Introduction to Real Analysis Sequences and Series of Fucntions

Ibraheem Alolyan

King Saud University

Table of Contents

2 Properties of Uniform convergence

3 Series of functions

4 Power Series

Sequence of functions

Definition

For each $n\in\mathbb{N}$, let $f_n:D\to\mathbb{R}$ be a function. Then the sequence (f_n) is a sequence of functions. For a fixed point $x\in D$, $(f_n(x))$ is a sequence of numbers. If the sequence $(f_n(x))$ converges for every $x\in D$, then (f_n) converges pointwise and

$$f(x) = \lim_{n \to \infty} f_n(x)$$

$$\lim f_n = f$$

Pointwise Convergent

Definition

The sequence of functions (f_n) converges pointwise to f on D if , given $\varepsilon>0$, then for each $x\in D$ there is $N=N(\varepsilon,x)\in\mathbb{N}$ such that

$$n \ge N \quad \implies |f_n(x) - f(x)| < \varepsilon$$

Sequence of functions

Examples

Find the poitnwise limit of the functions $f_n:\mathbb{R}\to\mathbb{R}$

$$f_n(x) = \frac{x}{n}$$

Image: A mathematical states and a mathem

-

3)) B

Sequence of functions

Examples

.

f_n	: [0, 1]	$ ightarrow \mathbb{R}$
-------	----------	-------------------------

$$f_n(x) = x^n$$

æ

• □ ▶ • < </p>
• □ ▶ • < </p>

Sequence of functions

Examples

.

 $f_n:[0,1]\to \mathbb{R}$ $f_n(x)=nx(1-x^2)^n$

æ

《口》《聞》《臣》《臣》

Sequence of functions

Examples

.

 $f_n:\mathbb{R}\to\mathbb{R}$

$$f_n(x) = \left\{ \begin{array}{ll} -1 & x < -1/n \\ \sin(n\pi x/2) & -1/n \le x \le 1/n \\ 1 & x > 1/n \end{array} \right.$$

æ

Uniform Convergent

Definition

The sequence of functions (f_n) converges uniformly to f on D if , given $\varepsilon>0,$ there is $N\in\mathbb{N}$ such that

$$n \geq N \quad \Longrightarrow \ |f_n(x) - f(x)| < \varepsilon \quad \forall x \in D$$

$$f_n \xrightarrow{u} f$$

Uniform Convergent

Theorem

The sequence of functions $\left(f_{n}\right)$ converges uniformly to f on D iff

$$\sup_{x\in D} |f_n(x)-f(x)|\to 0, \qquad \text{as} \quad n\to\infty$$

э

Uniform Convergent

Lemma

The sequence of functions (f_n) on D does not converge uniformly to f on D iff there is $\varepsilon > 0$ and a sequence (x_n) in D such that

$$|f_n(x_n)-f(x_n)|\geq \varepsilon \quad \forall n\in \mathbb{N}$$

Sequence of functions

Examples

Determine the pointwise limit of $\left(f_{n}\right)$ then decide whether the convergence is uniform or not

$$f_n(x) = \frac{x}{n}, \quad x \in [0,1]$$

Sequence of functions

Examples

.

$$f_n(x)=\frac{x}{n},\quad x\in\mathbb{R}$$

Ibraheem Alolyan Real Analysis

æ

• □ ▶ • < </p>
• □ ▶ • < </p>

Sequence of functions

Examples

.

$$f_n(x)=x^n, \quad x\in [0,1]$$

æ

-≣->

Sequence of functions

Examples

.

$$f_n(x) = nx(1-x^2)^n, \quad x \in [0,1]$$

æ

-≣->

Sequence of functions

Examples

.

 $f_n:\mathbb{R}\to\mathbb{R}$

$$f_n(x) = \left\{ \begin{array}{ll} -1 & x < -1/n \\ \sin(n\pi x/2) & -1/n \le x \le 1/n \\ 1 & x > 1/n \end{array} \right.$$

æ

Sequence of functions

Examples

.

$$f_n(x)=\frac{\sin nx}{n},\quad x\in\mathbb{R}$$

æ

-≣->

Cauchy Criterion Convergent

Theorem

The sequence of functions (f_n) converges uniformly on D iff for every $\varepsilon>0$ there is $N\in\mathbb{N}$ such that

$$m,n\geq N \implies \sup_{x\in D} |f_n(x)-f_m(x)|<\varepsilon$$

Properties of Uniform convergence

Theorem

If $\left(f_{n}\right)$ is a sequence of continuous functions on D, and

$$f_n \xrightarrow{u} f$$

on D, then f is also continuous on D.

Properties of Uniform convergence

Theorem

If $f_n \in \mathcal{R}(a, b)$ and $f_n \xrightarrow{u} f$ on [a, b], then $f \in \mathcal{R}(a, b)$, and $\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$

▲ 伊 ▶ ▲ ヨ

What about differentiation?

Examples

$$f_n:[-1,1]\to \mathbb{R}$$

$$f_n(x)=\sqrt{x^2+\frac{1}{n^2}}$$

æ

Image: A mathematical states and a mathem

Properties of Uniform convergence

Theorem

Let f_n be differentiable on [a, b] and converges at some point $c \in [a, b]$. If the sequence (f'_n) is uniformly convergent on [a, b] then (f_n) is uniformly convergent on [a, b] to a function f and

$$f_{n}^{'} \xrightarrow{u} f'$$

Sequence of functions

Examples

$$f_n(x) = \frac{nx}{nx+1}, \quad x \ge 0$$

 $\bullet \quad {\rm Find} \ f(x) = \lim f_n(x)$

æ

∃ >

▲ 同 ▶ ▲ 三

Sequence of functions

Examples

$$f_n(x) = \frac{nx}{nx+1}, \quad x \ge 0$$

) Find
$$f(x) = \lim f_n(x)$$

$$\ensuremath{\textcircled{0.5ex}}\ \mbox{Show that}\ (f_n) \mbox{ converges uniformly to } f \mbox{ on } [a,\infty) \mbox{ for } a>0$$

æ

∃ >

Image: A matched block of the second seco

Sequence of functions

Examples

$$f_n(x) = \frac{nx}{nx+1}, \quad x \ge 0$$

- Find $f(x) = \lim f_n(x)$
- $\label{eq:show that } \textbf{(}f_n\textbf{) converges uniformly to }f \text{ on }[a,\infty) \text{ for }a>0$
- $\textcircled{O} \hspace{0.1in} \text{Show that} \hspace{0.1in} (f_n) \hspace{0.1in} \text{does no converge uniformly on} \hspace{0.1in} [0,\infty]$

< /□ > < 三

Series of functions

Definition

Let (f_n) be a sequence of function on D. The sum

$$\sum_{n=1}^{\infty} f_n(x)$$

is a series of functions.

< □ > < 同 > < 回 >

3)) B

Series of functions

Definition

The sequence of partial sums is

$$S_n(x) = \sum_{k=1}^n f_k(x)$$

If $\left(S_{n}\right)$ is convergent (pointwise) on D, we say that the series converges pointwise and we have

$$S(x) = \lim_{n \to \infty} S_n(x) = \sum_{k=1}^\infty f_k(x)$$

Series of functions

Definition

If (S_n) is divergent, then the series is divergent. If (S_n) is uniformly convergent, then the series is uniformly convergent If $\sum_{k=1}^\infty |f_k(x)|$ is convergent, then $\sum_{k=1}^\infty f_k(x)$ is absolutely convergent.

Series of functions

Theorem

If $x \in \hat{D}$ and the series $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent on $D \setminus \{x\}$, and suppose that $\lim_{t \to x} f_n(t)$ exists for all $n \in \mathbb{N}$, then

$$\lim_{t\to x}\sum_{n=1}^\infty f_n(t)=\sum_{n=1}^\infty\lim_{t\to x}f_n(t)$$

Therefore, if each f_n is continuous at x then $\sum f_n$ is continuous.

Series of functions

Theorem

If $f_n \in \mathcal{R}(a,b)$ for all $n \in \mathbb{N}$ and the series $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent on [a,b], then $\sum f_n \in \mathcal{R}(a,b)$ and

$$\int_a^b \sum_{n=1}^\infty f_n(x) dx = \sum_{n=1}^\infty \int_a^b f_n(x) dx$$

Series of functions

Theorem

If f_n is differentiable on [a,b] for all $n\in\mathbb{N}$ and the series $\sum f_n(x_0)$ converges at some point $x_0\in[a,b]$, then If the series $\sum_{n=1}^{\infty}f'_n$ is uniformly convergent on [a,b], then $\sum_{n=1}^{\infty}f_n$ is also uniformly convergent on [a,b] and

$$\left(\sum_{n=1}^{\infty}f_{n}\right)^{'}(x)=\sum_{n=1}^{\infty}f_{n}^{'}(x)\qquad\forall x\in[a,b]$$

Cauchy criterion

Theorem

The series $\sum_{n=1}^{\infty} f_n$ is uniformly convergent on D iff for for every $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that

$$n>m\geq N \implies |S_n(x)-S_m(x)|=\left|\sum_{k=m+1}^n f_k(x)\right|<\varepsilon \quad \forall x\in D$$

Image: A math a math

Weierstrass M-test

Theorem

Let $\left(f_{n}\right)$ be a sequence of functions on D, and $\left(M_{n}\right)$ be a sequence of positive numbers such that

$$|f_n(x)| \leq M_n \quad \forall x \in D, n \in \mathbb{N}$$

If the series $\sum M_n$ converges, then $\sum f_n$ and $\sum |f_n|$ converge uniformly on D.

Series of functions

Examples

Discuss uniform convergence of the series

$$\sum_{n=1}^{\infty} \frac{\sin(3^n x)}{2^n}$$

3 k 3

Series of functions

Examples

.

$$\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right), \quad x \in [a, b]$$

æ

-≣->

Series of functions

Examples

Discuss uniform convergence of the series

$$\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right), \quad x \in \mathbb{R}$$

э

Series of functions

Examples

.

 $\sum_{n=1}^{\infty} \frac{1}{n^2 x^2}$

æ

イロト イヨト イヨト イヨト

Power Series

The series $\sum_{n=0}^{\infty} f_n$ is called a power series if the function f_n has the form

$$\label{eq:fn} \begin{split} f_n(x) &= a_n (x-c)^n, \quad n \in \mathbb{N} \cup \{0\} \\ f_0(x) &= a_0 \end{split}$$

Image: A matrix and a matrix

э

Power Series

We will consider the series

$$\sum_{n=0}^{\infty} a_n x^n$$

If x = 0, then

$$\sum_{n=0}^{\infty} a_n x^n \to a_0$$

æ

Image: A matrix and a matrix

Power Series

Examples

.

æ

イロト イ団ト イヨト イヨト

Power Series

Examples

.

Ibraheem Alolyan Real Analysis

æ

イロト イ団ト イヨト イヨト

Power Series

Examples

.

$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$

Ibraheem Alolyan Real Analysis

æ

-≣->

(日)

Radius of convergence

For any power series

We define

 $\rho = \lim |a_n|^{\frac{1}{n}}$

and

$$R = \frac{1}{\rho}. \quad 0 < \rho < \infty$$

$$\begin{split} R &= \infty, \text{ if } \rho = 0 \\ R &= 0 \text{ if } \rho = \infty \end{split}$$

< A > <

Power Series

Radius of convergence

If
$$\lim \left|\frac{a_{n+1}}{a_n}\right|$$
 exists then
$$\rho = \lim \left|\frac{a_{n+1}}{a_n}\right|$$
 and
$$R = \lim \left|\frac{a_n}{a_n}\right|$$

$$R = \lim \left| \frac{a_n}{a_{n+1}} \right|$$

æ

-≣->

Radius of convergence

Cauchy-Hadamard Theorem

The series $\sum_{n=0}^{\infty} a_n x^n$ is absolutely convergent if |x| < R and divergent if |x| > R.

Uniform Convergent

Theorem

Let R be the radius of convergent of the power seres $\sum_{n=0}^{\infty} a_n x^n$. If 0 < r < R then the series converges uniformly on [-r, r].

Power Series

Examples

.

$$\sum_{n=0}^{\infty} \frac{x^n}{n}$$

Ibraheem Alolyan Real Analysis

æ

-≣->

(日)

Power Series

Examples

.

$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}$$

Ibraheem Alolyan Real Analysis

æ

-≣->

(日)

Power Series

Examples

.

$$\sum_{n=1}^{\infty} \frac{x^n}{2^n}$$

Ibraheem Alolyan Real Analysis

æ

-≣->

< □ > < □ > < □ > < □ >

Exercises

• Determine the pointwise limit of (f_n) , then decide whether the convergence is uniform or not.

$$f_n(x) = \frac{\sin(nx)}{nx}, \qquad x \in (0,1)$$

$$f_n(x) = \frac{1}{nx+1}, \qquad x \in (0,1)$$

$$f_n(x) = \frac{x}{nx+1}, \qquad x \in [0,1]$$

Find the limit of the sequence $f_n(x) = \frac{x^n}{x^n + 1}$ on [0, 2], and determine whether the convergence is uniform.

Exercises

$$f_n(x) = \frac{x}{n^2 x^2 + 1}$$

Show that (f_n) converges uniformly and that its limit f is differentiable, but that the equality $f'(x) = \lim f'_n(x)$ does not hold for all $x \in [-1, 1]$.

< (□) ト < 三 ト

Exercises

0 Determine where the series $\sum f_n$ converges pointwise and where it converges uniformly

$$\begin{array}{l} \bullet \quad f_n(x) = \frac{1}{x^2 + n^2} \\ \bullet \quad f_n(x) = \frac{1}{x^n + 1}, \qquad x \neq -1 \end{array}$$

 $\textbf{O} \quad \text{If } \sum a_n \text{ is absolutely convergent, prove that } \sum a_n \cos nx \text{ and } \\ \sum a_n \sin nx \text{ uniformly convergent on } \mathbb{R}.$

Exercises

Determine the radius of convergence of the series ∑ xⁿ/nⁿ.
 Por what values of c is the series ∑ xⁿ/n^{1/n} uniformly convergent on [-c, c]?

Image: A math a math