(a) The vector spaces R^{2} and P_{2} are isomorphic.
(d) There is a subspace of M_{23} that is isomorphic to R^{4}.
(b) If the kernel of a linear transformation $T: P_{3} \rightarrow P_{3}$ is $\{0\}$, then T is an isomorphism.
(e) Isomorphic finite-dimensional vector spaces must have the same number of basis vectors.
(c) Every linear transformation from M_{33} to P_{9} is an isomorphism.

8.4 Matrices for General LinearTransformations

In this section we will show that a general linear transformation from any n-dimensional vector space V to any m-dimensional vector space W can be performed using an appropriate matrix transformation from R^{n} to R^{m}. This idea is used in computer computations since computers are well suited for performing matrix computations.

Matrices of Linear

 TransformationsFigure 8.4.1

Suppose that V is an n-dimensional vector space, that W is an m-dimensional vector space, and that $T: V \rightarrow W$ is a linear transformation. Suppose further that B is a basis for V, that B^{\prime} is a basis for W, and that for each vector \mathbf{x} in V, the coordinate matrices for \mathbf{x} and $T(\mathbf{x})$ are $[\mathbf{x}]_{B}$ and $[T(\mathbf{x})]_{B^{\prime}}$, respectively (Figure 8.4.1).

It will be our goal to find an $m \times n$ matrix A such that multiplication by A maps the vector $[\mathbf{x}]_{B}$ into the vector $[T(\mathbf{x})]_{B^{\prime}}$ for each \mathbf{x} in V (Figure 8.4.2a). If we can do so, then, as illustrated in Figure 8.4.2 b, we will be able to execute the linear transformation T by using matrix multiplication and the following indirect procedure:

Finding $T(\mathrm{x})$ Indirectly
Step 1. Compute the coordinate vector $[\mathbf{x}]_{B}$.
Step 2. Multiply $[\mathbf{x}]_{B}$ on the left by A to produce $[T(\mathbf{x})]_{B^{\prime}}$.
Step 3. Reconstruct $T(\mathbf{x})$ from its coordinate vector $[T(\mathbf{x})]_{B^{\prime}}$.

The key to executing this plan is to find an $m \times n$ matrix A with the property that

$$
\begin{equation*}
A[\mathbf{x}]_{B}=[T(\mathbf{x})]_{B^{\prime}} \tag{1}
\end{equation*}
$$

For this purpose, let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ be a basis for the n-dimensional space V and $B^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\}$ a basis for the m-dimensional space W. Since Equation (1) must hold for all vectors in V, it must hold, in particular, for the basis vectors in B; that is,

$$
\begin{equation*}
A\left[\mathbf{u}_{1}\right]_{B}=\left[T\left(\mathbf{u}_{1}\right)\right]_{B^{\prime}}, \quad A\left[\mathbf{u}_{2}\right]_{B}=\left[T\left(\mathbf{u}_{2}\right)\right]_{B^{\prime}}, \ldots, \quad A\left[\mathbf{u}_{n}\right]_{B}=\left[T\left(\mathbf{u}_{n}\right)\right]_{B^{\prime}} \tag{2}
\end{equation*}
$$

But

$$
\begin{gathered}
{\left[\mathbf{u}_{1}\right]_{B}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \quad\left[\mathbf{u}_{2}\right]_{B}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \ldots, \quad\left[\mathbf{u}_{n}\right]_{B}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right]} \\
A\left[\mathbf{u}_{1}\right]_{B}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right] \\
A\left[\mathbf{u}_{2}\right]_{B}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right] \\
A\left[\mathbf{u}_{n}\right]_{B}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right]=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]
\end{gathered}
$$

Substituting these results into (2) yields

$$
\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]=\left[T\left(\mathbf{u}_{1}\right)\right]_{B^{\prime}}, \quad\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]=\left[T\left(\mathbf{u}_{2}\right)\right]_{B^{\prime}}, \ldots, \quad\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]=\left[T\left(\mathbf{u}_{n}\right)\right]_{B^{\prime}}
$$

which shows that the successive columns of A are the coordinate vectors of

$$
T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), \ldots, T\left(\mathbf{u}_{n}\right)
$$

with respect to the basis B^{\prime}. Thus, the matrix A that completes the link in Figure 8.4.2a is

$$
\begin{equation*}
A=\left[\left[T\left(\mathbf{u}_{1}\right)\right]_{B^{\prime}}\left|\left[T\left(\mathbf{u}_{2}\right)\right]_{B^{\prime}}\right| \cdots \mid\left[T\left(\mathbf{u}_{n}\right)\right]_{B^{\prime}}\right] \tag{3}
\end{equation*}
$$

We will call this the matrix for Trelative to the bases Band \boldsymbol{B}^{\prime} and will denote it by the symbol $[T]_{B^{\prime}, B}$. Using this notation, Formula (3) can be written as

$$
\begin{equation*}
[T]_{B^{\prime}, B}=\left[\left[T\left(\mathbf{u}_{1}\right)\right]_{B^{\prime}}\left|\left[T\left(\mathbf{u}_{2}\right)\right]_{B^{\prime}}\right| \cdots \mid\left[T\left(\mathbf{u}_{n}\right)\right]_{B^{\prime}}\right] \tag{4}
\end{equation*}
$$

and from (1), this matrix has the property

$$
\begin{equation*}
\stackrel{A}{A T]_{B^{\prime}} ;} \beta[\mathbf{x}]_{\delta}=[T(\mathbf{x})]_{B^{\prime}} \tag{5}
\end{equation*}
$$

We leave it as an exercise to show that in the special case where $T_{C}: R^{n} \rightarrow R^{m}$ is multiplication by C, and where B and B^{\prime} are the standard bases for R^{n} and R^{m}, respectively, then

$$
\begin{equation*}
\left[T_{C}\right]_{B^{\prime}, B}=C \tag{6}
\end{equation*}
$$

Remark Observe that in the notation $[T]_{B^{\prime}, B}$ the right subscript is a basis for the domain of T, and the left subscript is a basis for the image space of T (Figure 8.4.3). Moreover, observe how the subscript B seems to "cancel out" in Formula (5) (Figure 8.4.4).

EXAMPLE 1 Matrix for a Linear Transformation

Let $T: P_{1} \rightarrow P_{2}$ be the linear transformation defined by

$$
T(p(x))=x p(x)
$$

Find the matrix for T with respect to the standard bases

$$
B \mathscr{P}_{\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\} \text { and } B^{\prime}{ }^{P_{2}}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}}
$$

where

$$
\mathbf{u}_{1}=1, \quad \mathbf{u}_{2}=x ; \quad \mathbf{v}_{1}=1, \quad \mathbf{v}_{2}=x, \quad \mathbf{v}_{3}=x^{2}
$$

Solution From the given formula for T we obtain

By inspection, the coordinate vectors for $T\left(\mathbf{u}_{1}\right)$ and $T\left(\mathbf{u}_{2}\right)$ relative to B^{\prime} are

$$
\begin{aligned}
& {\left[T\left(\mathbf{u}_{1}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}
0 \\
\hline \frac{1}{0} \\
\hline 0
\end{array}\right],\left[T\left(\mathbf{u}_{2}\right)\right]_{B^{\prime}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
& \text { with respect to } B \text { and } B^{\prime} \text { is }
\end{aligned}
$$

$$
x=C_{1} v_{1}+C_{2} v_{2}+C_{3} v_{3}
$$

$$
x^{2}=C_{1} V_{1}+C_{2} V_{2}+C_{3} V
$$

Thus, the matrix for T with respect to B and B^{\prime} is

$$
\left.A=\underline{[T]_{B^{\prime}, B}}=\left[\left[T\left(\mathbf{u}_{1}\right)\right]_{B^{\prime}} \mid\left[T\left(\mathbf{u}_{2}\right)\right]_{B^{\prime}}\right]=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)
$$

EXAMPLE 2 TheThree-Step Procedure

Let $T: P_{1} \rightarrow P_{2}$ be the linear transformation in Example 1, and use the three-step procedure described in the following figure to perform the computation

$$
u_{1} u_{2}
$$

$$
\begin{aligned}
& =a+b x \text { relative to the basis } B=\{1, x\} \text { is } \\
& {[\mathbf{x}]_{B}=\left[\begin{array}{l}
a . \\
b
\end{array}\right] v} \\
& C=b x=C(1)+C_{2}(x) \\
& C_{1}=a, C_{2}=b
\end{aligned}
$$

Although Example 2 is simple, the procedure that it illustrates is applicable to problems of great complexity.

Step 2. Multiplying $[\mathbf{x}]_{B}$ by the matrix $[T]_{B^{\prime}, B}$ found in Example 1 we

$$
[T]_{B^{\prime}, B}[\mathbf{x}]_{B}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
a_{2} \\
b_{1}
\end{array}=[T(\mathbf{x})]_{B^{\prime}}\right.
$$

Step 3. Reconstructing $T(\mathbf{x})=T(a+b x)$ from $[T(\mathbf{x})]_{B^{\prime}}$ we obtain

$$
T(a+b x)=0+a x+b x^{2}=a x+b x^{2}
$$

$$
x_{0}+a_{1} x+a_{2} x^{2}
$$

$$
a x+b x^{2}
$$

EXAMPLE 3 Matrix for a Linear Transformation

Let $T: \widehat{R^{2}} \rightarrow R^{3}$ en the linear transformation defined by

Find the matrix for the transformation T with respect to the bases $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ for R^{2} and $B^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for R^{3}, where

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
5 \\
2
\end{array}\right] ; \quad \mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

$$
t<\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

$$
<
$$

$c_{1}-c_{2}=1 \Rightarrow c_{1}=1+c_{2}$
$2 C_{2}+C_{3}=-2 \Rightarrow C_{3}=-2-2 C_{2}$ so
Thus,
$\xrightarrow[{\left[T\left(\mathbf{u}_{1}\right)\right]_{B^{\prime}}=\left[\begin{array}{c}T\left(\mathbf{u}_{1}\right)=\mathbf{v}_{1}-2 \mathbf{v}_{3}, \\ 0 \\ -2 \\ -2 \\ -1\end{array}\right],\left[T\left(\mathbf{u}_{2}\right)\right]_{B}=\left[\begin{array}{r}3 \\ 1 \\ -1\end{array}\right.}]]{l}$

$$
[T]_{B^{\prime}, B}=\left[\left[T\left(\mathbf{u}_{1}\right)\right]_{B^{\prime}} \mid\left[T\left(\mathbf{u}_{2}\right)\right]_{B^{\prime}}\right]=\left[\begin{array}{rr}
1 & 3 \\
0 & 1 \\
-2 & -1
\end{array}\right]
$$

$-C_{1}+2 C_{2}+2 C_{3}=-5$

$$
-1-C_{2}+2 C_{2}+2\left(-2-2 C_{2}\right)=-5
$$

Remark Example 3 illustrates that a fixed linear transformation generally has multiple represenrations, each depending on the bases chosen. In this case the matrices

$$
[T]=\left[\begin{array}{rr}
0 & 1 \\
-5 & 13 \\
-7 & 16
\end{array}\right] \text { and }[T]_{B^{\prime}, B}=\left[\begin{array}{rr}
1 & 3 \\
0 & 1 \\
-2 & -1
\end{array}\right]
$$

both represent the transformation T, the first relative to the standard bases for R^{2} and R^{3}, the second relative to the bases B and B^{\prime} stated in the example.

$$
\begin{aligned}
& \text { Expressing these vectors as linear combinations of } \mathbf{v}_{1}, \mathbf{v}_{2} \text {, and } \mathbf{v}_{3} \text {, we obtain (verify) }
\end{aligned}
$$

Matrices of Linear
Operators

Phrased informally, Formulas (7) and (8) state that the matrix for T, when multiplied by the coordinate vector for \mathbf{x}, produces the coordinate vector for $T(\mathbf{x})$.

In the special case where $V=W$ (so that $T: V \rightarrow V$ is a linear operator), it is usual to take $B=B^{\prime}$ when constructing a matrix for T. In this case the resulting matrix is called the matrix for \boldsymbol{T} relative to the basis \boldsymbol{B} and is usually denoted by $[T]_{B}$ rather than $[T]_{B, B}$. If $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$, then Formulas (4) and (5) become

$$
\begin{equation*}
[T]_{B}=\left[\left[T\left(\mathbf{u}_{1}\right)\right]_{B}\left|\left[T\left(\mathbf{u}_{2}\right)\right]_{B}\right| \cdots \mid\left[T\left(\mathbf{u}_{n}\right)\right]_{B}\right] \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
[T]_{B}[\mathbf{x}]_{B}=[T(\mathbf{x})]_{B} \tag{8}
\end{equation*}
$$

In the special case where $T: R^{n} \rightarrow R^{n}$ is a matrix operator, say multiplication by A, and B is the standard basis for R^{n}, then Formula (7) simplifies to

$$
\begin{equation*}
[T]_{B}=A \tag{9}
\end{equation*}
$$

Matrices of Identity
Operators
Recall that the identity operator $I: V \rightarrow V$ maps every vector in V into itself, that is, $I(\mathbf{x})=\mathbf{x}$ for every vector \mathbf{x} in V. The following example shows that if V is n-dimensional,
then the matrix for I relative to any basis B for V is the $n \times n$ identity matrix.

EXAMPLE 4 Matrices of Identity Operators

If $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ is a basis for a finite-dimensional vector space V, and if $I: V \rightarrow V$ is the identity operator on V, then

$$
I\left(\mathbf{u}_{1}\right)=\mathbf{u}_{1}, \quad I\left(\mathbf{u}_{2}\right)=\mathbf{u}_{2}, \ldots, \quad I\left(\mathbf{u}_{n}\right)=\mathbf{u}_{n}
$$

Therefore,

$$
\left.[I]_{B}=\underset{\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]}{\left[\begin{array}{c}
{\left[\left(\mathbf{u}_{1}\right)\right]_{B}}
\end{array}\right.} \begin{array}{c}
{\left[I\left(\mathbf{u}_{2}\right)\right]_{B}}
\end{array}\right]=I
$$

EXAMPLE 5 Linear Operator on $\mathbf{P}_{\mathbf{2}}$

Let $T: P_{2} \rightarrow P_{2}$ be the linear operator defined by

$$
T(p(x))=p(3 x-5)
$$

$$
\text { that is, } T\left(c_{0}+c_{1} x+c_{2} x^{2}\right)=c_{0}+c_{1}(3 x-5)+c_{2}(3 x-5)^{2}
$$

(a) Find $[T]_{B}$ relative to the basis $B=\left\{1, x, x^{2}\right\}$.

Use the indirect procedure to compute $T\left(1+2 x+3 x^{2}\right)$.
Check the result in (b) by computing $T\left(1 \overline{+2 x+3 x^{2}}\right)$ directly.
Solution (a) From the formula for T,

$$
\begin{aligned}
& \begin{array}{r}
T(1)=1, T(x)=3 x-5, \quad T\left(x^{2}\right)=(3 x-5)^{2}=9 x^{2}-30 x-25 \\
\text { so }=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \cup[T(x)]_{B}=\left[\begin{array}{r}
-5 \\
3 \\
0
\end{array}\right] \quad\left[T\left(x^{2}\right)\right]_{B}=\left[\begin{array}{r}
25 \\
-30 \\
9
\end{array}\right]
\end{array} \\
& \begin{array}{lr}
1=C_{1}(1)+C_{2}(x)+C_{3}\left(x^{2}\right) & 3 x-5=C_{1}(p)+C_{2} x+C_{3} x^{2} \\
C_{1}=1, C_{2}-C_{3}=0 & C_{1}=-5 \quad C_{2}=3, C_{3}=.
\end{array}
\end{aligned}
$$

Thus,

Solution (b) $\mathbf{p}=1-2 x+3 y^{2}$ relative to the basis $B=\left(1, x x^{2}\right)$

$$
[\mathbf{p}]_{B}=\begin{gathered}
17 \\
2 \\
3 \\
3 \\
\\
\hline
\end{gathered}
$$

Step 2. Multiplying $[\mathbf{p}]_{B}$ by the matrix $[T]_{B}$ found in part (a) we obtain

$$
[T]_{B}[\mathbf{p}]_{B}=\left[\begin{array}{rrr}
1 & -5 & 25 \\
0 & 3 & -30 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
667 \\
-84- \\
27^{7}
\end{array}=[T(\mathbf{p})]_{B} \quad a_{0}+a_{1} x+a_{2} x^{2}\right.
$$

Step 3. Reconstructing $T(\mathbf{p})=T\left(1+2 x+3 x^{2}\right)$ from $[T(\mathbf{p})]_{B}$ we obtain

$$
T\left(1+2 x+3 x^{2}\right)=66-84 x+27 x^{2}
$$

Solution (c) By direct computation,

$$
\begin{aligned}
T\left(1+2 x+3 x^{2}\right) & =1+2(3 x-5)+3(3 x-5)^{2} \\
& =1+6 x-10+27 x^{2}-90 x+75 \\
& =66-84 x+27 x^{2}
\end{aligned}
$$

which agrees with the result in (b).

Matrices of Compositions and Inverse Transformations

We will conclude this section by mentioning two theorems without proof that are generalizations of Formulas (4) and (9) of Section 4.10.

THEOREM 8.4.4 If $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ are linear ansformations, and if B, $B^{\prime \prime}$, and B^{\prime} are bases for U, V, and respectively, then

$$
\begin{equation*}
\left[T_{2} \circ T_{1}\right]_{B^{\prime}, B}=\left[T_{2}\right]_{B^{\prime}, B^{\prime \prime}}\left[T_{1}\right]_{B^{\prime \prime}, B} \tag{10}
\end{equation*}
$$

THEOREM 8.4.2 If $T: V \rightarrow V$ is a linear operator, and if B is a basis for V, then the following are equivalent.
(a) T is one-to-one.
(b) $[T]_{B}$ is invertible.

Moreover, when these equivalent conditions hold,

$$
\begin{equation*}
\left[T^{-1}\right]_{B}=[T]_{B}^{-1} \tag{11}
\end{equation*}
$$

Rentrk In (10), observe how the interior subscript $B^{\prime \prime}$ (the basis for the intermediate space V) seems to "cancel out," leaving only the bases for the domain and image space of the composition as subscripts (Eigure 8.4.5). This "cancellation" of interior subscripts suggests the following extension of Formut (10) to compositions of three linear toansformations (Figure 8.4.6):
$\left[T_{3} \circ T_{2} \circ T_{1}\right]_{B, B}=\left[T_{3}\right]_{B^{\prime}, B^{\prime \prime}}\left[T_{2}\right]_{B^{\prime \prime \prime}, B^{\prime \prime}}\left[T_{1}\right]_{B^{\prime \prime}, B}$

A Figure 8.4.6

The following example illustrates Theorem 8.4.1.

EXAMPLE 6 Composition
Let $T_{1}: P_{1} \rightarrow P_{2}$ be the linear transformation defined by

$$
T_{1}(p(x))=x p(x)
$$

and let $T_{2}: P_{2} \rightarrow P_{2}$ be the linear operator defined by

$$
\begin{align*}
& \qquad T_{2}(p(x))=p(3 x-5) \\
& \text { Then the composition }\left(T_{2} \circ T_{1}\right): P_{1} p P_{2} \text { is given by } \\
& \qquad \begin{array}{r}
\left(T_{2} \circ T_{1}\right)(p(x))=T_{2}\left(T_{1}(p(x))\right)=T_{2}(x p(x))=(3 x-5) p(3 x-5) \\
\text { Thus, if } p(x)=c_{0}+c_{1} x \text {, then }
\end{array} \quad \begin{array}{r}
\left(T_{2} \circ T_{1}\right)\left(c_{0}\left(c_{1} x\right)=(3 x-5)\left(c_{0}+c_{1}(3 x-5)\right)\right. \\
=c_{0}(3 x-5)+c_{1}(3 x-5)^{2}
\end{array}
\end{align*}
$$

In this example, P_{1} plays the role of U in Theorem 8.4.1, and P_{2} plays the roles of both V and W; thus we can take $B^{\prime}=B^{\prime \prime}$ in (10) so that the formula simplifies to

$$
\begin{equation*}
\left[T_{2} \circ T_{1}\right]_{B^{\prime}, B}=\left[T_{2}\right]_{B^{\prime}}\left[T_{1}\right]_{B^{\prime}, B} \tag{14}
\end{equation*}
$$

Let us choose $B=\{1, x\}$ to be the basis for P_{1} and choose $B^{\prime}=\left\{1, x, x^{2}\right\}$ to be the basis for P_{2}. We showed in. Examples 1 and 5 that

As a check, we will calculate $\left[T_{2} \circ T_{1} B_{B^{\prime}, B}\right.$ directly from Formula (4). Since $B=\{1, x\}$,

$$
\begin{align*}
& \text { it follows from Formula (4) with } \mathbf{u}_{1}=1 \text { and } \mathbf{u}_{2}=x \text { that } \\
& \begin{array}{l}
{\left[T_{2} \circ T_{1}\right]_{B^{\prime}, B}=\left[\left[\left(T_{2} \text { of } T_{1}\right)(1)\right]_{B^{\prime}} \mid\left[\left(T_{2} \circ T_{1}\right)(x)\right]_{B^{\prime}}\right]} \\
\text { Using (13) yields } \\
\left(T_{2} \circ T_{1}\right)(1)=3 x-5 \text { and }\left(T_{2} \circ \mathbf{u}^{2}\right)(x)=(3 x-5)^{2}=9 x^{2}-30 x+25
\end{array} \tag{16}\\
& \text { From this and the fact that } B^{\prime}=\left\{1, x, x^{2}\right\} \text {, if follows that } \\
& \left.\left[\left(T_{2} \circ T_{1}\right)(1)\right]_{B^{\prime}}=\left[\begin{array}{r}
-5 \\
3 \\
0
\end{array}\right] \text { and } \lambda\left(T_{2} \circ T_{1}\right)(x)\right]_{B^{\prime}}=\left[\begin{array}{r}
25 \\
-30 \\
9
\end{array}\right] \\
& \text { Substituting in (16) yields } \\
& {\left[T_{2} \circ T_{1}\right]_{B^{\prime}, B}=\left[\begin{array}{rr}
-5 & 25 \\
3 & -30 \\
0 & 9
\end{array}\right]} \\
& \text { which agrees with (15). }
\end{align*}
$$

Exercise Set 8.4

1. Let $T: P_{2} \rightarrow P_{3}$ be the linear transformation defined by $T(p(x))=x p(x)$.
(a) Find the matrix for T relative to the standard bases

$$
B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\} \quad \text { and } \quad B^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}
$$

where

$$
\begin{array}{ll}
\mathbf{u}_{1}=1, & \mathbf{u}_{2}=x, \quad \mathbf{u}_{3}=x^{2} \\
\mathbf{v}_{1}=1, & \mathbf{v}_{2}=x, \quad \mathbf{v}_{3}=x^{2}, \quad \mathbf{v}_{4}=x^{3}
\end{array}
$$

(b) Verify that the matrix $[T]_{B^{\prime}, B}$ obtained in part (a) satisfies Formula (5) for every vector $\mathbf{x}=c_{0}+c_{1} x+c_{2} x^{2}$ in P_{2}.
2. Let $T: P_{2} \rightarrow P_{1}$ be the linear transformation defined by

$$
T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(a_{0}+a_{1}\right)-\left(2 a_{1}+3 a_{2}\right) x
$$

(a) Find the matrix for T relative to the standard bases $B=\left\{1, x, x^{2}\right\}$ and $B^{\prime}=\{1, x\}$ for P_{2} and P_{1}.
(b) Verify that the matrix $[T]_{B^{\prime}, B}$ obtained in part (a) satisfies Formula (5) for every vector $\mathbf{x}=c_{0}+c_{1} x+c_{2} x^{2}$ in P_{2}.
3. Let $T: P_{2} \rightarrow P_{2}$ be the linear operator defined by

$$
T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{0}+a_{1}(x-1)+a_{2}(x-1)^{2}
$$

(a) Find the matrix for T relative to the standard basis $B=\left\{1, x, x^{2}\right\}$ for P_{2}.
(b) Verify that the matrix $[T]_{B}$ obtained in part (a) satisfies Formula (8) for every vector $\mathbf{x}=a_{0}+a_{1} x+a_{2} x^{2}$ in P_{2}.
4. Let $T: R^{2} \rightarrow R^{2}$ be the linear operator defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
x_{1}-x_{2} \\
x_{1}+x_{2}
\end{array}\right]
$$

and let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be the basis for which

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{u}_{2}=\left[\begin{array}{r}
-1 \\
0
\end{array}\right]
$$

(a) Find $[T]_{B}$.
(b) Verify that Formula (8) holds for every vector \mathbf{x} in R^{2}.
5. Let $T: R^{2} \rightarrow R^{3}$ be defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
-x_{1} \\
0
\end{array}\right]
$$

(a) Find the matrix $[T]_{B^{\prime}, B}$ relative to the bases $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ and $B^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where

$$
\begin{aligned}
& \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}
-2 \\
4
\end{array}\right] \\
& \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

(b) Verify that Formula (5) holds for every vector in R^{2}.
6. Let $T: R^{3} \rightarrow R^{3}$ be the linear operator defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{2}-x_{1}, x_{1}-x_{3}\right)
$$

(a) Find the matrix for T with respect to the basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where

$$
\mathbf{v}_{1}=(1,0,1), \quad \mathbf{v}_{2}=(0,1,1), \quad \mathbf{v}_{3}=(1,1,0)
$$

(b) Verify that Formula (8) holds for every vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ in R^{3}.
(c) Is T one-to-one? If so, find the matrix of T^{-1} with respect to the basis B.
7. Let $T: P_{2} \rightarrow P_{2}$ be the linear operator defined by $T(p(x))=p(2 x+1)$, that is,

$$
T\left(c_{0}+c_{1} x+c_{2} x^{2}\right)=c_{0}+c_{1}(2 x+1)+c_{2}(2 x+1)^{2}
$$

(a) Find $[T]_{B}$ with respect to the basis $B=\left\{1, x, x^{2}\right\}$.
(b) Use the three-step procedure illustrated in Example 2 to compute $T\left(2-3 x+4 x^{2}\right)$.
(c) Check the result obtained in part (b) by computing $T\left(2-3 x+4 x^{2}\right)$ directly.
8. Let $T: P_{2} \rightarrow P_{3}$ be the linear transformation defined by $T(p(x))=x p(x-3)$, that is,

$$
T\left(c_{0}+c_{1} x+c_{2} x^{2}\right)=x\left(c_{0}+c_{1}(x-3)+c_{2}(x-3)^{2}\right)
$$

(a) Find $[T]_{B^{\prime}, B}$ relative to the bases $B=\left\{1, x, x^{2}\right\}$ and $B^{\prime}=\left\{1, x, x^{2}, x^{3}\right\}$.
(b) Use the three-step procedure illustrated in Example 2 to compute $T\left(1+x-x^{2}\right)$.
(c) Check the result obtained in part (b) by computing $T\left(1+x-x^{2}\right)$ directly.
9. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}-1 \\ 4\end{array}\right]$, and let $A=\left[\begin{array}{rr}1 & 3 \\ -2 & 5\end{array}\right]$ be the matrix for $T: R^{2} \rightarrow R^{2}$ relative to the basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
(a) Find $\left[T\left(\mathbf{v}_{1}\right)\right]_{B}$ and $\left[T\left(\mathbf{v}_{2}\right)\right]_{B}$.
(b) Find $T\left(\mathbf{v}_{1}\right)$ and $T\left(\mathbf{v}_{2}\right)$.
(c) Find a formula for $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)$.
(d) Use the formula obtained in (c) to compute $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.
10. Let $A=\left[\begin{array}{rrrr}3 & -2 & 1 & 0 \\ 1 & 6 & 2 & 1 \\ -3 & 0 & 7 & 1\end{array}\right]$ be the matrix for
$T: R^{4} \rightarrow R^{3}$ relative to the bases $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ and
$B^{\prime}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$, where

$$
\begin{aligned}
& \mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
2 \\
1 \\
-1 \\
-1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
1 \\
4 \\
-1 \\
2
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
6 \\
9 \\
4 \\
2
\end{array}\right] \\
& \mathbf{w}_{1}=\left[\begin{array}{l}
0 \\
8 \\
8
\end{array}\right], \quad \mathbf{w}_{2}=\left[\begin{array}{r}
-7 \\
8 \\
1
\end{array}\right], \quad \mathbf{w}_{3}=\left[\begin{array}{r}
-6 \\
9 \\
1
\end{array}\right]
\end{aligned}
$$

(a) Find $\left[T\left(\mathbf{v}_{1}\right)\right]_{B^{\prime}},\left[T\left(\mathbf{v}_{2}\right)\right]_{B^{\prime}},\left[T\left(\mathbf{v}_{3}\right)\right]_{B^{\prime}}$, and $\left[T\left(\mathbf{v}_{4}\right)\right]_{B^{\prime}}$.
(b) Find $T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)$, and $T\left(\mathbf{v}_{4}\right)$.
(c) Find a formula for $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]\right)$.
(d) Use the formula obtained in (c) to compute $T\left(\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 0\end{array}\right]\right)$.
11. Let $A=\left[\begin{array}{rrr}1 & 3 & -1 \\ 2 & 0 & 5 \\ 6 & -2 & 4\end{array}\right]$ be the matrix for $T: P_{2} \rightarrow P_{2}$ with respect to the basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where $\mathbf{v}_{1}=3 x+3 x^{2}$, $\mathbf{v}_{2}=-1+3 x+2 x^{2}, \mathbf{v}_{3}=3+7 x+2 x^{2}$.
(a) Find $\left[T\left(\mathbf{v}_{1}\right)\right]_{B},\left[T\left(\mathbf{v}_{2}\right)\right]_{B}$, and $\left[T\left(\mathbf{v}_{3}\right)\right]_{B}$.
(b) Find $T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right)$, and $T\left(\mathbf{v}_{3}\right)$.
(c) Find a formula for $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)$.
(d) Use the formula obtained in (c) to compute $T\left(1+x^{2}\right)$.
12. Let $T_{1}: P_{1} \rightarrow P_{2}$ be the linear transformation defined by

$$
T_{1}(p(x))=x p(x)
$$

and let $T_{2}: P_{2} \rightarrow P_{2}$ be the linear operator defined by

$$
T_{2}(p(x))=p(2 x+1)
$$

Let $B=\{1, x\}$ and $B^{\prime}=\left\{1, x, x^{2}\right\}$ be the standard bases for P_{1} and P_{2}.
(a) Find $\left[T_{2} \circ T_{1}\right]_{B^{\prime}, B},\left[T_{2}\right]_{B^{\prime}}$, and $\left[T_{1}\right]_{B^{\prime}, B}$.
(b) State a formula relating the matrices in part (a).
(c) Verify that the matrices in part (a) satisfy the formula you stated in part (b).
13. Let $T_{1}: P_{1} \rightarrow P_{2}$ be the linear transformation defined by

$$
T_{1}\left(c_{0}+c_{1} x\right)=2 c_{0}-3 c_{1} x
$$

and let $T_{2}: P_{2} \rightarrow P_{3}$ be the linear transformation defined by

$$
T_{2}\left(c_{0}+c_{1} x+c_{2} x^{2}\right)=3 c_{0} x+3 c_{1} x^{2}+3 c_{2} x^{3}
$$

Let $B=\{1, x\}, B^{\prime \prime}=\left\{1, x, x^{2}\right\}$, and $B^{\prime}=\left\{1, x, x^{2}, x^{3}\right\}$.
(a) Find $\left[T_{2} \circ T_{1}\right]_{B^{\prime}, B},\left[T_{2}\right]_{B^{\prime}, B^{\prime \prime}}$, and $\left[T_{1}\right]_{B^{\prime \prime}, B}$.
(b) State a formula relating the matrices in part (a).
(c) Verify that the matrices in part (a) satisfy the formula you stated in part (b).
14. Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ be a basis for a vector space V. Find the matrix with respect to B for the linear operator $T: V \rightarrow V$ defined by $T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{2}, T\left(\mathbf{v}_{2}\right)=\mathbf{v}_{3}, T\left(\mathbf{v}_{3}\right)=\mathbf{v}_{4}, T\left(\mathbf{v}_{4}\right)=\mathbf{v}_{1}$.
15. Let $T: P_{2} \rightarrow M_{22}$ be the linear transformation defined by

$$
T(\mathbf{p})=\left[\begin{array}{cc}
p(0) & p(1) \\
p(-1) & p(0)
\end{array}\right]
$$

let B be the standard basis for M_{22}, and let $B^{\prime}=\left\{1, x, x^{2}\right\}$, $B^{\prime \prime}=\left\{1,1+x, 1+x^{2}\right\}$ be bases for P_{2}.
(a) Find $[T]_{B, B^{\prime}}$ and $[T]_{B, B^{\prime \prime}}$.
(b) For the matrices obtained in part (a), compute $T\left(2+2 x+x^{2}\right)$ using the three-step procedure illustrated in Example 2.
(c) Check the results obtained in part (b) by computing $T\left(2+2 x+x^{2}\right)$ directly.
16. Let $T: M_{22} \rightarrow R^{2}$ be the linear transformation given by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{c}
a+b+c \\
d
\end{array}\right]
$$

and let B be the standard basis for M_{22}, B^{\prime} the standard basis for R^{2}, and

$$
B^{\prime \prime}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
0
\end{array}\right]\right\}
$$

(a) Find $[T]_{B^{\prime}, B}$ and $[T]_{B^{\prime \prime}, B}$.
(b) Compute $T\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right)$ using the three-step procedure that was illustrated in Example 2 for both matrices found in part (a).
(c) Check the results obtained in part (b) by computing $T\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right)$ directly.
17. (Calculus required) Let $D: P_{2} \rightarrow P_{2}$ be the differentiation operator $D(\mathbf{p})=p^{\prime}(x)$.
(a) Find the matrix for D relative to the basis $B=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ for P_{2} in which $\mathbf{p}_{1}=1, \mathbf{p}_{2}=x, \mathbf{p}_{3}=x^{2}$.
(b) Use the matrix in part (a) to compute $D\left(6-6 x+24 x^{2}\right)$.
18. (Calculus required) Let $D: P_{2} \rightarrow P_{2}$ be the differentiation operator $D(\mathbf{p})=p^{\prime}(x)$.
(a) Find the matrix for D relative to the basis $B=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ for P_{2} in which $\mathbf{p}_{1}=2, \mathbf{p}_{2}=2-3 x, \mathbf{p}_{3}=2-3 x+8 x^{2}$.
(b) Use the matrix in part (a) to compute $D\left(6-6 x+24 x^{2}\right)$.
19. (Calculus required) Let V be the vector space of real-valued functions defined on the interval $(-\infty, \infty)$, and let $D: V \rightarrow V$ be the differentiation operator.
(a) Find the matrix for D relative to the basis $B=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ for V in which $\mathbf{f}_{1}=1, \mathbf{f}_{2}=\sin x, \mathbf{f}_{3}=\cos x$

