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(a) The vector spaces R2 and P2 are isomorphic.

(b) If the kernel of a linear transformation T : P3 →P3 is {0}, then
T is an isomorphism.

(c) Every linear transformation fromM33 toP9 is an isomorphism.

(d) There is a subspace of M23 that is isomorphic to R4.

(e) Isomorphic finite-dimensional vector spaces must have the
same number of basis vectors.

(f ) Rn is isomorphic to a subspace of Rn+1.

8.4 Matrices for General LinearTransformations
In this section we will show that a general linear transformation from any n-dimensional
vector space V to any m-dimensional vector space W can be performed using an
appropriate matrix transformation from Rn to Rm. This idea is used in computer
computations since computers are well suited for performing matrix computations.

Matrices of Linear
Transformations

Suppose that V is an n-dimensional vector space, that W is an m-dimensional vector
space, and that T : V →W is a linear transformation. Suppose further that B is a basis
for V, that B ′ is a basis for W , and that for each vector x in V, the coordinate matrices
for x and T(x) are [x]B and [T(x)]B ′ , respectively (Figure 8.4.1).

Figure 8.4.1
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It will be our goal to find an m × n matrix A such that multiplication by A maps
the vector [x]B into the vector [T(x)]B ′ for each x in V (Figure 8.4.2a). If we can do so,
then, as illustrated in Figure 8.4.2b, we will be able to execute the linear transformation
T by using matrix multiplication and the following indirect procedure:

Finding T(x) Indirectly

Step 1. Compute the coordinate vector [x]B .

Step 2. Multiply [x]B on the left by A to produce [T(x)]B ′ .

Step 3. Reconstruct T(x) from its coordinate vector [T(x)]B ′ .

Figure 8.4.2
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The key to executing this plan is to find an m × n matrix A with the property that

A[x]B = [T(x)]B ′ (1)

For this purpose, let B = {u1, u2, . . . , un} be a basis for the n-dimensional space V and
B ′ = {v1, v2, . . . , vm} a basis for the m-dimensional space W . Since Equation (1) must
hold for all vectors in V, it must hold, in particular, for the basis vectors in B; that is,

A[u1]B = [T(u1)]B ′ , A[u2]B = [T(u2)]B ′ , . . . , A[un]B = [T(un)]B ′ (2)

But

[u1]B =





1
0
0
...

0




, [u2]B =





0
1
0
...

0




, . . . , [un]B =





0
0
0
...

1





so

A[u1]B =





a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn









1
0
0
...
0




=





a11

a21

...
am1





A[u2]B =





a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn









0
1
0
...
0




=





a12

a22
...

am2





...
...

...

A[un]B =





a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn









0
0
0
...
1




=





a1n

a2n

...
amn





Substituting these results into (2) yields




a11

a21
...

am1




= [T(u1)]B ′ ,





a12

a22
...

am2




= [T(u2)]B ′ , . . . ,





a1n

a2n

...

amn




= [T(un)]B ′

which shows that the successive columns of A are the coordinate vectors of

T(u1), T(u2), . . . , T(un)

with respect to the basis B ′. Thus, the matrix A that completes the link in Figure 8.4.2a is

A =
[
[T(u1)]B ′ | [T(u2)]B ′ | · · · | [T(un)]B ′

]
(3)

We will call this the matrix for T relative to the bases B and B′ and will denote it by the
symbol [T ]B ′,B . Using this notation, Formula (3) can be written as

[T ]B ′,B =
[
[T(u1)]B ′ | [T(u2)]B ′ | · · · | [T(un)]B ′

]
(4)

↑ iii
A

Vie Basis
of V
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and from (1), this matrix has the property

[T ]B ′,B[x]B = [T(x)]B ′ (5)

We leave it as an exercise to show that in the special case where TC : Rn →Rm is multi-
plication by C, and where B and B ′ are the standard bases for Rn and Rm, respectively,
then

[TC]B ′,B = C (6)

Remark Observe that in the notation [T ]B ′,B the right subscript is a basis for the domain of T ,
and the left subscript is a basis for the image space of T (Figure 8.4.3). Moreover, observe how
the subscript B seems to “cancel out” in Formula (5) (Figure 8.4.4).

[T ]B´,B

Basis for the
image space

Basis for the
domain

Figure 8.4.3

[T ]B´,B[x]B = [T(x)]B´

Cancellation

Figure 8.4.4

EXAMPLE 1 Matrix for a LinearTransformation

Let T : P1 →P2 be the linear transformation defined by

T(p(x)) = xp(x)

Find the matrix for T with respect to the standard bases

B = {u1, u2} and B ′ = {v1, v2, v3}
where

u1 = 1, u2 = x; v1 = 1, v2 = x, v3 = x2

Solution From the given formula for T we obtain

T(u1) = T(1) = (x)(1) = x

T(u2) = T(x) = (x)(x) = x2

By inspection, the coordinate vectors for T(u1) and T(u2) relative to B ′ are

[T(u1)]B ′ =




0
1
0



, [T(u2)]B ′ =




0
0
1





Thus, the matrix for T with respect to B and B ′ is

[T ]B ′,B =
[
[T(u1)]B ′ | [T(u2)]B ′

]
=




0 0
1 0
0 1





EXAMPLE 2 TheThree-Step Procedure

Let T : P1 →P2 be the linear transformation in Example 1, and use the three-step pro-
cedure described in the following figure to perform the computation

T(a + bx) = x(a + bx) = ax + bx2

x
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Solution

Step 1. The coordinate matrix for x = a + bx relative to the basis B = {1, x} is

[x]B =
[
a

b

]

Step 2. Multiplying [x]B by the matrix [T ]B ′,B found in Example 1 we obtain
Although Example 2 is sim-
ple, the procedure that it illus-
trates is applicable to problems
of great complexity.

[T ]B ′,B[x]B =




0 0
1 0
0 1




[
a

b

]
=




0
a

b



 = [T(x)]B ′

Step 3. Reconstructing T(x) = T(a + bx) from [T(x)]B ′ we obtain

T(a + bx) = 0 + ax + bx2 = ax + bx2

EXAMPLE 3 Matrix for a LinearTransformation

Let T : R2 →R3 be the linear transformation defined by

T

([
x1

x2

])
=




x2

−5x1 + 13x2

−7x1 + 16x2



 =




0 1

−5 13
−7 16




[
x1

x2

]

Find the matrix for the transformation T with respect to the bases B = {u1, u2} for R2

and B ′ = {v1, v2, v3} for R3, where

u1 =
[

3
1

]

, u2 =
[

5
2

]

; v1 =




1
0

−1



, v2 =




−1

2
2



, v3 =




0
1
2





Solution From the formula for T ,

T(u1) =




1

−2
−5



, T(u2) =




2
1

−3





Expressing these vectors as linear combinations of v1, v2, and v3, we obtain (verify)

T(u1) = v1 − 2v3, T(u2) = 3v1 + v2 − v3

Thus,

[T(u1)]B ′ =




1
0

−2



, [T(u2)]B ′ =




3
1

−1





so

[T ]B ′,B =
[
[T(u1)]B ′ | [T(u2)]B ′

]
=




1 3
0 1

−2 −1





Remark Example 3 illustrates that a fixed linear transformation generally has multiple represen-
tations, each depending on the bases chosen. In this case the matrices

[T ] =




0 1

−5 13
−7 16



 and [T ]B ′,B =




1 3
0 1

−2 −1





both represent the transformation T , the first relative to the standard bases for R2 and R3, the
second relative to the bases B and B ′ stated in the example.
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Matrices of Linear
Operators

In the special case where V = W (so that T : V →V is a linear operator), it is usual to
take B = B ′ when constructing a matrix for T . In this case the resulting matrix is called
the matrix for T relative to the basis B and is usually denoted by [T ]B rather than [T ]B,B .
If B = {u1, u2, . . . , un}, then Formulas (4) and (5) become

Phrased informally, Formulas
(7) and (8) state that the ma-
trix for T , when multiplied by
the coordinate vector forx, pro-
duces the coordinate vector for
T(x).

[T ]B =
[
[T(u1)]B | [T(u2)]B | · · · | [T(un)]B

]
(7)

[T ]B[x]B = [T(x)]B (8)

In the special case where T : Rn →Rn is a matrix operator, say multiplication by A, and
B is the standard basis for Rn, then Formula (7) simplifies to

[T ]B = A (9)

Matrices of Identity
Operators

Recall that the identity operator I : V →V maps every vector in V into itself, that is,
I (x) = x for every vector x in V. The following example shows that if V is n-dimensional,
then the matrix for I relative to any basis B for V is the n × n identity matrix.

EXAMPLE 4 Matrices of Identity Operators

If B = {u1, u2, . . . , un} is a basis for a finite-dimensional vector space V, and if I : V →V

is the identity operator on V, then

I (u1) = u1, I (u2) = u2, . . . , I (un) = un

Therefore,

[I ]B =





1 0 · · · 0
0 1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 1




= I

!

[I (u1)]B

!

[I (u2)]B

!

[I (un)]B

EXAMPLE 5 Linear Operator on P2

Let T : P2 →P2 be the linear operator defined by

T(p(x)) = p(3x − 5)

that is, T(c0 + c1x + c2x
2) = c0 + c1(3x − 5) + c2(3x − 5)2.

(a) Find [T ]B relative to the basis B = {1, x, x2}.
(b) Use the indirect procedure to compute T(1 + 2x + 3x2).

(c) Check the result in (b) by computing T(1 + 2x + 3x2) directly.

Solution (a) From the formula for T ,

T(1) = 1, T(x) = 3x − 5, T(x2) = (3x − 5)2 = 9x2 − 30x + 25

so

[T(1)]B =




1
0
0



, [T(x)]B =




−5

3
0



, [T(x2)]B =




25

−30
9





:V-
V

3 I
T(x) =3x- S

T(2x-1)
=2(3x-5)-1
=6x-10 - 1

6x-Il- =

1 =P(1) +[(n) +((n)
4,=1, u=R, U,

=x2

3x-5 =((1) +((n)
+((x)

-
8_Q ↳-

--

qn
2
- 30x +2s
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Thus,

[T ]B =




1 −5 25
0 3 −30
0 0 9





Solution (b)

Step 1. The coordinate matrix for p = 1 + 2x + 3x2 relative to the basis B = {1, x, x2}
is

[p]B =




1
2
3





Step 2. Multiplying [p]B by the matrix [T ]B found in part (a) we obtain

[T ]B[p]B =




1 −5 25
0 3 −30
0 0 9








1
2
3



 =




66

−84
27



 = [T(p)]B

Step 3. Reconstructing T(p) = T(1 + 2x + 3x2) from [T(p)]B we obtain

T(1 + 2x + 3x2) = 66 − 84x + 27x2

Solution (c) By direct computation,

T(1 + 2x + 3x2) = 1 + 2(3x − 5) + 3(3x − 5)2

= 1 + 6x − 10 + 27x2 − 90x + 75

= 66 − 84x + 27x2

which agrees with the result in (b).

Matrices of Compositions
and Inverse

Transformations

We will conclude this section by mentioning two theorems without proof that are gen-
eralizations of Formulas (4) and (9) of Section 4.10.

THEOREM 8.4.1 If T1: U →V and T2: V →W are linear transformations, and if B,

B ′′, and B ′ are bases for U, V, and W, respectively, then

[T2 ◦ T1]B ′,B = [T2]B ′,B ′′ [T1]B ′′,B (10)

THEOREM 8.4.2 If T : V →V is a linear operator, and if B is a basis for V, then the
following are equivalent.

(a) T is one-to-one.

(b) [T ]B is invertible.

Moreover, when these equivalent conditions hold,

[T −1]B = [T ]−1
B (11)

Remark In (10), observe how the interior subscript B ′′ (the basis for the intermediate space V )
seems to “cancel out,” leaving only the bases for the domain and image space of the composition
as subscripts (Figure 8.4.5). This “cancellation” of interior subscripts suggests the following
extension of Formula (10) to compositions of three linear transformations (Figure 8.4.6):

[T2 ° T1]B´,B = [T2]B´,B´́  [T1]B´́ ,B

Cancellation

Figure 8.4.5
[T3 ◦ T2 ◦ T1]B ′,B = [T3]B ′,B ′′′ [T2]B ′′′,B ′′ [T1]B ′′,B (12)

↳
1 +2x+3x(() +((n)

+((n)

O 9 +x,x +a

+27
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X
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Basis B Basis B´́ Basis B´́ ´ Basis B´

T1 T3T2

Figure 8.4.6

The following example illustrates Theorem 8.4.1.

EXAMPLE 6 Composition

Let T1: P1 →P2 be the linear transformation defined by

T1(p(x)) = xp(x)

and let T2: P2 →P2 be the linear operator defined by

T2(p(x)) = p(3x − 5)

Then the composition (T2 ◦ T1): P1 →P2 is given by

(T2 ◦ T1)(p(x)) = T2(T1(p(x))) = T2(xp(x)) = (3x − 5)p(3x − 5)

Thus, if p(x) = c0 + c1x, then
(T2 ◦ T1)(c0 + c1x) = (3x − 5)

(
c0 + c1(3x − 5)

)

= c0(3x − 5) + c1(3x − 5)2 (13)

In this example, P1 plays the role of U in Theorem 8.4.1, and P2 plays the roles of both
V and W ; thus we can take B ′ = B ′′ in (10) so that the formula simplifies to

[T2 ◦ T1]B ′,B = [T2]B ′ [T1]B ′,B (14)

Let us choose B = {1, x} to be the basis for P1 and choose B ′ = {1, x, x2} to be the basis
for P2. We showed in Examples 1 and 5 that

[T1]B ′,B =




0 0
1 0
0 1



 and [T2]B ′ =




1 −5 25
0 3 −30
0 0 9





Thus, it follows from (14) that

[T2 ◦ T1]B ′,B =




1 −5 25
0 3 −30
0 0 9








0 0
1 0
0 1



 =




−5 25

3 −30
0 9



 (15)

As a check, we will calculate [T2 ◦ T1]B ′,B directly from Formula (4). Since B = {1, x},
it follows from Formula (4) with u1 = 1 and u2 = x that

[T2 ◦ T1]B ′,B =
[
[(T2 ◦ T1)(1)]B ′ | [(T2 ◦ T1)(x)]B ′

]
(16)

Using (13) yields

(T2 ◦ T1)(1) = 3x − 5 and (T2 ◦ T1)(x) = (3x − 5)2 = 9x2 − 30x + 25

From this and the fact that B ′ = {1, x, x2}, it follows that

[(T2 ◦ T1)(1)]B ′ =




−5

3
0



 and [(T2 ◦ T1)(x)]B ′ =




25

−30
9





Substituting in (16) yields

[T2 ◦ T1]B ′,B =




−5 25

3 −30
0 9





which agrees with (15).

X
xi
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Exercise Set 8.4
1. Let T : P2 →P3 be the linear transformation defined by

T(p(x)) = xp(x).

(a) Find the matrix for T relative to the standard bases

B = {u1, u2, u3} and B ′ = {v1, v2, v3, v4}
where

u1 = 1, u2 = x, u3 = x2

v1 = 1, v2 = x, v3 = x2, v4 = x3

(b) Verify that the matrix [T ]B ′,B obtained in part (a) satisfies
Formula (5) for every vector x = c0 + c1x + c2x

2 in P2.

2. Let T : P2 →P1 be the linear transformation defined by

T(a0 + a1x + a2x
2) = (a0 + a1) − (2a1 + 3a2)x

(a) Find the matrix for T relative to the standard bases
B = {1, x, x2} and B ′ = {1, x} for P2 and P1.

(b) Verify that the matrix [T ]B ′,B obtained in part (a) satisfies
Formula (5) for every vector x = c0 + c1x + c2x

2 in P2.

3. Let T : P2 →P2 be the linear operator defined by

T(a0 + a1x + a2x
2) = a0 + a1(x − 1) + a2(x − 1)2

(a) Find the matrix for T relative to the standard basis
B = {1, x, x2} for P2.

(b) Verify that the matrix [T ]B obtained in part (a) satisfies
Formula (8) for every vector x = a0 + a1x + a2x

2 in P2.

4. Let T : R2 →R2 be the linear operator defined by

T

([
x1

x2

])
=

[
x1 − x2

x1 + x2

]

and let B = {u1, u2} be the basis for which

u1 =
[

1
1

]
and u2 =

[−1
0

]

(a) Find [T ]B .

(b) Verify that Formula (8) holds for every vector x in R2.

5. Let T : R2 →R3 be defined by

T

([
x1

x2

])
=




x1 + 2x2

−x1

0





(a) Find the matrix [T ]B ′,B relative to the bases
B = {u1, u2} and B ′ = {v1, v2, v3}, where

u1 =
[

1
3

]
, u2 =

[−2
4

]

v1 =




1
1
1



, v2 =




2
2
0



, v3 =




3
0
0





(b) Verify that Formula (5) holds for every vector in R2.

6. Let T : R3 →R3 be the linear operator defined by

T(x1, x2, x3) = (x1 − x2, x2 − x1, x1 − x3)

(a) Find the matrix for T with respect to the basis
B = {v1, v2, v3}, where

v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (1, 1, 0)

(b) Verify that Formula (8) holds for every vector
x = (x1, x2, x3) in R3.

(c) Is T one-to-one? If so, find the matrix of T −1 with respect
to the basis B.

7. Let T : P2 →P2 be the linear operator defined by
T(p(x)) = p(2x + 1), that is,

T(c0 + c1x + c2x
2) = c0 + c1(2x + 1) + c2(2x + 1)2

(a) Find [T ]B with respect to the basis B = {1, x, x2}.
(b) Use the three-step procedure illustrated in Example 2 to

compute T(2 − 3x + 4x2).

(c) Check the result obtained in part (b) by computing
T(2 − 3x + 4x2) directly.

8. Let T : P2 →P3 be the linear transformation defined by
T(p(x)) = xp(x − 3), that is,

T(c0 + c1x + c2x
2) = x

(
c0 + c1(x − 3) + c2(x − 3)2

)

(a) Find [T ]B ′,B relative to the bases B = {1, x, x2} and
B ′ = {1, x, x2, x3}.

(b) Use the three-step procedure illustrated in Example 2 to
compute T(1 + x − x2).

(c) Check the result obtained in part (b) by computing
T(1 + x − x2) directly.

9. Let v1 =
[

1
3

]
and v2 =

[−1
4

]
, and let A =

[
1 3

−2 5

]
be the

matrix for T : R2 →R2 relative to the basis B = {v1, v2}.
(a) Find [T(v1)]B and [T(v2)]B .

(b) Find T(v1) and T(v2).

(c) Find a formula for T

([
x1

x2

])
.

(d) Use the formula obtained in (c) to compute T

([
1
1

])
.

10. Let A =




3 −2 1 0
1 6 2 1

−3 0 7 1



 be the matrix for

T : R4 →R3 relative to the bases B = {v1, v2, v3, v4} and
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B ′ = {w1, w2, w3}, where

v1 =





0
1
1
1



, v2 =





2
1

−1
−1



, v3 =





1
4

−1
2



, v4 =





6
9
4
2





w1 =




0
8
8



, w2 =




−7

8
1



, w3 =




−6

9
1





(a) Find [T(v1)]B ′ , [T(v2)]B ′ , [T(v3)]B ′ , and [T(v4)]B ′ .

(b) Find T(v1), T(v2), T(v3), and T(v4).

(c) Find a formula for T









x1

x2

x3

x4







.

(d) Use the formula obtained in (c) to compute T









2
2
0
0







.

11. Let A =




1 3 −1
2 0 5
6 −2 4



 be the matrix for T : P2 →P2 with

respect to the basis B = {v1, v2, v3}, where v1 = 3x + 3x2,
v2 = −1 + 3x + 2x2, v3 = 3 + 7x + 2x2.

(a) Find [T(v1)]B , [T(v2)]B , and [T(v3)]B .

(b) Find T(v1), T(v2), and T(v3).

(c) Find a formula for T(a0 + a1x + a2x
2).

(d) Use the formula obtained in (c) to compute T(1 + x2).

12. Let T1: P1 →P2 be the linear transformation defined by

T1(p(x)) = xp(x)

and let T2: P2 →P2 be the linear operator defined by

T2(p(x)) = p(2x + 1)

Let B = {1, x} and B ′ = {1, x, x2} be the standard bases for
P1 and P2.

(a) Find [T2 ◦ T1]B ′,B , [T2]B ′ , and [T1]B ′,B .

(b) State a formula relating the matrices in part (a).

(c) Verify that the matrices in part (a) satisfy the formula you
stated in part (b).

13. Let T1: P1 →P2 be the linear transformation defined by

T1(c0 + c1x) = 2c0 − 3c1x

and let T2: P2 →P3 be the linear transformation defined by

T2(c0 + c1x + c2x
2) = 3c0x + 3c1x

2 + 3c2x
3

Let B = {1, x}, B ′′ = {1, x, x2}, and B ′ = {1, x, x2, x3}.
(a) Find [T2 ◦ T1]B ′,B , [T2]B ′,B ′′ , and [T1]B ′′,B .

(b) State a formula relating the matrices in part (a).

(c) Verify that the matrices in part (a) satisfy the formula you
stated in part (b).

14. Let B = {v1, v2, v3, v4} be a basis for a vector space V. Find
the matrix with respect to B for the linear operator T : V →V

defined by T(v1) = v2, T(v2) = v3, T(v3) = v4, T(v4) = v1.

15. Let T : P2 →M22 be the linear transformation defined by

T (p) =
[

p(0) p(1)

p(−1) p(0)

]

let B be the standard basis for M22, and let B ′ = {1, x, x2},
B ′′ = {1, 1 + x, 1 + x2} be bases for P2.

(a) Find [T ]B,B ′ and [T ]B,B ′′ .

(b) For the matrices obtained in part (a), compute
T(2 + 2x + x2) using the three-step procedure illustrated
in Example 2.

(c) Check the results obtained in part (b) by computing
T(2 + 2x + x2) directly.

16. Let T : M22 →R2 be the linear transformation given by

T

([
a b

c d

])

=
[
a + b + c

d

]

and let B be the standard basis for M22, B
′ the standard basis

for R2, and

B ′′ =
{[

1

1

]

,

[
−1

0

]}

(a) Find [T ]B ′,B and [T ]B ′′,B .

(b) Compute T

([
1 2

3 4

])

using the three-step procedure

that was illustrated in Example 2 for both matrices found
in part (a).

(c) Check the results obtained in part (b) by computing

T

([
1 2

3 4

])

directly.

17. (Calculus required ) Let D: P2 →P2 be the differentiation
operator D(p) = p′(x).

(a) Find the matrix for D relative to the basis B = {p1, p2, p3}
for P2 in which p1 = 1, p2 = x, p3 = x2.

(b) Use the matrix in part (a) to compute D(6 − 6x + 24x2).

18. (Calculus required ) Let D: P2 →P2 be the differentiation
operator D(p) = p′(x).

(a) Find the matrix for D relative to the basis B = {p1, p2, p3}
for P2 in which p1 = 2, p2 = 2 − 3x, p3 = 2 − 3x + 8x2.

(b) Use the matrix in part (a) to compute D(6 − 6x + 24x2).

19. (Calculus required ) Let V be the vector space of real-valued
functions defined on the interval (−!, !), and let D: V →V

be the differentiation operator.

(a) Find the matrix for D relative to the basis B = {f1, f2, f3}
for V in which f1 = 1, f2 = sin x, f3 = cos x


