1)
.

For α = −1
2 , we have

1√
1− x

=
+∞∑
n=0

Cn
2n

4n
xn

1√
1 + x

=
+∞∑
n=0

(−1)nCn
2n

4n
xn.
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√
1 + x = 1 +

1

2

+∞∑
n=0

(−1)nCn
2n

4n
xn+1

n + 1
.

1√
1− x2

=
+∞∑
n=0

Cn
2n

4n
x2n.

1√
1 + x2

=
+∞∑
n=0

(−1)nCn
2n

4n
x2n.
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sin−1 x =
+∞∑
n=0

Cn
2n

4n
x2n+1

2n + 1
.

cos−1 x =
π

2
−

+∞∑
n=0

Cn
2n

4n
x2n+1

2n + 1
.

sinh−1 x =
+∞∑
n=0

(−1)nCn
2n

4n
x2n+1

2n + 1
.
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