KING SAUD UNIVERSITY
 COLLEGE OF SCIENCES
 DEPARTMENT OF MATHEMATICS

Mid-term Exam II / MATH-244 (Linear Algebra) / Semester 451
Max. Marks: 25
Max.Time: 1.5 hrs

Note: Scientific calculators are not allowed.

Question 1: [Marks: $(2+3)+3]$
a) Let P_{4} denote the vector space of all real polynomials in x with degree ≤ 4 under the usual addition and scalar multiplication. Then:
(i) Show that $W=\left\{a+2 b+(a-b) x+(2 a+b) x^{3}+(a+b) x^{4} \mid a, b \in \mathbb{R}\right\}$ is a subspace of P_{4}.
(ii) Find a basis of the above vector space W.
b) Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a basis of vector space E. Then show that every element of E has a unique representation a linear combination of the basic vectors $u_{1}, u_{2}, \ldots, u_{n}$.

Question 2: [Marks: $3+3+2$]
Let $B=\left\{u_{1}, u_{2}, u_{3}\right\}$ be a basis of a vector space V and $C=\left\{w_{1}, w_{2}, w_{3}\right\} \subseteq V$ such that:

$$
\begin{aligned}
& u_{1}+w_{2}=w_{1}+w_{3} \\
& u_{2}-w_{3}=w_{1}+w_{2} \\
& u_{3}+w_{1}=w_{2}-2 w_{3} .
\end{aligned}
$$

Then:
a) Show that the set C is a basis of the vector space V.
b) Construct the transition matrix ${ }_{C} P_{B}$ from the above basis B to the basis C.
c) Find the transition matrix ${ }_{B} P_{C}$ by using the matrix ${ }_{C} P_{B}$.

Question 3: [Marks: $3+(1.5+1.5)+3$]
a) Let V be a real inner product space and $u, v, w \in V$ satisfying $u+v=-w,\|u\|=3$, $\|v\|=5$ and $\|w\|=7$. Then find the angle between the vectors u and v.
b) Show that the set $F=\{(0,1,-1),(1,1,1),(2,-1,-1)\}$ is orthogonal in the Euclidean space \mathbb{R}^{3}. Deduce further that the orthogonal set F is a basis of \mathbb{R}^{3}.
c) Let $G=\left\{v_{1}=(1,1,-1,1), v_{2}=(1,1,1,1), v_{3}=(-1,1,1,1)\right\}$ be a basis of vector subspace E of the Euclidean space \mathbb{R}^{4}. Find an orthonormal basis of E by using G.

