
Chapter 2: Sequences of functions



Sequence of functions

Definition

A sequence of functions is a list

f1, f2, f3, . . .

All functions use the same domain D:

fn : D → R.

Goal

Find a function f such that fn becomes close to f as n→∞.

Error (closeness)

Error at x : |fn(x)− f (x)|.



Example of a sequence of functions

Example

Let D = R and define
fn(x) =

x

n
.

First terms:
f1(x) = x , f2(x) =

x

2
, f3(x) =

x

3
, . . .

For each fixed x ∈ R,
x

n
−−−→
n→∞

0.

So the limit function is
f (x) = 0 for all x ∈ R.



What does “fn → f ” mean?

For each fixed x , the values

f1(x), f2(x), f3(x), . . .

are just a sequence of numbers.

We write fn → f when, as n gets large, the number fn(x) gets closer to f (x).

Main question

Do we get close point by point (pointwise), or everywhere at once (uniform)?



Pointwise convergence

Pointwise means: one point at a time

Pick a point x . Then fn(x) becomes close to f (x) when n is large.

∀x ∈ D, ∀ε > 0, ∃N : |fn(x)− f (x)| < ε for n ≥ N.

Important (why it is called pointwise)

In pointwise convergence, you fix a point x first.

Then the number N you need can depend on that point:

N = N(x , ε).

So two different points x1 and x2 may need different values of N.



Uniform convergence

Definition

Given ε > 0, there exists N such that for all n ≥ N and all x ∈ D,

|fn(x)− f (x)| < ε.

quantifiers

∀ε > 0 ∃N ∀n ≥ N ∀x ∈ D : |fn(x)− f (x)| < ε.

N depends on ε, not on x :

N = N(ε) (same N for all x ∈ D).



Main difference

I Pointwise: Fix x . Then choose N. (Different x can have different N.)

I Uniform: Choose N once. It works for all x .



Uniform convergence test

Define the largest error on D:

Largest error = sup
x∈D
|fn(x)− f (x)|.

sup test

fn → f uniformly on D if and only if

sup
x∈D
|fn(x)− f (x)| → 0.

Uniform convergence means: the largest error goes to zero.



fn(x) = xn on [0, 1]: pointwise

Sequence

fn(x) = xn, x ∈ [0, 1].

Pointwise limit

lim
n→∞

xn =

{
0, 0 ≤ x < 1,

1, x = 1.

So

f (x) =

{
0, 0 ≤ x < 1,

1, x = 1.



fn(x) = xn on [0, 1]: not uniform

Uniform test

Uniform convergence would require

sup
x∈[0,1]

|fn(x)− f (x)| → 0.

Compute the supremum

For 0 ≤ x < 1, f (x) = 0, so |fn(x)− f (x)| = xn. Hence

sup
x∈[0,1]

|fn(x)− f (x)| = sup
0≤x<1

xn = 1.

Conclusion

The supremum is always 1, so it does not go to 0. Therefore, the convergence is not
uniform.



Example 2

Example

Let D = R and define fn(x) = x
n .

f1(x) = x , f2(x) =
x

2
, f3(x) =

x

3
, . . .

Pointwise: for fixed x , x
n → 0. So f (x) = 0.



Uniform convergence

Uniform convergence

Not uniform on R:
sup
x∈R

∣∣∣x
n
− 0
∣∣∣ =∞.

Uniform on compact [a, b]:

sup
x∈[a,b]

∣∣∣x
n

∣∣∣ =
max{|a|, |b|}

n
→ 0.



Example 3 : fn(x) = xn on three domains

Domains

D1 =
[
0, 12

]
, D2 = [0, 1), D3 = [0, 1], fn(x) = xn.

Uniform test

Let f (x) = limn→∞ fn(x) (pointwise).
Uniform convergence on D means:

sup
x∈D
|fn(x)− f (x)| → 0.



Domain D1 =
[
0, 1

2

]
: uniform

Pointwise limit

For every x ∈ D1, we have x ≤ 1
2 < 1, so xn → 0. Thus f (x) = 0 on D1.

sup
0≤x≤1/2

|xn − 0| = sup
0≤x≤1/2

xn =
(
1
2

)n
→ 0.

Conclusion

Uniform convergence on D1.



Domain D2 = [0, 1): not uniform

Pointwise limit

For every fixed x < 1, we still have xn → 0. Thus f (x) = 0 on D2.

Values of x very close to 1 make xn close to 1. So

sup
0≤x<1

xn = 1.

Conclusion

So no uniform convergence on D2.



Domain D3 = [0, 1]: not uniform

Pointwise limit

f (x) = lim
n→∞

xn =

{
0, 0 ≤ x < 1,

1, x = 1.

Take xn = 1− 1
n . Then f (xn) = 0 and

sup
x∈[0,1]

|fn(x)− f (x)| ≥ |fn(xn)− f (xn)| =
(

1− 1
n

)n
→ e−1 > 0.

So supx∈[0,1] |fn(x)− f (x)| 6→ 0.

Conclusion

No uniform convergence on D3.



Example 4

Domain and functions

On D = [0, 1], define

fn(x) =

{
1− nx , 0 ≤ x < 1

n ,

0, 1
n ≤ x ≤ 1,

f (x) =

{
1, x = 0,

0, x > 0.

Pointwise convergence

For x = 0: fn(0) = 1→ 1 = f (0).
For x > 0: choose n > 1

x , then x ≥ 1
n so fn(x) = 0→ 0 = f (x).



Example 4

For x ∈ [0, 1],

|f (x)− fn(x)| =

{
0, x = 0 or x ≥ 1

n ,

1− nx , 0 < x < 1
n .

Largest error on [0, 1]

The largest error happens near x = 0:

sup
x∈[0,1]

|f (x)− fn(x)| = sup
0<x<1/n

(1− nx) = 1.

Conclusion

Since supx∈[0,1] |f (x)− fn(x)| = 1 for all n, we do not have uniform convergence.



Exercise

Problem

Show that

fn(x) =
x cos(nx)

x + n

satisfies:

I fn(x)→ 0 for each x ∈ [0,∞) (pointwise),

I but fn 6→ 0 uniformly on [0,∞).



Solution: pointwise

Pointwise

Fix x ≥ 0. Since | cos(nx)| ≤ 1,∣∣∣∣x cos(nx)

x + n

∣∣∣∣ ≤ x

x + n
−−−→
n→∞

0.

So fn(x)→ 0 for every fixed x .



Solution: not uniform

Choose xn = nπ

Then cos(nxn) = cos(n2π) = 1, so

|fn(xn)| =
nπ

nπ + n
=

π

π + 1
.

Supremum does not go to 0

sup
x∈[0,∞)

|fn(x)| ≥ |fn(xn)| =
π

π + 1
.

So the convergence is not uniform.



Uniform Cauchy condition

Definition

A sequence of functions (fn) on D is uniform Cauchy if:

For every ε > 0, there exists N such that for all n,m ≥ N and all x ∈ D,

|fn(x)− fm(x)| < ε.

Quantifiers

∀ε > 0 ∃N ∀n,m ≥ N ∀x ∈ D : |fn(x)− fm(x)| < ε.



Uniform Cauchy criterion

Supremum form

The uniform Cauchy condition is equivalent to:

∀ε > 0 ∃N ∀n,m ≥ N : sup
x∈D
|fn(x)− fm(x)| ≤ ε.

Theorem (Uniform Cauchy criterion)

fn converges uniformly on D ⇐⇒ (fn) is uniform Cauchy on D.



Pointwise convergence: what may fail?

Main idea

Pointwise convergence means: for each fixed x , fn(x)→ f (x).

But the speed can be different at different points. So the limit f may lose properties
that all fn have.

Possible problems

I The limit may not be continuous.

I We may not be able to change the order of limits.

I We may not be able to move the limit inside an integral.

I The limit may not be differentiable.



(a) Continuity is not preserved

Example: fn(x) = xn on [0, 1]

Each fn is continuous.
Pointwise limit:

f (x) =

{
0, 0 ≤ x < 1,

1, x = 1.

Conclusion

The limit f is not continuous at x = 1. So pointwise convergence does not preserve
continuity.



(b) Limits are not preserved (order matters)

Same example: fn(x) = xn on (0, 1)

lim
n→∞

fn(x) = 0 for each fixed x ∈ (0, 1).

But for every fixed n,
lim

x→1−
fn(x) = 1.

Two different answers

lim
n→∞

(
lim

x→1−
fn(x)

)
= 1, lim

x→1−

(
lim
n→∞

fn(x)
)

= 0.

So the order of limits cannot be swapped using only pointwise convergence.



(c) Integrals are not preserved

Example on [0, 1]

Define

fn(x) =

{
n, 0 ≤ x ≤ 1

n ,

0, 1
n < x ≤ 1.

Then fn(x)→ 0 for every fixed x ∈ [0, 1].

Integral of fn

∫ 1

0
fn(x) dx =

∫ 1/n

0
n dx = 1.

Different results

lim
n→∞

∫ 1

0
fn(x) dx = 1,

∫ 1

0
lim
n→∞

fn(x) dx = 0.

So pointwise convergence does not justify swapping limit and integral.



(d) Differentiability is not preserved

Example on R

fn(x) =
√
x2 + 1

n .

Each fn is differentiable for all x .

Pointwise limit

lim
n→∞

fn(x) = |x |.

Conclusion

The limit f (x) = |x | is not differentiable at x = 0. So pointwise convergence does not
preserve differentiability.



Hereditary theorems (idea)

A hereditary theorem says:

If every fn has a property (continuity, integrability, differentiability, . . .), then the limit
f also has the same property.

Pointwise convergence is usually too weak for inheritance. Uniform convergence gives
much better inheritance results.



Uniform convergence preserves continuity

Theorem

Let D ⊂ R. If each fn : D → R is continuous and fn → f uniformly on D, then f is
continuous on D.

Uniform convergence allows us to pass continuity from fn to the limit f .



Proof idea

Goal

Fix x ∈ D. Show: for every ε > 0, we can choose δ > 0 such that

|x − x ′| < δ ⇒ |f (x)− f (x ′)| < ε.

(uniform convergence)

Choose N so that for all ξ ∈ D,

|f (ξ)− fN(ξ)| < ε

3
.

(continuity of one function)

Since fN is continuous at x , choose δ > 0 such that

|x − x ′| < δ ⇒ |fN(x)− fN(x ′)| < ε

3
.



Proof

Triangle inequality

For |x − x ′| < δ,

|f (x)− f (x ′)| ≤ |f (x)− fN(x)|+ |fN(x)− fN(x ′)|+ |fN(x ′)− f (x ′)|.

Each part is < ε/3

|f (x)− fN(x)| < ε

3
, |fN(x)− fN(x ′)| < ε

3
, |fN(x ′)− f (x ′)| < ε

3
.

So
|f (x)− f (x ′)| < ε.

f is continuous at x . Since x is arbitrary, f is continuous on D.



Riemann integration

Upper and lower sums

Partition: a = x0 < · · · < xn = b, ∆xi = xi − xi−1.

On [xi−1, xi ]:
mi = inf f , Mi = sup f .

Sums:
L(f ,P) =

∑
mi∆xi , U(f ,P) =

∑
Mi∆xi .

Riemann criterion

f is integrable iff for every ε > 0 there is a partition P with

U(f ,P)− L(f ,P) < ε.



A useful estimate

If g is Riemann integrable on [a, b], then∣∣∣∣∫ b

a
g(x) dx

∣∣∣∣ ≤ ∫ b

a
|g(x)| dx ≤ (b − a) sup

x∈[a,b]
|g(x)|.

If sup[a,b] |g | is small, then
∫ b
a g is small.



Uniform convergence and integrals

Theorem ( theorem for integrability)

Let [a, b] be a bounded interval. If each fn is Riemann integrable on [a, b] and fn → f
uniformly, then:

I f is Riemann integrable,

I and the limit can pass inside the integral:

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
lim
n→∞

fn(x) dx =

∫ b

a
f (x) dx .



Proof

Use uniform convergence

Given ε > 0, choose N such that for all n ≥ N,

sup
x∈[a,b]

|f (x)− fn(x)| < ε.

Apply the inequality

For n ≥ N,∣∣∣∣∫ b

a
f −

∫ b

a
fn

∣∣∣∣ =

∣∣∣∣∫ b

a
(f − fn)

∣∣∣∣ ≤ ∫ b

a
|f − fn| ≤ (b − a) sup

[a,b]
|f − fn| < ε(b − a).

∫ b

a
fn →

∫ b

a
f .



Uniform convergence and differentiability

Theorem

Let fn be differentiable on [a, b]. Assume:

I f ′n → g uniformly on [a, b],

I fn(x0) converges for one point x0 ∈ [a, b].

Then fn converges uniformly to a differentiable function f , and

f ′(x) = g(x) = lim
n→∞

f ′n(x) for all x ∈ [a, b].



Proof Sketch under fn ∈ C 1

Use the Fundamental Theorem of Calculus

For any x ∈ [a, b],

fn(x) = fn(x0) +

∫ x

x0

f ′n(t) dt.

Take the limit

Since fn(x0) converges and f ′n → g uniformly,

f (x) := lim
n→∞

fn(x) exists and f (x) = f (x0) +

∫ x

x0

g(t) dt.

f is differentiable and f ′(x) = g(x).



Why we need fn(x0) to converge

Important

Uniform convergence of f ′n alone is not enough.

Reason

If cn is a divergent sequence and gn(x) = fn(x) + cn, then

g ′n(x) = f ′n(x).

So derivatives behave the same, but gn(x) cannot converge (even pointwise).

Meaning

We need one fixed value fn(x0) to “choose the constant”.



Example

Define

On [0, 1], let

fn(x) = x − sin(nx)

n2
.

At x0 = 0,
fn(0) = 0,

so fn(x0) converges.

Derivative

f ′n(x) = 1− cos(nx)

n
.



Example (finish)

Uniform convergence of derivatives

sup
x∈[0,1]

|f ′n(x)− 1| = sup
x∈[0,1]

| cos(nx)|
n

≤ 1

n
→ 0.

So f ′n → 1 uniformly, hence g(x) = 1.

Limit of fn

|fn(x)− x | =

∣∣∣∣sin(nx)

n2

∣∣∣∣ ≤ 1

n2
→ 0,

so fn → f uniformly with
f (x) = x .



Uniform convergence lets us swap limits

Theorem

Let x ∈ D̂ (a cluster point) and assume fn → f uniformly on D \ {x}. If the limit

`n = lim
t→x

fn(t)

exists for each n, then:

I (`n) converges,

I and the limit of f at x exists and equals lim `n:

lim
t→x

f (t) = lim
n→∞

`n, lim
n→∞

lim
t→x

fn(t) = lim
t→x

lim
n→∞

fn(t).



Proof idea (part 1)

Uniform Cauchy

Uniform convergence on D \ {x} gives: for every ε > 0 there is N such that

m, n ≥ N ⇒ |fn(t)− fm(t)| < ε for all t ∈ D \ {x}.

Let t → x

Taking t → x and using `n = limt→x fn(t),

m, n ≥ N ⇒ |`n − `m| ≤ ε.

So (`n) is Cauchy, hence convergent.



Proof idea (part 2)

Let ` = lim
n→∞

`n

Choose N such that for all t ∈ D \ {x},

|f (t)− fN(t)| ≤ ε, |`− `N | ≤ ε.

Use the limit of fN

Since fN(t)→ `N as t → x , choose δ > 0 such that

|t − x | < δ ⇒ |fN(t)− `N | < ε.

Finish (triangle inequality)

For |t − x | < δ,

|f (t)− `| ≤ |f (t)− fN(t)|+ |fN(t)− `N |+ |`N − `| < 3ε.

So limt→x f (t) = `.



Corollary: continuity is preserved

Corollary

If fn → f uniformly on an interval I and each fn is continuous at c ∈ I , then f is
continuous at c .

Reason

lim
t→c

f (t) = lim
n→∞

lim
t→c

fn(t) = lim
n→∞

fn(c) = f (c).



Example

Example on [0, 1]

fn(x) =
x

1 + nx
.

Then fn → 0 uniformly on [0, 1], so f (x) ≡ 0.

Swap the limits at x = 0

lim
x→0

(
lim
n→∞

fn(x)
)

= lim
x→0

0 = 0, lim
n→∞

(
lim
x→0

fn(x)
)

= lim
n→∞

0 = 0.

Both iterated limits agree.



Exercises (1.1–1.6)

Tasks

For each sequence (fn): find the pointwise limit and decide uniform convergence
(on the stated domain and on [a, 1] when asked).

Exercises

Ex 1.1 fn(x) = xn on R.

Ex 1.2 fn(x) =
sin(nx)

nx
on (0, 1) and [a, 1].

Ex 1.3 fn(x) =
1

nx + 1
on (0, 1) and [a, 1].

Ex 1.4 fn(x) =
x

nx + 1
on [0, 1].

Ex 1.5 fn(x) =
nx3

1 + nx
on [0, 1].

Ex 1.6 fn(x) = xn(1− x) on [0, 1].



Exercises (1.7–1.12)

Exercises

Ex 1.7 fn(x) = xn(1− xn) on [0, 1].

Ex 1.8 fn(x) =

{
nx , 0 ≤ x ≤ 1/n

0, 1/n < x ≤ 1
on [0, 1].

Ex 1.9 fn(x) =

{√
nx , 0 ≤ x ≤ 1/n

0, 1/n < x ≤ 1
on [0, 1].

Ex 1.10 If uniform on D and E , prove uniform on D ∪ E .

Ex 1.11 If fn → f , gn → g uniformly, prove αfn + βgn → αf + βg uniformly.

Ex 1.12 If fn, gn bounded and converge uniformly, prove fngn → fg uniformly; give
counterexample if boundedness fails.



Exercises (1.13–1.18)

Exercises

Ex 1.13 (Dini) On compact D, if fn ↓ f and all continuous, prove uniform convergence.
Show compactness is needed.

Ex 1.14 fn(x) =
xn

1 + xn
on [0, 2].

Ex 1.15 Build discontinuous fn on [0, 1] with uniform limit f continuous.

Ex 1.16 fn(x) = ϕ(x)xn, ϕ ∈ C [0, 1]: uniform iff ϕ(1) = 0. Deduce nx(1− x)n → 0
pointwise not uniformly.

Ex 1.17 Piecewise “triangle” fn on [0, 1]: pointwise limit, uniform?, compare
∫
fn vs∫

lim fn.

Ex 1.18 fn(x) =
nx

1 + n2xp
on [0, 1]: uniform? and integral for p = 2.



Answers (1.1–1.4)

1.1 xn: pointwise 0 if |x | < 1, 1 if x = 1, diverges if |x | > 1 or x = −1. Uniform on
[−a, a] for a < 1; not uniform on (−1, 1).

1.2 sin(nx)
nx → 0 pointwise on (0, 1). Not uniform on (0, 1). Uniform on [a, 1] (a > 0).

1.3 1
nx+1 → 0 pointwise. Not uniform on (0, 1). Uniform on [a, 1] (a > 0).

1.4 x
nx+1 → 0 pointwise on [0, 1], and uniform since sup[0,1]

x
nx+1 = 1

n+1 → 0.



Quick checks (1.5–1.9)

Answers

1.5 nx3

1+nx → x2 pointwise. Uniform since sup |fn − x2| ≤ 1
n+1 → 0.

1.6 xn(1− x)→ 0 pointwise and uniformly on [0, 1].

1.7 xn(1− xn)→ 0 pointwise, but not uniform (sup = 1/4).

1.8 spike nx on [0, 1/n]: pointwise → 0, not uniform (sup = 1).

1.9
√
nx on [0, 1/n]: pointwise → 0, not uniform (sup = 1).



Answers (1.10–1.13)

1.10 Uniform on D and E ⇒ take N = max(ND ,NE ) ⇒ uniform on D ∪ E .

1.11 Uniform limits are stable under linear combinations: αfn + βgn → αf + βg
uniformly.

1.12 If fn, gn are bounded and converge uniformly, then fngn → fg uniformly.
Boundedness is needed (counterexamples exist on unbounded domains).

1.13 Dini: on compact D, continuous fn ↓ f continuous ⇒ uniform. Not true on
non-compact sets (example xn on (0, 1)).



Answers (1.14–1.18)

1.14 xn

1+xn : pointwise 0 for x < 1, 1/2 at x = 1, 1 for x > 1. Not uniform on [0, 2].

1.15 Example: fn = 1Q∩[0,1]/n. Each discontinuous everywhere; fn → 0 uniformly.

1.16 ϕ(x)xn uniform on [0, 1] iff ϕ(1) = 0. Also nx(1− x)n → 0 pointwise but not
uniform.

1.17 For the given piecewise fn: pointwise → 0, not uniform; and
∫
fn may not equal∫

lim fn.

1.18 fn = nx
1+n2xp

: pointwise → 0. Uniform if 0 < p < 2; not uniform if p = 2; not
uniform if p > 2.


