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Sequences

Sequences

Definition

An infinite sequence (or a sequence) of real numbers is a
real-valued function defined on a set of integers {n € N; n > k}.
We call the values of the function the terms of the sequence. We
denote a sequence by listing its terms in order, (up)p>k. (Un is
called the general term of the sequence.)
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Sequences

Definition
A sequence (up), is called convergent to the real number ¢ if

Ve >0, 3N € N such that |u, —¢| <e Vn>N.

¢ will be called the limit of the sequence (u,), and denoted by

= lim up,.
n—-+o00

A sequence which is not convergent is called divergent.
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Sequences

@ The limit of a sequence if it exists is unique.

@ If a sequence (up), converges to a limit ¢, then the sequence
(vn)n defined by v, = up4p converges also to /.
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Sequences

Definition

© A sequence (up)n is called upper bounded, if there exists a
M € R such that, u, < M, Vn € N.

@ A sequence (up), is called lower bounded, if there exists a real
number m such that, u, > m, V n € N.

© A sequence (up), is called bounded, if it is upper and lower
bounded.
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Sequences

Any convergent sequence is bounded.
The sequence (u,), defined by: u, = (—1)"*! is bounded but not
convergent.
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Sequences

Monotone Sequences

Definition

Q A sequence (up), is called increasing if u, < upy1, Vn € N.

@ A sequence (up), is called decreasing if u, > upy1, ¥V n € N.
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Sequences

© Any real upper bounded sequence is convergent.

@ Any decreasing lower bounded sequence is convergent.
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Subsequence

Subsequence

Definition

let (un)n be a sequence. A sequence (v,), is called a subsequence
of the sequence (up), if there exists a strictly increasing map

¢: N — N such that v, = ug(p).
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Subsequence

Example

(u2n)n, (U2n+1)n, (u3n)n are subsequences of (up),.

Any subsequence of a convergent sequence is convergent and
converges to the same limit.
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Subsequence

A sequence (un), can be divergent and has a convergent subse-
quence.
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Subsequence

Example

up, = (—1)", with n € N. wp, = 1 and wp41 = —1, the sequences
(u2n)n and (u2n+1)n are convergent, but the sequence (up), diver-
gent.
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Subsequence

[Bolzano-Weierstrass Theorem| Any bounded real sequence has a
convergent subsequence.
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Cauchy Sequences

Cauchy Sequences

Definition
A sequence (up,), is called a Cauchy sequence if

Ve >03 NeNsuchthatVnm>N |u,—um <e. (1)
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Cauchy Sequences

[Cauchy’s Convergence Criterion]
A real sequence is Cauchy sequence if and only if it is convergent.

V Ol’lgl B Infinite Series



General Properties of Convergent series

General Properties of Convergent series

© Let (up)nen be a sequence of real numbers. We consider the

n
sequence (Sp), defined by: S, = Z Ug.
k=1
We say that the series ) ., up is convergent if the sequence

(Sn)n is convergent.

The limit of the sequence (S,), if it exists is denoted by
+oo

@ The series Z up, is called divergent if the sequence (S,), is
n>1
divergent.
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General Properties of Convergent series

REMEIS

Q If the series Zn>1 up converges, then lim,_, . u, = 0.
(un - Sn - n—;)

@ The condition lim,_,, u, = 0 is not, however, sufficient to
ensure the convergence of the series ) -, u,. For instance,
the series > <, vV/n+1—+/nis diverger?t because for every
neN; 5, = \_/n—i- 1—1and limpo400 up =0.
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General Properties of Convergent series

[Cauchy Criterion]
Let (un)nen be a sequence of real numbers. The series Zn21 Un
converges if, and only, if,

q
Ve>0,IN.€N; Vg=p>Ne; |Y un|<e
n=p
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General Properties of Convergent series

Definition

A series ) -, uy is called absolutely convergent if the series
Y n>1 |Un| converges.
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General Properties of Convergent series

Any absolutely convergent series is convergent but the converse is
. . . _1\n+1
false, it suffices to take the series )" -, %
(=1)P*? -1
If Sp = > g1 =5 then Sppp1 — S = 525 —>IH+OO 0. To

_ )n+1

prove that the series ) -, *—1— converges, it suffices to prove
that the sequence (Sz5,), is convergent.

We have 52n+2 52,, = 2n1+2 — ﬁ < 0 and 52n+1 — Sgn_l =
21n 2n+1 > 0, then the sequences (S2,)n and (Szn+1)n are adjacent,

which shows that the sequence (Sn)n is convergent.

We remark that Zk il k > 5 % thus the series 3 -,
is not absolutely convergent.

_1)n+1
n
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Tests of Convergence

Tests of Convergence

There are several standard tests for convergence of a series of non
negative terms:

The following comparison criterions are based primarily on the fact
that an increasing sequence is convergent if, and only, if, it is
bounded above. It follows that a series > -, u, with non nega-
tive terms is convergent if, and only, if, the sequence (S,), defined
by Sp,=>,_; Uk is bounded.
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Tests of Convergence

[Comparison Test]

Let (up)n and (v,), be two sequences with non negative numbers.
Assume that there exists an integer k € N such that for every

n > k, u, < vp, then if the series ) - v, is convergent, the series
> .51 Un is also convergent. N

A
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Tests of Convergence

Let (up)n and (vp)n be two sequences with non negative numbers.
Assume that there exists a > 0 and b > 0 such that

aup < v, < bu, for every n > k, then the series ) -, u, and

> n>1 Vn have the same nature. -
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Tests of Convergence

Let (un)n and (vn)n be two sequences with non negative numbers.
Assume that

._u
lim — =4¢.
n—+00 Vp
Q If £ >0, the series > -, up and > -, v, have the same
nature.
Q If £ =0, the convergence of the series ) -, v, involves the
convergence of the series ) - up.
© If £ = +o0, the convergence of the series ) -, u, involves
the convergence of the series > —; v,.
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Tests of Convergence

Integral Test

[Integral Test]
Let f be a decreasing continuous function on [1, +o0[. For all
n € N, we define u, = f(n), then

+o0
/ f(x)dx converges <= Z up converges.
1
n>1

.
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Tests of Convergence

[Convergence of Riemann series]
The series >° .1 == converges if, and only, if, a > 1.

[Application Comparison with Riemann series]

Let (un)n be a sequence with non negative terms. Assume that
there exists 0 < a < b such that for every n large enough,

0 < a< n%u, < b < +o0, then the series 2@1 u, converges if,
and only, if, a > 1.

This Theorem results from Theorem 23
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Tests of Convergence

Exercise

Show that the Bertrand series ) -, m converges if, and only,
if, a>lora=1and g > 1.

Solution i
If <0, lim ————= = 400, then the series diverges.
n—+oo n%(In n)A
If0 < a<1, weget a <~y < 1and consider the sequence v, = n%
li ,,77 = then the series Z # diverges
n—|>Too na(ln n)ﬁ oo >2 na(ln n)ﬁ Be

V Ol’lgl B Infinite Series



Tests of Convergence

If « > 1, we get 1 < v < a and consider the sequence v, =

n
: n’ _ 1
nkrﬂoo W = 0, then the series ; W converges.
) 1
If « = 1, we consider the sequence u, = and f(x) = ,
nin®n x Inf x
for x > 2. f is decreasing for x large. Then the series Z W
n>2
> d
converges if and only if/ x
2 xInf x
The integral
/OO dX t:l_nx /OO dt
2 xInfx  Jina 87
is convergent if and only if 8 > 1. O
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Tests of Convergence

Root Test or Cauchy Test

[Root Test or the Cauchy Test]
Let (un)nen be a sequence of real numbers and

E ES mng)Jroo \n/ ’Un’

Q If £ < 1, the series Z up is absolutely convergent.
n>1
@ If £ > 1, the general term of the series does not tends to 0
and the series ) - u, diverges.

© If £ =1, we can not conclude if the series is convergent or not.
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Tests of Convergence

The Ratio Test or D'Alembert’s Test

Let (un)nen be a sequence of real numbers. Assume that

: Up+t1
lim |—=2| = ¢. Then
n—>+4-00 Up

i) If £ < 1, the series Z up is absolutely convergent.
n>1
ii) If £ > 1 the general term of the series does not tend to 0 and
the series Z up diverges.
n>1
i) If £ =1, we can not conclude if the series is convergent or not.
In this case,
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Tests of Convergence

Examples

@ Let z € C, the series ), - f)—’,’ is absolutely convergent on C,

Upi1 V4
because for every z € C; || = LB 0. We
up n+1 n—+oo

denote e the sum of this series.

@ For [z| <1, the series 3 -, Z' is absolutely convergent.
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Tests of Convergence

The Abel Test

[The Abel Test]
Let (un)n be a sequence of real numbers and let (v,), be a
sequence of non negative real numbers such that

i) the sequence (v;,), is decreasing and tends to 0 when n — +oc.
n

ii) the sequence (Sn = Z uk) is bounded.
k=1 "
Then the series Z UpVp is convergent.
n>1
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Tests of Convergence

we use the Cauchy criterion (19) for the existence of the limit. Let

qg>p=>1,
q q q q-—1
doomve = > (Sk=Sk)vk= D> Skvk— Y Skvkra
k=p+1 k=p+1 k=p+1 k=p
q—1
= > (vk—vkt1) + Sqvg — Spvpia
k=p+1

Since |Sk| < M, then we have
q

‘ E Uka| < 2/\//Vk+1 7 0.
k—-+o00
k=p+1
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Tests of Convergence

The result still true if the sequence (S,), is bounded and the se-
“+00

quence (b,), tends to 0 and the series Z(b,, — bpy1) is convergent.
n=0
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Tests of Convergence

Examples

_(_1)[\/m __ Ainf
OLetb,,—in ,forn>1and a, = e for 0 < 6 < 2.

q
1
| Z ap| < and we can prove that

= sinf/2
Z |bp — bp—1| < ( 2 It results that the series
n>2 n>2
(_1)[\/ﬂ eind
Z - converges for all 0 < 6 < 27r.
n>1

n
1
Q Lets,,zZ;—Inn,nZl. We set uy = S; = 1 and for all

k=1
1 -1 1 1
n22;u,,:5,,—5,,_1:—+lnn =—4+In(1--)=
n n n

n
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The Series Product

The Series Product

Let (up)n and (v,)n be two sequences of real numbers. For n € N,
we set

n
Ch — Z UgVn—k- (2)
k=1

The series Z cp is called the product of the two given series

n>1
E u, and E V.
n>1 n>1
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The Series Product

In this definition we are not interested in whether the product of the
series exists, because it depends of some conditions. Indeed we have
the following example

. —1 . . .
The series En21 E/TT)l is convergent. The product of this series
with itself is a series with general term ¢,, such that

-1)"

Ch =

k+1_(_ )y Z\/k+1\/n k+1
(3)

Z \/k —|— 1 \/n
But |c,| > 1, thus the series 2,21 cp is divergent.

The following theorem affirms the existence of the series product
under certain conditions.
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The Series Product

Let (un)n and (vn), be two sequences of real numbers.
@ We assume that the series Z up and Z v, are absolutely
n>1 n>1

convergent. Then the series Z cp is absolutely convergent

n>1
and one has
—+o0 —+o00 “+o00
D=0 un)3 va) (4)
n=1 n=1 n=1

@ We assume that the series Z up is absolutely convergent and
n>1
the series Z vy is convergent. Then the series Z Cp is
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The Series Product

It suffices to proves 2).
We set

n n n
An:ZUIm Bn:ZVk7 anzcka
k=1 k=1 k=1
+oo +oo +o0
A:Zun, a:Z\un\ and B:Zv,,.
n=1 n=1 n=1

V Ol’lgl B Infinite Series



The Series Product

Then

n_ZcJ_ZuJ _J_Zuj(Bn_j—B)JrBAn.

j=1
Since I|m,,_>4roo B.A, = A.B, then to show that I|lim C, = A.B,

n—->»+00

it suffices to show that the sequence (A,), converges to 0, where
n

A,=> aj(B,j— B).
j=1
Let ¢ > 0 3N € N such that V n > N; |B,—B| < 5, and

o0
-Z,:V laj| < ﬁ thus for every n > 2N,
iz

N n
e e
[8n] < [al1Baj— Bl + Y |3jl|Bo-j = Bl = 5+ 5 =e.

N



The Series Product

Power Series

Definition

Let f,(x) = an(x — x0)"; with (a,), a sequence of real numbers.

The series Z an(x — xp)" is called a power series centered at xp.
n>1

+oo
We denote S(x) = Z an(x — x0)", whenever x where the series
n=1

converges.
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The Series Product

Let Zan(x — xp)" be a power series, we look for its domain of
n>1

convergence. The series converges at least for x = xp. In which

follows, we consider the series centered at 0.

[Abel’'s lemma]
If the power series Z apx" is convergent for x = xp, xp # 0, then
n>1
© the series Z anx" is absolutely convergent on the interval
n>1
] = Ixol; [xol[.
@ for every r < |xp|, the series Z anx" converges uniformly on
n>1
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The Series Product

+o00 +o0 x
Q Let x €] — |xol, |xol[, Z lanx"| < Z lanxg||—]|". Since the
X0
n=1 n=1

series y .~ anX{ is convergent, the sequence (a,xg)n is
- . X .
bounded. Moreover the series E |—|" is convergent, then
n>1
the series E apx" is absolutely convergent on | — |xol, |xo][.

n>1
Q Let r < |xo| and x € [—r,r], |anx"| < |an|r" and
+oo
Z |an|r" < +o00, thus the series Z anx" converges
n=1 n>1

uniformly on [—r, r].
a
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The Series Product

If the power series Z anx" diverges for x = xp, then it diverges for
n>1
every x such that |x| > [xo].
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Radius of Convergence of Power Series

Radius of Convergence of Power Series

For every power series Z apx", there exists a unique R € [0, +o0]
n>1
which fulfills
© For every x € R, such that |x| < R, the series Zanx” is
n>1
absolutely convergent.
@ For every x € R, such that |x| > R, the sequence (a,x"), is
not bounded and then the series Z anx" diverges.
n>1
The number R is called the radius of convergence of the
power series and | — R, R[= {x € R; |x| < R} is called the
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Radius of Convergence of Power Series

Proof

The uniqueness results from the Abel's lemma. We set R = sup{r >
L S an|r" < 400}
If x| < R, the series Z anx" is absolutely convergent.

n>1
If |x| > R, the series Zanx” diverges. If not the series Z lan|r"
n>1 n>1
converges for every R < r < |x|, which is impossible. 0
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Radius of Convergence of Power Series

Remark

By the proof of the Theorem 7, we deduce that if R is the radius

of convergence of the series Z anx", then the series converges uni-
n>1

formly on any interval [—r,r] with 0 < r < R.

[Cauchy 1821, used by Hadamard] (Cauchy-Hadamard Rule) Let
Z anx" be a power series with R its radius of convergence. Then

n>1
+oo
Q@ R=sup{r>0; Z lan|r" < 400} = sup{r >
n=1

0; the sequence (anr™)pis bounded }.

Q If lim = B € [0,+0], then R = 3.
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Radius of Convergence of Power Series

Let f be the function defined by the power series Z anx" which
n>0
has R > 0 as radius of convergence, then the function g defined by
the power series Z na,x"~! has R as radius of convergence. The
n>1
function f is differentiable on | — R, R[ and f'(x) = g(x).

For the proof of this theorem, we need the following lemma

Let x € R and h € R such that 0 < |h| < r, then for any n € N
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Radius of Convergence of Power Series

Proof
From the inequality (6)

n n
[(x+ h)" = x" — nhx"fl‘ = Z Ckpkxn=Fk — xm — nhx"~1| = Z C
k=0 k=2
n |h’2 n
< AP YD GixITTH AT < 5 Y Gl
k=2 k=2

|h[? n
< — .
< P(x+n)

We have |(x + h)" — x" — nhx""Y > nr|x|""1 — |x|" — (|x| + r)".
From the relation (6), we deduce




Radius of Convergence of Power Series

Proof of the theorem 49

We denote R’ the radius of convergence of the power series Z napx"1.
n>1
It is obvious that R" < R. Let r > 0 such that |x| + r < R. From

1
the lemma 49; we have |na,x"7!| < =(2]an|(]x] + )" + |an||x|")
r

and thus Z na,x"~1 converges absolutely on | — R, R[. Thus the

n>1
radius of convergence of the series defining g is greater than R.
Thus R=R'.

fx+h)—f h <
From the inequality (6) one has | (x + I)7 (x) —g(x)| < |r| Z |an|(]x
n=1

r)"; this proves that when h tends to 0; f'(x) = g(x); for ;ny
x€]—R,RJ. ad
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Radius of Convergence of Power Series

+o0
If f(x) = Z apx", then f is infinitely continuously differentiable
n=0
£(n) X £(n)
on|—R,R[; an = n!(O) and f(x) = Z nl(o)x”. (This series
n=0

is called the Taylor's series of f at 0.)
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Radius of Convergence of Power Series

Examples

n

“+00
X
X R
e—gon! Vx € R.
—

“+o00
x (—1)"x"
ey E er
n=0
too X2n
coshx:zm Vx € R.
n=0
too ont1
. X
SlnhX:Zm VXGR
n=0

For |x| < 1,

V Ol’lgl B Infinite Series



Radius of Convergence of Power Series

By integration, we have

too X1 too X1
In(1+x) = -1)" and In(l—-x)=—-) ——.
( ) g( ) (n+1) ;(n—l—l)
a1 14x T 2t
tanh ™" x=-In—— = .
2 -x = (2n+1)
1 too ) . +oo x2n+1
= —1)"x=" d tan™ == -1 n ) L.
T2 nz_;( 1)"x“" and tan™" x nz_%( ) 2nt1) x| <
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Radius of Convergence of Power Series

too 20 too x2n+1
— _1)" inx — 1)
cosx—nz:%( 1) @) and smx—nz:%( 1) CTEEIE

Let f(x) = (1 4+ x)* with a a real number, « ¢ N. For x €] —
1, 1[; f/(x) = a1+ x)®71, then f satisfies the following differential
equation

(1+x)y’ —ay =0. (8)
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Radius of Convergence of Power Series

We look for a power series Zanx” as solution of the differential

n>0
equation (8).
“+o00
If S = Z apx" is a solution, we have
n=0

+oo +oo
(1+x) Z nax"t — az apx" =0,
n=0 n=0

then (n+ 1)ap+1 + na, —aa, =0 < apy1 = %an Vn > 0,

which yields that

ala—1)...(a—n)
23...(n+1)

dn = dg.

Then
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Radius of Convergence of Power Series

By the uniqueness of the solution of the differential equation

(1-x) Zanx for x| < 1,

ala—1)...(a—n)
23...(n+1)
Foroz:_?l, we have

where a, =

n=0
+
1 — ZO:O (_1)n 2nn n
14 x = 4n
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Radius of Convergence of Power Series

V1+x 1+1+ZOO( )Cz"—
x= 224 ntl

1 E C2n 2n
—_— = X7,
V31— x? n=0 4

2n 2n
\/l—i-x2 Z
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Radius of Convergence of Power Series

1T ~p 2n+1
G x

s =3 Gy

1t ~n  2n+1
G x

=T _ —
X7 ;)4"2n+1'

+oo (_1)n n X2n+1

'h—l — 2n )
X Z;O 4 2041
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