Infinite Series

Mongi BLEL

King Saud University

March 25, 2024

Table of contents

- Sequences
 - Monotone Sequences
- 2 Subsequence
- Cauchy Sequences
- 4 General Properties of Convergent series
- **5** Tests of Convergence
 - Integral Test
 - Root Test or Cauchy Test
 - The Ratio Test or D'Alembert's Test
 - The Abel Test
- The Series Product
- Radius of Convergence of Power Series

Sequences

Definition

An infinite sequence (or a sequence) of real numbers is a real-valued function defined on a set of integers $\{n \in \mathbb{N}; n \geq k\}$. We call the values of the function the terms of the sequence. We denote a sequence by listing its terms in order, $(u_n)_{n\geq k}$. $(u_n$ is called the general term of the sequence.)

Definition

A sequence $(u_n)_n$ is called convergent to the real number ℓ if

$$\forall \ \varepsilon > 0, \ \exists N \in \mathbb{N} \ \text{such that} \ |u_n - \ell| < \varepsilon \quad \forall n \geq N.$$

 ℓ will be called the limit of the sequence $(u_n)_n$ and denoted by $\ell = \lim_{n \to +\infty} u_n$.

A sequence which is not convergent is called divergent.

Remarks

- 1 The limit of a sequence if it exists is unique.
- ② If a sequence $(u_n)_n$ converges to a limit ℓ , then the sequence $(v_n)_n$ defined by $v_n = u_{n+p}$ converges also to ℓ .

Definition

- A sequence $(u_n)_n$ is called upper bounded, if there exists a $M \in \mathbb{R}$ such that, $u_n \leq M, \ \forall n \in \mathbb{N}$.
- **2** A sequence $(u_n)_n$ is called lower bounded, if there exists a real number m such that, $u_n \ge m$, $\forall n \in \mathbb{N}$.
- **3** A sequence $(u_n)_n$ is called bounded, if it is upper and lower bounded.

Theorem

Any convergent sequence is bounded.

The sequence $(u_n)_n$ defined by: $u_n = (-1)^{n+1}$ is bounded but not convergent.

Monotone Sequences

Definition

- **①** A sequence $(u_n)_n$ is called increasing if $u_n \leq u_{n+1}, \ \forall n \in \mathbb{N}$.
- **2** A sequence $(u_n)_n$ is called decreasing if $u_n \geq u_{n+1}, \ \forall \ n \in \mathbb{N}$.

Theorem

- **1** Any real upper bounded sequence is convergent.
- Any decreasing lower bounded sequence is convergent.

Subsequence

Definition

let $(u_n)_n$ be a sequence. A sequence $(v_n)_n$ is called a subsequence of the sequence $(u_n)_n$ if there exists a strictly increasing map $\varphi \colon \mathbb{N} \longrightarrow \mathbb{N}$ such that $v_n = u_{\varphi(n)}$.

Example

$$(u_{2n})_n$$
, $(u_{2n+1})_n$, $(u_{3n})_n$ are subsequences of $(u_n)_n$.

Theorem

Any subsequence of a convergent sequence is convergent and converges to the same limit.

Remark

A sequence $(u_n)_n$ can be divergent and has a convergent subsequence.

Example

 $u_n=(-1)^n$, with $n\in\mathbb{N}$. $u_{2n}=1$ and $u_{2n+1}=-1$, the sequences $(u_{2n})_n$ and $(u_{2n+1})_n$ are convergent, but the sequence $(u_n)_n$ divergent.

Theorem

[Bolzano-Weierstrass Theorem] Any bounded real sequence has a convergent subsequence.

Cauchy Sequences

Definition

A sequence $(u_n)_n$ is called a Cauchy sequence if

$$\forall \varepsilon > 0 \; \exists \; N \in \mathbb{N} \; \text{such that} \; \forall \; n, m \geq N \; |u_n - u_m| \leq \varepsilon.$$
 (1)

Theorem

[Cauchy's Convergence Criterion]

A real sequence is Cauchy sequence if and only if it is convergent.

General Properties of Convergent series

Definition

• Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. We consider the sequence $(S_n)_n$ defined by: $S_n = \sum_{k=0}^n u_k$.

We say that the series $\sum_{n\geq 1} u_n$ is convergent if the sequence $(S_n)_n$ is convergent.

The limit of the sequence $(S_n)_n$ if it exists is denoted by

$$\sum_{n=1}^{+\infty} u_n .$$

② The series $\sum_{n\geq 1} u_n$ is called divergent if the sequence $(S_n)_n$ is divergent.

Mongi BLEL

Remarks

- ① If the series $\sum_{n\geq 1} u_n$ converges, then $\lim_{n\longrightarrow +\infty} u_n=0$. $(u_n=S_n-S_{n-1}.)$
- ② The condition $\lim_{n\longrightarrow +\infty}u_n=0$ is not, however, sufficient to ensure the convergence of the series $\sum_{n\geq 1}u_n$. For instance, the series $\sum_{n\geq 1}\sqrt{n+1}-\sqrt{n}$ is divergent because for every $n\in\mathbb{N};\ S_n=\sqrt{n+1}-1$ and $\lim_{n\to +\infty}u_n=0$.

Theorem

[Cauchy Criterion]

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. The series $\sum_{n\geq 1} u_n$ converges if, and only, if,

$$\forall \ \varepsilon > 0, \ \exists \ N_{\varepsilon} \in \mathbb{N}; \ \ \forall \ q \geq p \geq N_{\varepsilon}; \ |\sum_{n=p}^{q} u_n| \leq \varepsilon.$$

Definition

A series $\sum_{n\geq 1} u_n$ is called absolutely convergent if the series $\sum_{n\geq 1} |u_n|$ converges.

Remark

Any absolutely convergent series is convergent but the converse is false, it suffices to take the series $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n}$.

If
$$S_n = \sum_{p=1}^n \frac{(-1)^{p+1}}{p}$$
, then $S_{2n+1} - S_{2n} = \frac{-1}{2n+1} \xrightarrow{p \to +\infty} 0$. To

prove that the series $\sum_{n\geq 1}\frac{(-1)^{n+1}}{n}$ converges, it suffices to prove that the sequence $(S_{2n})_n$ is convergent.

We have
$$S_{2n+2} - S_{2n} = \frac{1}{2n+2} - \frac{1}{2n+1} \le 0$$
 and $S_{2n+1} - S_{2n-1} = \frac{1}{2n} - \frac{1}{2n+1} \ge 0$, then the sequences $(S_{2n})_n$ and $(S_{2n+1})_n$ are adjacent, which shows that the sequence $(S_n)_n$ is convergent.

We remark that $\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{n}{2n} = \frac{1}{2}$, thus the series $\sum_{n\ge 1} \frac{(-1)^{n+1}}{n}$ is not absolutely convergent.

Mongi BLEL

Infinite Series

Tests of Convergence

There are several standard tests for convergence of a series of non negative terms:

The following comparison criterions are based primarily on the fact that an increasing sequence is convergent if, and only, if, it is bounded above. It follows that a series $\sum_{n\geq 1} u_n$ with non negative terms is convergent if, and only, if, the sequence $(S_n)_n$ defined by $S_n = \sum_{k=1}^n u_k$ is bounded.

Theorem

[Comparison Test]

Let $(u_n)_n$ and $(v_n)_n$ be two sequences with non negative numbers. Assume that there exists an integer $k \in \mathbb{N}$ such that for every $n \geq k$, $u_n \leq v_n$, then if the series $\sum_{n \geq 1} v_n$ is convergent, the series $\sum_{n \geq 1} u_n$ is also convergent.

Corollary

Let $(u_n)_n$ and $(v_n)_n$ be two sequences with non negative numbers. Assume that there exists a>0 and b>0 such that $au_n \le v_n \le bu_n$ for every $n \ge k$, then the series $\sum_{n\ge 1} u_n$ and $\sum_{n\ge 1} v_n$ have the same nature.

Corollary

Let $(u_n)_n$ and $(v_n)_n$ be two sequences with non negative numbers. Assume that

$$\lim_{n\to+\infty}\frac{u_n}{v_n}=\ell.$$

- **1** If $\ell > 0$, the series $\sum_{n \geq 1} u_n$ and $\sum_{n \geq 1} v_n$ have the same nature.
- ② If $\ell=0$, the convergence of the series $\sum_{n\geq 1} v_n$ involves the convergence of the series $\sum_{n\geq 1} u_n$.
- **3** If $\ell = +\infty$, the convergence of the series $\sum_{n \geq 1} u_n$ involves the convergence of the series $\sum_{n \geq 1} v_n$.

Integral Test

Theorem

[Integral Test]

Let f be a decreasing continuous function on $[1, +\infty[$. For all $n \in \mathbb{N}$, we define $u_n = f(n)$, then

$$\int_{1}^{+\infty} f(x)dx \text{ converges } \iff \sum_{n>1} u_n \text{ converges.}$$

Corollary

[Convergence of Riemann series] The series $\sum_{n>1} \frac{1}{n^{\alpha}}$ converges if, and only, if, $\alpha>1$.

Theorem

[Application Comparison with Riemann series] Let $(u_n)_n$ be a sequence with non negative terms. Assume that there exists 0 < a < b such that for every n large enough, $0 < a \le n^{\alpha}u_n \le b < +\infty$, then the series $\sum_{n\ge 1}u_n$ converges if, and only, if, $\alpha > 1$.

This Theorem results from Theorem 23

Exercise

Show that the Bertrand series $\sum_{n\geq 2} \frac{1}{n^{\alpha} \ln^{\beta} n}$ converges if, and only, if, $\alpha > 1$ or $\alpha = 1$ and $\beta > 1$.

Solution

If
$$\alpha \leq 0$$
, $\lim_{n \to +\infty} \frac{n}{n^{\alpha}(\ln n)^{\beta}} = +\infty$, then the series diverges.

If
$$0 < \alpha < 1$$
, we get $\alpha < \gamma < 1$ and consider the sequence $v_n = \frac{1}{n^{\gamma}}$.
$$\lim_{n \to +\infty} \frac{n^{\gamma}}{n^{\alpha} (\ln n)^{\beta}} = +\infty, \text{ then the series } \sum_{n \geq 2} \frac{1}{n^{\alpha} (\ln n)^{\beta}} \text{ diverges.}$$

Mongi BLEL

Infinite Series

If $\alpha>1$, we get $1<\gamma<\alpha$ and consider the sequence $v_n=\frac{1}{n^\gamma}$, $\lim_{n\to+\infty}\frac{n^\gamma}{n^\alpha(\ln n)^\beta}=0$, then the series $\sum_{n\geq 2}\frac{1}{n^\alpha(\ln n)^\beta}$ converges.

If $\alpha=1$, we consider the sequence $u_n=\frac{1}{n\ln^\beta n}$ and $f(x)=\frac{1}{x\ln^\beta x}$, for $x\geq 2$. f is decreasing for x large. Then the series $\sum_{n\geq 2}\frac{1}{n(\ln n)^\beta}$

converges if and only if $\int_2^\infty \frac{dx}{x \ln^\beta x}$.

The integral

$$\int_{2}^{\infty} \frac{dx}{x \ln^{\beta} x} \stackrel{t=\ln x}{=} \int_{\ln 2}^{\infty} \frac{dt}{t^{\beta}}$$

is convergent if and only if $\beta > 1$.

Mongi BLEL

Infinite Series

Root Test or Cauchy Test

Theorem

[Root Test or the Cauchy Test]

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of real numbers and $\ell = \overline{\lim}_{n\to+\infty} \sqrt[n]{|u_n|}$.

- **1** If $\ell < 1$, the series $\sum_{n \ge 1} u_n$ is absolutely convergent.
- ② If $\ell > 1$, the general term of the series does not tends to 0 and the series $\sum_{n \geq 1} u_n$ diverges.
- **3** If $\ell = 1$, we can not conclude if the series is convergent or not.

The Ratio Test or D'Alembert's Test

Theorem

Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. Assume that

$$\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \ell$$
. Then

- i) If $\ell < 1$, the series $\sum_{n \ge 1} u_n$ is absolutely convergent.
- ii) If $\ell>1$ the general term of the series does not tend to 0 and the series $\sum_{n=1}^{\infty}u_n$ diverges.
- iii) If $\ell=1$, we can not conclude if the series is convergent or not. In this case,

$$\lim_{n \longrightarrow +\infty} \sqrt[n]{|u_n|} = \ell.$$

Mongi BLEL

Infinite Series

Examples

- Let $z \in \mathbb{C}$, the series $\sum_{n \geq 0} \frac{z^n}{n!}$ is absolutely convergent on \mathbb{C} , because for every $z \in \mathbb{C}$; $|\frac{u_{n+1}}{u_n}| = \frac{|z|}{n+1} \xrightarrow[n \to +\infty]{} 0$. We denote e^z the sum of this series.
- ② For |z| < 1, the series $\sum_{n \ge 1} \frac{z^n}{n}$ is absolutely convergent.

The Abel Test

Theorem

[The Abel Test]

Let $(u_n)_n$ be a sequence of real numbers and let $(v_n)_n$ be a sequence of non negative real numbers such that

- i) the sequence $(v_n)_n$ is decreasing and tends to 0 when $n \to +\infty$.
- ii) the sequence $\left(S_n = \sum_{k=1}^n u_k\right)_n$ is bounded.

Then the series $\sum_{n>1} u_n v_n$ is convergent.

Proof

we use the Cauchy criterion (19) for the existence of the limit. Let $q > p \ge 1$,

$$\sum_{k=p+1}^{q} u_k v_k = \sum_{k=p+1}^{q} (S_k - S_{k-1}) v_k = \sum_{k=p+1}^{q} S_k v_k - \sum_{k=p}^{q-1} S_k v_{k+1}$$
$$= \sum_{k=p+1}^{q-1} (v_k - v_{k+1}) + S_q v_q - S_p v_{p+1}$$

Since $|S_k| \leq M$, then we have

$$\left|\sum_{k=p+1}^{q} u_k v_k\right| \leq 2M v_{k+1} \xrightarrow[k \to +\infty]{} 0.$$

Remark

The result still true if the sequence $(S_n)_n$ is bounded and the sequence $(b_n)_n$ tends to 0 and the series $\sum_{n=0}^{+\infty} (b_n - b_{n+1})$ is convergent.

Examples

• Let
$$b_n = \frac{(-1)^{[\sqrt{n}]}}{n}$$
, for $n \ge 1$ and $a_n = e^{\mathrm{i} n \theta}$ for $0 < \theta < 2\pi$.

$$|\sum_{n=1}^{\infty} a_n| \le \frac{1}{\sin \theta/2}$$
 and we can prove that

$$\sum_{n\geq 2} |b_n-b_{n-1}| \leq \sum_{n\geq 2} \frac{2}{(n-1)^2}.$$
 It results that the series

$$\sum \frac{(-1)^{[\sqrt{n}]} e^{\mathrm{i} n \theta}}{n} \text{ converges for all } 0 < \theta < 2\pi.$$

2 Let
$$s_n = \sum_{k=0}^n \frac{1}{k} - \ln n$$
, $n \ge 1$. We set $u_1 = S_1 = 1$ and for all

$$n \ge 2$$
; $u_n = S_n - S_{n-1} = \frac{1}{n} + \ln \frac{n-1}{n} = \frac{1}{n} + \ln(1 - \frac{1}{n}) =$

Mongi BLEL Infinite Series

The Series Product

Definition

Let $(u_n)_n$ and $(v_n)_n$ be two sequences of real numbers. For $n \in \mathbb{N}$, we set

$$c_n = \sum_{k=1}^n u_k v_{n-k}.$$
 (2)

The series $\sum c_n$ is called the product of the two given series

$$\sum_{n\geq 1} u_n \text{ and } \sum_{n\geq 1}^{n-1} v_n.$$

In this definition we are not interested in whether the product of the series exists, because it depends of some conditions. Indeed we have the following example

The series $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n+1}}$ is convergent. The product of this series with itself is a series with general term c_n , such that

$$c_n = \sum_{k=1}^n \frac{(-1)^k}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{k+1}\sqrt{n-k+1}}.$$
(3)

But $|c_n| \ge 1$, thus the series $\sum_{n \ge 1} c_n$ is divergent.

The following theorem affirms the existence of the series product under certain conditions.

Mongi BLEL

Infinite Series

$\mathsf{Theorem}$

Let $(u_n)_n$ and $(v_n)_n$ be two sequences of real numbers.

• We assume that the series $\sum u_n$ and $\sum v_n$ are absolutely convergent. Then the series $\sum c_n$ is absolutely convergent and one has

$$\sum_{n=1}^{+\infty} c_n = (\sum_{n=1}^{+\infty} u_n)(\sum_{n=1}^{+\infty} v_n). \tag{4}$$

2 We assume that the series $\sum u_n$ is absolutely convergent and the series $\sum v_n$ is convergent. Then the series $\sum c_n$ is

Mongi BLEL Infinite Series

Proof

It suffices to proves 2). We set

$$A_n = \sum_{k=1}^n u_k, \qquad B_n = \sum_{k=1}^n v_k, \qquad C_n = \sum_{k=1}^n c_k,$$

$$A = \sum_{n=1}^{+\infty} u_n, \qquad \alpha = \sum_{n=1}^{+\infty} |u_n| \quad \text{and} \quad B = \sum_{n=1}^{+\infty} v_n.$$

Then

$$C_n = \sum_{j=1}^n c_j = \sum_{j=1}^n u_j B_{n-j} = \sum_{j=1}^n u_j (B_{n-j} - B) + BA_n.$$

Since $\lim_{n\to+\infty} B.A_n = A.B$, then to show that $\lim_{n\to+\infty} C_n = A.B$, it suffices to show that the sequence $(\Delta_n)_n$ converges to 0, where

$$\Delta_n = \sum_{j=1} a_j (B_{n-j} - B).$$

Let $\varepsilon > 0$ $\exists N \in \mathbb{N}$ such that $\forall n \geq N$; $|B_n - B| < \frac{\varepsilon}{2\alpha}$ and $\sum_{i=N}^{+\infty} |a_i| \leq \frac{\varepsilon}{2M}$, thus for every $n \geq 2N$,

$$|\Delta_n| \leq \sum_{i=1}^N |a_j| |B_{n-j} - B| + \sum_{i=1}^N |a_j| |B_{n-j} - B| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Mongi BLEL Infinite Series

Power Series

Definition

Let $f_n(x) = a_n(x - x_0)^n$; with $(a_n)_n$ a sequence of real numbers. The series $\sum_{n \ge 1} a_n(x - x_0)^n$ is called a power series centered at x_0 .

We denote $S(x) = \sum_{n=1}^{+\infty} a_n (x - x_0)^n$, whenever x where the series converges.

Let $\sum_{n\geq 1} a_n(x-x_0)^n$ be a power series, we look for its domain of

convergence. The series converges at least for $x=x_0$. In which follows, we consider the series centered at 0.

Theorem

[Abel's lemma]

If the power series $\sum_{n\geq 1} a_n x^n$ is convergent for $x=x_0, x_0\neq 0$, then

- **1** the series $\sum_{n\geq 1} a_n x^n$ is absolutely convergent on the interval $|-|x_0|, |x_0|[$,
- ② for every $r < |x_0|$, the series $\sum_{n \ge 1} a_n x^n$ converges uniformly on [-r, r].

Proof

- Let $x \in]-|x_0|, |x_0|[$, $\sum_{n=1}^{+\infty}|a_nx^n| \leq \sum_{n=1}^{+\infty}|a_nx_0^n||\frac{x}{x_0}|^n$. Since the series $\sum_{n\geq 1}a_nx_0^n$ is convergent, the sequence $(a_nx_0^n)_n$ is bounded. Moreover the series $\sum_{n\geq 1}|\frac{x}{x_0}|^n$ is convergent, then the series $\sum_{n\geq 1}a_nx^n$ is absolutely convergent on $]-|x_0|, |x_0|[$.
- 2 Let $r < |x_0|$ and $x \in [-r, r]$, $|a_n x^n| \le |a_n| r^n$ and $\sum_{n=1}^{+\infty} |a_n| r^n < +\infty, \text{ thus the series } \sum_{n \ge 1} a_n x^n \text{ converges }$ uniformly on [-r, r].

Corollary

If the power series $\sum_{n\geq 1} a_n x^n$ diverges for $x=x_0$, then it diverges for every x such that $|x|>|x_0|$.

Radius of Convergence of Power Series

Theorem

For every power series $\sum_{n\geq 1} a_n x^n$, there exists a unique $R\in [0,+\infty]$

which fulfills

- For every $x \in \mathbb{R}$, such that |x| < R, the series $\sum_{n \ge 1} a_n x^n$ is absolutely convergent.
- ② For every $x \in \mathbb{R}$, such that |x| > R, the sequence $(a_n x^n)_n$ is not bounded and then the series $\sum_{n \ge 1} a_n x^n$ diverges.

The number R is called the radius of convergence of the power series and $]-R,R[=\{x\in\mathbb{R};\;|x|< R\}$ is called the Mongi BLEL Infinite Series

Proof

The uniqueness results from the Abel's lemma. We set $R = \sup\{r \geq 1; \; \sum_{n=1}^{+\infty} |a_n| r^n < +\infty\}$. If |x| < R, the series $\sum_{n \geq 1} a_n x^n$ is absolutely convergent. If |x| > R, the series $\sum_{n \geq 1} a_n x^n$ diverges. If not the series $\sum_{n \geq 1} |a_n| r^n$ converges for every R < r < |x|, which is impossible. \square

Remark

By the proof of the Theorem 7, we deduce that if R is the radius of convergence of the series $\sum_{n\geq 1} a_n x^n$, then the series converges uniformly on any interval [-r,r] with 0 < r < R.

Theorem

[Cauchy 1821, used by Hadamard] (Cauchy-Hadamard Rule) Let $\sum_{n\geq 1} a_n x^n$ be a power series with R its radius of convergence. Then

$$R = \sup\{r > 0; \sum_{n=1}^{\infty} |a_n| r^n < +\infty\} = \sup\{r \ge 0; \text{ the sequence } (a_n r^n)_n \text{ is bounded } \}.$$

2 If
$$\lim_{n \to \infty} \left| \frac{a_n}{n} \right| = \beta \in [0, +\infty]$$
, then $R = \beta$.

Wongi BLEL Infinite Series

Theorem

Let f be the function defined by the power series $\sum_{n>0} a_n x^n$ which

has R > 0 as radius of convergence, then the function g defined by the power series $\sum_{n \ge 1} n a_n x^{n-1}$ has R as radius of convergence. The

function f is differentiable on]-R,R[and f'(x)=g(x).

For the proof of this theorem, we need the following lemma

Lemma

Let $x \in \mathbb{R}$ and $h \in \mathbb{R}$ such that $0 < |h| \le r$, then for any $n \in \mathbb{N}$

Proof

From the inequality (6)

$$\begin{aligned} \left| (x+h)^{n} - x^{n} - nhx^{n-1} \right| &= \left| \sum_{k=0}^{n} C_{n}^{k} h^{k} x^{n-k} - x^{n} - nhx^{n-1} \right| = \left| \sum_{k=2}^{n} C_{n}^{k} h^{k} x^{n-k} - x^{n} - nhx^{n-1} \right| \\ &\leq \left| h \right|^{2} \sum_{k=2}^{n} C_{n}^{k} |x|^{n-k} |h|^{k-2} \leq \frac{|h|^{2}}{r^{2}} \sum_{k=2}^{n} C_{n}^{k} |x|^{n} \\ &\leq \frac{|h|^{2}}{r^{2}} (|x| + r)^{n}. \end{aligned}$$

We have $|(x+h)^n - x^n - nhx^{n-1}| \ge nr|x|^{n-1} - |x|^n - (|x|+r)^n$. From the relation (6), we deduce

$$|nr|x|^{n-1} \le |x|^n + (|x|+r)^n + |(x+r)^n - x^n - nrx^{n-1}| \le |x|^n + 2(|x|+r)^n$$
.

Infinite Series

Proof of the theorem 49

We denote R' the radius of convergence of the power series $\sum_{n>1} na_n x^{n-1}$.

It is obvious that $R' \leq R$. Let r > 0 such that |x| + r < R. From the lemma 49; we have $|na_nx^{n-1}| \leq \frac{1}{r} (2|a_n|(|x|+r)^n + |a_n||x|^n)$

and thus $\sum_{n\geq 1} na_n x^{n-1}$ converges absolutely on]-R,R[. Thus the

radius of convergence of the series defining g is greater than R. Thus R = R'.

From the inequality (6) one has $\left| \frac{f(x+h) - f(x)}{h} - g(x) \right| \le \frac{|h|}{r} \sum_{n=1}^{+\infty} |a_n| (|x|^n)$

 $r)^n$; this proves that when h tends to 0; f'(x) = g(x); for any $x \in]-R, R[$.

Corollary

If
$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$
, then f is infinitely continuously differentiable
$$f(n)(0) \qquad \qquad +\infty \quad f(n)(0)$$

on]
$$-R$$
, R [; $a_n = \frac{f^{(n)}(0)}{n!}$ and $f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$. (This series

is called the Taylor's series of f at 0.)

Mongi BLEL

Infinite Series

Examples

$$e^{x} = \sum_{n=0}^{+\infty} \frac{x^{n}}{n!} \qquad \forall x \in \mathbb{R}.$$

$$e^{-x} = \sum_{n=0}^{+\infty} \frac{(-1)^{n} x^{n}}{n!} \qquad \forall x \in \mathbb{R}.$$

$$\cosh x = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} \qquad \forall x \in \mathbb{R}.$$

$$\sinh x = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} \qquad \forall x \in \mathbb{R}.$$

For |x| < 1,

By integration, we have

$$\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{(n+1)} \quad \text{and} \quad \ln(1-x) = -\sum_{n=0}^{+\infty} \frac{x^{n+1}}{(n+1)}.$$

$$\tanh^{-1} x = \frac{1}{2} \ln \frac{1+x}{1-x} = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)}.$$

$$\frac{1}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n x^{2n} \text{ and } \tan^{-1} x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)}, \quad |x| < 1.$$

$$\cos x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 and $\sin x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$.

Let $f(x) = (1+x)^{\alpha}$ with α a real number, $\alpha \notin \mathbb{N}$. For $x \in]-1,1[$; $f'(x) = \alpha(1+x)^{\alpha-1}$, then f satisfies the following differential equation

$$(1+x)y' - \alpha y = 0. \tag{8}$$

We look for a power series $\sum_{n\geq 0} a_n x^n$ as solution of the differential

equation (8).

If $S = \sum_{n=0}^{+\infty} a_n x^n$ is a solution, we have

$$(1+x)\sum_{n=0}^{+\infty} na_n x^{n-1} - \alpha \sum_{n=0}^{+\infty} a_n x^n = 0,$$

then $(n+1)a_{n+1} + na_n - \alpha a_n = 0 \iff a_{n+1} = \frac{\alpha - n}{n+1}a_n \ \forall n \geq 0$, which yields that

$$a_n = \frac{\alpha(\alpha-1)\dots(\alpha-n)}{2.3\dots(n+1)}a_0.$$

Then

Mongi BLEL

Infinite Series

By the uniqueness of the solution of the differential equation

$$(1-x)^\alpha=\sum_{n=0}^{+\infty}a_nx^n,\qquad \text{for }|x|<1,$$
 where $a_n=\frac{\alpha(\alpha-1)\dots(\alpha-n)}{2.3\dots(n+1)}.$ For $\alpha=\frac{-1}{2}$, we have

$$\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} \frac{C_{2n}^n}{4^n} x^n$$
$$\frac{1}{\sqrt{1+x}} = \sum_{n=0}^{+\infty} \frac{(-1)^n C_{2n}^n}{4^n} x^n.$$

$$\sqrt{1+x} = 1 + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n C_{2n}^n}{4^n} \frac{x^{n+1}}{n+1}.$$

$$\frac{1}{\sqrt{1-x^2}} = \sum_{n=0}^{+\infty} \frac{C_{2n}^n}{4^n} x^{2n}.$$

$$\frac{1}{\sqrt{1+x^2}} = \sum_{n=0}^{+\infty} \frac{(-1)^n C_{2n}^n}{4^n} x^{2n}.$$

$$\sin^{-1} x = \sum_{n=0}^{+\infty} \frac{C_{2n}^n}{4^n} \frac{x^{2n+1}}{2n+1}.$$

$$\cos^{-1} x = \frac{\pi}{2} - \sum_{n=0}^{+\infty} \frac{C_{2n}^n}{4^n} \frac{x^{2n+1}}{2n+1}.$$

$$\sinh^{-1} x = \sum_{n=0}^{+\infty} \frac{(-1)^n C_{2n}^n}{4^n} \frac{x^{2n+1}}{2n+1}.$$