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Sequence of functions

Sequence of functions

Definition

For each n € N, let f,, : D — R be a function. Then the sequence
(f,,) is a sequence of functions. For a fixed point x € D, (f,,(x)) is
a sequence of numbers. If the sequence (f,, (z)) converges for
every x € D, then (f,,) converges pointwise and
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Sequence of functions

Pointwise Convergent

Definition
The sequence of functions (f,,) converges pointwise to f on D if ,
given € > 0, then for each z € D there is N = N(e,z) € N such

that

n>N = [f,(x) - f(z)|<e
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Sequence of functions

Sequence of functions

Find the poitnwise limit of the functions
fnR—R
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Sequence of functions

Sequence of functions

fn:10,1] = R
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Sequence of functions

Sequence of functions

fn:]0,1] = R
o) = (1 — 22"
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Sequence of functions

Sequence of functions

—1 x<—1/n
folx) =< sin(nmz/2) —1/n<z<1/n
1 x>1/n
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Sequence of functions

Uniform Convergent

Definition

The sequence of functions (f,,) converges uniformly to f on D if ,
given € > 0, there is NV € N such that

n>N = |f,(x)—f(z)|<e VxeD

fo = f

Ibraheem Alolyan Real Analysis



Sequence of functions

Uniform Convergent

The sequence of functions (f,,) converges uniformly to f on D iff

sup |f,,(x) — f(x)] — 0, as n — 00
xeD
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Sequence of functions

Uniform Convergent

The sequence of functions (f,,) on D does not converge uniformly
to f on D iff there is ¢ > 0 and a sequence (x,,) in D such that
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Sequence of functions

Sequence of functions

Determine the pointwise limit of (f,,) then decide whether the
convergence is uniform or not

folx) ==, x€]0,1]
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Sequence of functions

Sequence of functions
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Sequence of functions

Sequence of functions
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Sequence of functions

Sequence of functions

fo(@) =nzx(l —2?)", x€[0,1]
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Sequence of functions

Sequence of functions

—1 x<—1/n
folx) =< sin(nmz/2) —1/n<z<1/n
1 x>1/n
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Sequence of functions

Sequence of functions
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Sequence of functions

Cauchy Criterion Convergent

The sequence of functions (f,,) converges uniformly on D iff
for every € > 0 there is N € N such that

m,n >N = sup|f,(z) — f.(z)| <€
xeD
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Properties of Uniform convergence

Properties of Uniform convergence

If (f,,) is a sequence of continuous functions on D, and

fo o f

on D, then f is also continuous on D.
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Properties of Uniform convergence

Properties of Uniform convergence

If f,, € R(a,b) and

fo = f
on [a,b], then f € R(a,b), and

/ o= / (@)
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Properties of Uniform convergence

What about differentiation?
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Properties of Uniform convergence

Properties of Uniform convergence

Let f,, be differentiable on [a,b] and converges at some point
¢ € [a,b]. If the sequence (f,) is uniformly convergent on [a, ]
then (f,,) is uniformly convergent on [a, b] to a function f and

fn o f
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Properties of Uniform convergence

Sequence of functions
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Properties of Uniform convergence

Sequence of functions

fo(2)

Q Find f(z) =lim f,(z)
@ Show that (f,,) converges uniformly to f on [a,c0) for a > 0
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Properties of Uniform convergence

Sequence of functions

fo(2)

Q Find f(z) =lim f,(z)
@ Show that (f,,) converges uniformly to f on [a,c0) for a > 0

@ Show that (f,,) does no converge uniformly on [0, 0]
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Series of functions

Series of functions

Let (f,,) be a sequence of function on D. The sum

S fa@)

n=1

is a series of functions.
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Series of functions

Series of functions

The sequence of partial sums is

n

Sn(@) =) fu(@)

k=1

If (S,,) is convergent (pointwise) on D, we say that the series
converges pointwise and we have

n—oo

S(z) = lim S,(z) =) fi(x)
k=1
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Series of functions

Series of functions

Definition

If (S,,) is divergent, then the series is divergent.

If (S,,) is uniformly convergent, then the series is uniformly
convergent

If ZZ; | fx(z)| is convergent, then ZZ; fi(x) is absolutely
convergent.
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Series of functions

Series of functions

If z € D and the series Zzo:l f,,(x) is uniformly convergent on
D\{z}, and suppose that lim, ., f,,(t) exists for all n € N, then

(&)

ggn;Zf = lim [, (%)

n=1

Therefore, if each f,, is continuous at = then >_ f, is continuous.
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Series of functions

Series of functions

If f,, € R(a,b) for all n € N and the series 2:;1 fu(x)is
uniformly convergent on [a, b], then > f,, € R(a,b) and

/abyifn(x)d:n = 72/: fn(x)dx
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Series of functions

Series of functions

If f,, is differentiable on [a, b] for all n € N and the series

Zf (xy) converges at some point z, € [a,b], then If the series
anl f, is uniformly convergent on [a, b], then Z:Lozl f,, is also
uniformly convergent on [a, b] and

(i fn> (z) = f:f;(x) V€ [a,b]

n=1
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Series of functions

Cauchy criterion

The series Z:il f,, is uniformly convergent on D iff for
for every € > 0 there is N € N such that

n>m>N = |S,(z)—5,,(z)= <e VzxeD

S ful@)

k=m+1

v
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Series of functions

Weierstrass M-test

Let (f,,) be a sequence of functions on D, and (},,) be a
sequence of positive numbers such that

|fo(x)| <M, VreDnelN

If the series ) M, converges, then > f,, and > |f,| converge
uniformly on D.
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Series of functions

Series of functions

Discuss uniform convergence of the series

> sin(3"x)
P

n=1
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Series of functions

Series of functions

Zsin (%) , T € [a,b]

n=1
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Series of functions

Series of functions

Discuss uniform convergence of the series

Zsin(%), zeR
n

n=1
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Series of functions

Series of functions

<01
DB

n=1
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Power Series

Power Series

The series Z:io f,, is called a power series if the function f,, has
the form
fal) = ay(z—c)", neNU{0}

fo@) = aqg
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Power Series

Power Series

We will consider the series

oo

n
E a,T

n=0

If £ =0, then

[ee]

n
E a,x —>CL0

n=0
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Power Series

Power Series

oo
E nlz™
n=0
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Power Series

Power Series
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Power Series

Power Series
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Power Series

Radius of convergence

For any power series

S0

n=0
We define

p = lim|a,|"
and )

R=- 0<p<x

P
R=o00,if p=0
R=0ifp=00
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Power Series

Radius of convergence

If
lim Ant1
an
exists then
o a
p = lim Znt+l
n
and
. a
R =1lim |—2
an+1
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Power Series

Radius of convergence

Cauchy-Hadamard Theorem

The series ZZOZO a,z" is absolutely convergent if |z| < R

and divergent if |z| > R.
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Power Series

Uniform Convergent

n

Let R be the radius of convergent of the power seres ZZOZO a,z".

If 0 < r < R then the series converges uniformly on [—r, r].
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Power Series

Power Series
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Power Series

Power Series

Ibraheem Alolyan Real Analysis



Power Series

Power Series

3

N
2| 8

S
Il
fai
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Power Series

Exercises

@ Determine the pointwise limit of (f,,), then decide whether
the convergence is uniform or not.

0 ) =" e o
>) fn(x):mH, z € (0,1)
0 f (z)= %ﬂ e [0,1]

n

@ Find the limit of the sequence f, (z) = na:+ [ on [0,2], and
x
determine whether the convergence is uniform.
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Power Series

Exercises

@ The functions f,, on [—1, 1] are defined by

B x
Con22241

fal)

Show that (f,,) converges uniformly and that its limit f is
differentiable, but that the equality f'(z) = lim f,,(z) does
not hold for all z € [—1,1].
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Power Series

Exercises

@ Determine where the series > f,, converges pointwise and
where it converges uniformly

1
o fn(ff):m
@ fil0)= s at-l

@ If Y a,, is absolutely convergent, prove that ) a,, cosnz and
> a,, sinnz uniformly convergent on R.
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Power Series

Exercises

n

. , x
@ Determine the radius of convergence of the series E —.
nTL
:L.”/L
@ For what values of c is the series E — uniformly convergent
nw
on [—¢,c]?
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