Chapter 2: Sequences of functions



Sequence of functions

A sequence of functions is a list
fla f27 f}n cee
All functions use the same domain D:

fo: D —R.

Goal

Find a function f such that f, becomes close to f as n — 0.

Error (closeness)

Error at x:  |fp(x) — f(x)]|.



Example of a sequence of functions

Let D = R and define X
fn(X) = ;

First terms: X X
A(x) =x, fhx)= > f(x) = 3

For each fixed x € R,
X
- —0.
n n—oo

So the limit function is
f(x) =0 forall x€R.



What does “f, — f" mean?

|
For each fixed x, the values

h(x), (x), f(x), ...
are just a sequence of numbers.

We write f, — f when, as n gets large, the number f,(x) gets closer to f(x).

Main question

Do we get close point by point (pointwise), or everywhere at once (uniform)?



Pointwise convergence

Pointwise means: one point at a time

Pick a point x. Then f,(x) becomes close to f(x) when n is large.
Vx € D, Ve >0, N : |fo(x) — f(x)] < e for n > N.

Important (why it is called pointwise)
In pointwise convergence, you fix a point x first.

Then the number N you need can depend on that point:

N = N(x,e¢).

So two different points x; and x» may need different values of N.



Uniform convergence

Given € > 0, there exists N such that for all n > N and all x € D,

|fa(x) — f(x)| < e.

quantifiers

Ve >03INVn>NVxeD: |fh(x)—f(x)| <e.

N depends on ¢, not on x:

N = N(g) (same N for all x € D).



Main difference

» Pointwise: Fix x. Then choose N. (Different x can have different N.)

» Uniform: Choose N once. It works for all x.



Uniform convergence test

Define the largest error on D:

Largest error = sup |f,(x) — f(x)|.
xeD

sup test

f, — f uniformly on D if and only if

sup |fp(x) — f(x)| — 0.
xeD

Uniform convergence means: the largest error goes to zero.



f.(x) = x" on [0, 1]: pointwise

Sequence

fa(x) =x",  x€[0,1].

Pointwise limit

: n {0, 0<x<1,
lim x" =

n—00 ]_’ X =

<
f(x):{o, 0<x<1,

1, x=



f.(x) = x" on [0, 1]: not uniform

Uniform test

Uniform convergence would require

sup |fp(x) — f(x)| — 0.
x€[0,1]

Compute the supremum
For 0 < x <1, f(x) =0, so |fy(x) — f(x)| = x". Hence

sup |fa(x) — f(x)] = sup x" =1.
x€[0,1] 0<x<1

Conclusion

The supremum is always 1, so it does not go to 0. Therefore, the convergence is not
uniform.



Example 2

Let D = R and define f,(x) = *.
X X
f(x)=x, h(x)= > f(x) = 30

Pointwise: for fixed x, ¥ — 0. So f(x) = 0.



Uniform convergence

Uniform convergence

Not uniform on R:

X
sup |— —O‘ = 0.
xeR N

Uniform on compact [a, b]:

b
‘5‘2 max{lal, |bl}
n n

sup
x€[a,b]



Example 3 : f,(x) = x" on three domains

Domains

Di=[0.3], D=[01), Di=[1, fi(x)=x"

Uniform test

Let f(x) = limp_00 fn(x) (pointwise).
Uniform convergence on D means:

sup |fr(x) — f(x)| — 0.
xeD



Domain D; = [O, %} uniform

Pointwise limit

For every x € Dy, we have x < % <1, s0x"— 0. Thus f(x) =0 on Dj.

Conclusion

Uniform convergence on D;.



Domain D, = [0,1): not uniform

Pointwise limit

For every fixed x < 1, we still have x” — 0. Thus f(x) = 0 on D».

I —
Values of x very close to 1 make x” close to 1. So

sup x" =1.
0<x<1

Conclusion

So no uniform convergence on D;.



Domain D3 = [0, 1]: not uniform

Pointwise limit

Take x, =1 — 1. Then f(x,) = 0 and

sup [fo(x) = F(x)| 2 [falxn) = Fxa)l = (1= 1) > &7 > 0.
x€[0,1]

So SUPx¢[0,1] [fn(x) — f(x)[ # 0.

Conclusion

No uniform convergence on Ds.



Example 4

Domain and functions

On D = [0, 1], define

Pointwise convergence

For x = 0: £,(0) =1 — 1 = £(0).
For x > 0: choose n > 1, then x > 1 so f,(x) =0 — 0 = f(x).



Example 4

For x € [0,1],
0, XZOOFXZ%,

£ (x) = fa(x)] :{

1 — nx, 0<X<%.

Largest error on [0, 1]

The largest error happens near x = 0:

sup |f(x) —fa(x)]= sup (1—nx)=1.
x€[0,1] 0<x<1/n

Conclusion

Since sup,¢o,1) [f(x) — fa(x)| = 1 for all n, we do not have uniform convergence.



Exercise

Show that
x cos(nx)

fo(x) =
) ==
satisfies:

» fp(x) — 0 for each x € [0, 00) (pointwise),

» but f, /4 0 uniformly on [0, c0).



Solution: pointwise

Fix x > 0. Since |cos(nx)| <1,

x cos(nx) X

— 7
X+n X+ n n—oo

So f,(x) — 0 for every fixed x.



Solution: not uniform

Choose x, = nm

Then cos(nx,) = cos(n®m) =1, so

nm . v
nm+n w41

Supremum does not go to 0

s

|fa(xn)| =

sup |fa(x)] = |fa(xn)| = .
0 160)] 2 ) = 5

So the convergence is not uniform.



Uniform Cauchy condition

A sequence of functions (f,) on D is uniform Cauchy if:

For every € > 0, there exists N such that for all n,m > N and all x € D,

|fa(x) — fn(X)| < e.

Quantifiers

Ve >03INVn,m>NVxeD: |fh(x)—fn(x)| <e.



Uniform Cauchy criterion

Supremum form

The uniform Cauchy condition is equivalent to:

Ve > 03N Vn,m> N: sup|fp(x) — fm(x)| <e.
xeD

Theorem (Uniform Cauchy criterion)

fn converges uniformly on D <= (f,) is uniform Cauchy on D.



Pointwise convergence: what may fail?

Main idea

Pointwise convergence means: for each fixed x, f,(x) — f(x).

But the speed can be different at different points. So the limit f may lose properties
that all £, have.

Possible problems

» The limit may not be continuous.
» We may not be able to change the order of limits.
» We may not be able to move the limit inside an integral.

» The limit may not be differentiable.



(a) Continuity is not preserved

Example: f,(x) = x" on [0, 1]

Each f, is continuous.
Pointwise limit:

Conclusion

The limit f is not continuous at x = 1. So pointwise convergence does not preserve
continuity.



(b) Limits are not preserved (order matters)

Same example: f,(x) = x" on (0, 1)

lim f,(x) =0 for each fixed x € (0,1).

n—oo

But for every fixed n,
lim fh(x)=1.

x—1-

Two different answers

I, (T G =% T (([In,63) =6

So the order of limits cannot be swapped using only pointwise convergence.



(c) Integrals are not preserved

Example on [0, 1]
Define

Then f,(x) — 0 for every fixed x € [0, 1].

Integral of f,

1 1/n
/ fn(x)dx:/ ndx = 1.
0 0
Different results

1 1
n||_>r’rc1>o [ fo(x)dx =1, A lim fp(x) dx



(d) Differentiability is not preserved

Example on R

fo(x) = /x2 4+ L.

n

Each f, is differentiable for all x.

Pointwise limit

n||_>ngo fa(x) = |x|.

Conclusion

The limit f(x) = |x| is not differentiable at x = 0. So pointwise convergence does not
preserve differentiability.



Hereditary theorems (idea)

|
A hereditary theorem says:

If every f, has a property (continuity, integrability, differentiability, ...), then the limit
f also has the same property.

|
Pointwise convergence is usually too weak for inheritance. Uniform convergence gives
much better inheritance results.



Uniform convergence preserves continuity

Let D C R. If each f, : D — R is continuous and f, — f uniformly on D, then f is
continuous on D.

|
Uniform convergence allows us to pass continuity from f, to the limit f.



Proof idea

Goal
Fix x € D. Show: for every € > 0, we can choose § > 0 such that

Ix =X <d = |f(x)—Ff(X)| <e.
(uniform convergence)
Choose N so that for all £ € D,

£(6) = ()] < -

(continuity of one function)

Since fy is continuous at x, choose § > 0 such that

Ix =X <6 = |fu(x)— (x| < i



Proof

Triangle inequality

For |x — x| <4,

[F(x) = FO < 1F(x) = in0)] + [ (x) = v ()] + (X)) = £(X)].

Each part is < ¢/3
G0 =l < 50 G = Bl < 5 ) = F)] < 5.

If(x) — f(X)] < e.

f is continuous at x. Since x is arbitrary, f is continuous on D.



Riemann integration

Upper and lower sums

Partition: a=xp < --- < x, =b, Ax; = x; — xj_1.

On [xj—1, xi]:
m; = inf f, M; =supf.

Sums:

L(f,P) =) _miAx,  U(f,P)=)_ Mx.

Riemann criterion

f is integrable iff for every € > 0 there is a partition P with

U(f,P) — L(f,P) <e.



A useful estimate

|
If g is Riemann integrable on [a, b], then

/ab g(x) dx

|
If supp, 1) | is small, then fabg is small.

b
< / £ dx < (b—a) sup |g(x)].
3 x€|a,b]




Uniform convergence and integrals

Theorem ( theorem for integrability)
Let [a, b] be a bounded interval. If each f, is Riemann integrable on [a, b] and f, — f
uniformly, then:

» f is Riemann integrable,

> and the limit can pass inside the integral:

b b b
nl;ngo/a f,,(x)dxz/ nll_}ﬁ(lofn(x)dx:/a f(x) dx.

a



Proof

Use uniform convergence

Given ¢ > 0, choose N such that for all n > N,

sup |f(x) — fa(x)| < e.

x€|[a,b]
Apply the inequality
For n > N,
b
- :/ (F— 1) /|f—f]< b—a)sup|f — | < e(b— a).
[a,b]

b b
/ f,,—>/ f.
a a



Uniform convergence and differentiability

Let f, be differentiable on [a, b]. Assume:
» f; — g uniformly on [a, b],
» fy(x0) converges for one point xg € [a, b].
Then f, converges uniformly to a differentiable function f, and

f'(x) = g(x) = lim fl(x) forall x € [a, b].

n—oo



Proof Sketch under f, € C!

Use the Fundamental Theorem of Calculus

For any x € [a, b],

fa(x) = fa(x0) + / f!(t) dt.

X0

Take the limit

Since fy(xp) converges and f, — g uniformly,

f(x):= nll_}h;O fa(x) exists and f(x) = f(x0) + /X g(t)dt.

X0

f is differentiable and f'(x) = g(x).



Why we need f,(xg) to converge

Important

Uniform convergence of f, alone is not enough.

Reason

If ¢, is a divergent sequence and g,(x) = f(x) + ¢,, then
gn(x) = f,(x).

So derivatives behave the same, but g,(x) cannot converge (even pointwise).

Meaning

We need one fixed value f,(xp) to “choose the constant”.



Example

On [0,1], let

At xp = 0,

so fn(xp) converges.

Derivative



Example (finish)

Uniform convergence of derivatives

sup |fi(x) —1| = sup —| s @)
x€[0,1] x€[0,1] n n

So f; — 1 uniformly, hence g(x) = 1.

1.(x) — x| = sin(nx)

Sﬁ_)()’

n

so f, — f uniformly with
f(x) = x.



Uniform convergence lets us swap limits

Let x € D (a cluster point) and assume f, — f uniformly on D\ {x}. If the limit

ln = lim £y(t)

t—x

exists for each n, then:
> (¢,) converges,
> and the limit of f at x exists and equals lim ¢,:

PR A= g e i, B () = i 0, )



Proof idea (part 1)

Uniform Cauchy

Uniform convergence on D \ {x} gives: for every ¢ > 0 there is N such that

m,n> N = |fo(t) — fm(t)] <e forall t € D\ {x}.

Taking t — x and using £, = lim;_, f,(t),
mn>N = |l,—{n <e.

So (¢,) is Cauchy, hence convergent.



Proof idea (part 2)
Let / = lim ¢,

n—o0

Choose N such that for all t € D\ {x},

[f(t) — fu(t)] <e,  |[0—tn|<e.

Use the limit of fy

Since fy(t) — £y as t — x, choose d > 0 such that

[t — x| <d = |fn(t) —In| <e.

Finish (triangle inequality)

For |t — x| < 9,

[f(t) — € < |f(t) — fn(t)] + |fn(t) — en| + |[en — ¢ < 3e.



Corollary: continuity is preserved

Corollary

If f, = f uniformly on an interval | and each f, is continuous at ¢ € /, then f is
continuous at c.

Reason

lim f(t) = lim lim f,(t) = I|m fa(c) = f(c).

t—c n—oo t—c



Example

Example on [0, 1]

X
folx) = 1+ nx

Then f, — 0 uniformly on [0, 1], so f(x) = 0.

Swap the limits at x =0

lim ( lim f,,(x)) = lm0=0, lim ( lim fn(x)) = lim 0=0.

x—0 \ n—oo n—o0 \ x—0

Both iterated limits agree.



Exercises (1.1-1.6)

For each sequence (f,): find the pointwise limit and decide uniform convergence
(on the stated domain and on [a, 1] when asked).

Exercises

Ex 1.1 f,(x) = x" on R.

Ex 1.2 fo(x) = % on (0,1) and [a, 1].
Ex 1.3 fo(x) = nx:— 7 on (0,1) and [a, 1].
Ex 1.4 fy(x) = nx):r - on [0, 1].
Ex 1.5 fy(x) = 1”:; on [0, 1].

Ex 1.6 f,(x) = x"(1—x) on [0, 1].



Exercises (1.7-1.12)

Exercises

Ex 1.7 fo(x) = x"(1 — x") on [0, 1].

nx, 0<x<1/n
Ex 1.8 fo(x) = {0 n<x<l

v/ <x<1
EX ]_9 fn(X) = {0 nX, g-)/_ X -~ </;.7 on [07 1]
, n<x<

Ex 1.10 If uniform on D and E, prove uniform on D U E.

on [0,1].

Ex 1.11 If f, — f, go — g uniformly, prove af, + 8g, — af + Bg uniformly.

Ex 1.12 If f,, g, bounded and converge uniformly, prove f,g, — fg uniformly; give
counterexample if boundedness fails.



Exercises (1.13-1.18)

Exercises

Ex 1.13 (Dini) On compact D, if f, | f and all continuous, prove uniform convergence.
Show compactness is needed.

Ex 1.14 f,(x) =

o [0, 2].

Ex 1.15 Build discontinuous f, on [0, 1] with uniform limit f continuous.

Ex 1.16 fo(x) = ¢(x)x", ¢ € C[0,1]: uniform iff (1) = 0. Deduce nx(1 —x)" — 0
pointwise not uniformly.

Ex 1.17 Piecewise “triangle” f, on [0, 1]: pointwise limit, uniform?, compare [ f, vs
[ lim £,

Ex 1.18 fn(X) = m

™ on [0,1]: uniform? and integral for p = 2.



Answers (1.1-1.4)

|
1.1 x": pointwise 0 if |x| < 1, 1 if x =1, diverges if |x| > 1 or x = —1. Uniform on
[—a, a] for a < 1; not uniform on (—1,1).

1.2 S22 s 0 pointwise on (0,1). Not uniform on (0,1). Uniform on [a, 1] (a > 0).

nx

1.3 %H — 0 pointwise. Not uniform on (0,1). Uniform on [a, 1] (a > 0).

1.4 25 — 0 pointwise on [0, 1], and uniform since supjg 1] 7757 = ﬁ — 0.



Quick checks (1.5-1.9)

Answers

1.5 1+nx
1.6 x"(1 — x) — 0 pointwise and uniformly on [0, 1].

1.7 x"(1 — x™) — 0 pointwise, but not uniform (sup = 1/4).
1.8 spike nx on [0,1/n]: pointwise — 0, not uniform (sup = 1).
1.9 y/nx on [0,1/n]: pointwise — 0, not uniform (sup = 1).

— x2 pointwise. Uniform since sup |, — x?| < — 0.

n+1



Answers (1.10-1.13)

1.10 Uniform on D and E = take N = max(Np, Ng) = uniform on DU E.

1.11 Uniform limits are stable under linear combinations: af, + 8g, — af + Bg
uniformly.

1.12 If f,, g, are bounded and converge uniformly, then f,g, — fg uniformly.
Boundedness is needed (counterexamples exist on unbounded domains).

1.13 Dini: on compact D, continuous f, | f continuous = uniform. Not true on
non-compact sets (example x" on (0, 1)).



Answers (1.14-1.18)

1.14 ﬁ:{n: pointwise 0 for x < 1, 1/2 at x =1, 1 for x > 1. Not uniform on [0, 2].

1.15 Example: f, = 1@0[0,1]/’7- Each discontinuous everywhere; f, — 0 uniformly.

1.16 ¢(x)x" uniform on [0, 1] iff (1) = 0. Also nx(1 — x)" — 0 pointwise but not
uniform.

1.17 For the given piecewise f,: pointwise — 0, not uniform; and | f, may not equal
[ lim £,

1.18 £, = 1+’;1—’§sz pointwise — 0. Uniform if 0 < p < 2; not uniform if p = 2; not
uniform if p > 2.



