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INTRODUCTION In earlier sections we studied linear transformations from Rn to Rm. In this chapter we
will define and study linear transformations from a general vector space V to a general
vector space W . The results we will obtain here have important applications in physics,
engineering, and various branches of mathematics.

8.1 General Linear Transformations
Up to now our study of linear transformations has focused on transformations from Rn to
Rm. In this section we will turn our attention to linear transformations involving general
vector spaces. We will illustrate ways in which such transformations arise, and we will
establish a fundamental relationship between general n-dimensional vector spaces and Rn.

Definitions and
Terminology

In Section 1.8 we defined a matrix transformation TA: Rn →Rm to be a mapping of the
form

TA(x) = Ax

in which A is an m × n matrix. We subsequently established in Theorem 1.8.3 that the
matrix transformations are precisely the linear transformations from Rn to Rm, that is,
the transformations with the linearity properties

T(u + v) = T(u) + T(v) and T(ku) = kT(u)

We will use these two properties as the starting point for defining more general linear
transformations.

DEFINITION 1 If T : V →W is a mapping from a vector space V to a vector space W ,
then T is called a linear transformation from V to W if the following two properties
hold for all vectors u and v in V and for all scalars k:

(i) T(ku) = kT(u) [ Homogeneity property ]

(ii) T(u + v) = T(u) + T(v) [ Additivity property ]

In the special case whereV = W , the linear transformationT is called a linear operator
on the vector space V.
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The homogeneity and additivity properties of a linear transformation T : V →W

can be used in combination to show that if v1 and v2 are vectors in V and k1 and k2 are
any scalars, then

T(k1v1 + k2v2) = k1T(v1) + k2T(v2)

More generally, if v1, v2, . . . , vr are vectors in V and k1, k2, . . . , kr are any scalars, then

T(k1v1 + k2v2 + · · · + krvr ) = k1T(v1) + k2T(v2) + · · · + krT(vr ) (1)

The following theorem is an analog of parts (a) and (d) of Theorem 1.8.2.

THEOREM 8.1.1 If T : V →W is a linear transformation, then:

(a) T(0) = 0.

(b) T(u − v) = T(u) − T(v) for all u and v in V .

Proof Let u be any vector in V. Since 0u = 0, it follows from the homogeneity property
Use the two parts of Theorem
8.1.1 to prove that

T(−v) = −T (v)

for all v in V.

in Definition 1 that
T(0) = T(0u) = 0T(u) = 0

which proves (a).
We can prove part (b) by rewriting T(u − v) as

T(u − v) = T
(
u + (−1)v

)

= T(u) + (−1)T(v)

= T(u) − T(v)

We leave it for you to justify each step.

EXAMPLE 1 MatrixTransformations

Because we have based the definition of a general linear transformation on the homo-
geneity and additivity properties of matrix transformations, it follows that every matrix
transformation TA: Rn →Rm is also a linear transformation in this more general sense
with V = Rn and W = Rm.

EXAMPLE 2 The ZeroTransformation

Let V and W be any two vector spaces. The mapping T : V →W such that T(v) = 0 for
every v in V is a linear transformation called the zero transformation. To see that T is
linear, observe that

T(u + v) = 0, T(u) = 0, T(v) = 0, and T(ku) = 0

Therefore,
T(u + v) = T(u) + T(v) and T(ku) = kT(u)

EXAMPLE 3 The Identity Operator

Let V be any vector space. The mapping I : V →V defined by I (v) = v is called the
identity operator on V. We will leave it for you to verify that I is linear.

-a +9 =5e +T

RR*⑳00 T(0,0) =(0,0,0)

X

.
T(M) +T(y =0+0=0

~8- 0.0 0
1T(u) =k.0

=0
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& I(u +V)
=4+V
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EXAMPLE 4 Dilation and Contraction Operators

If V is a vector space and k is any scalar, then the mapping T : V →V given by T(x) = kx
is a linear operator on V, for if c is any scalar and if u and v are any vectors in V, then

T(cu) = k(cu) = c(ku) = cT(u)
T(u + v) = k(u + v) = ku + kv = T(u) + T(v)

If 0 < k < 1, then T is called the contraction of V with factor k, and if k > 1, it is called
the dilation of V with factor k.

EXAMPLE 5 A LinearTransformation from Pn to Pn+1

Let p = p(x) = c0 + c1x + · · · + cnx
n be a polynomial in Pn, and define the transfor-

mation T : Pn →Pn+1 by

T(p) = T(p(x)) = xp(x) = c0x + c1x
2 + · · · + cnx

n+1

This transformation is linear because for any scalar k and any polynomials p1 and p2 in
Pn we have

T(kp) = T(kp(x)) = x(kp(x)) = k(xp(x)) = kT(p)
and

T(p1 + p2) = T(p1(x) + p2(x)) = x(p1(x) + p2(x))

= xp1(x) + xp2(x) = T(p1) + T(p2)

EXAMPLE 6 A LinearTransformation Using the Dot Product

Let v0 be any fixed vector in Rn, and let T : Rn →R be the transformation

T(x) = 〈x · v0〉
that maps a vector x to its dot product with v0. This transformation is linear, for if k is
any scalar, and if u and v are any vectors in Rn, then it follows from properties of the dot
product in Theorem 3.2.2 that

T (ku) = (ku) · v0 = k(u · v0) = kT (u)

T (u + v) = (u + v) · v0 = (u · v0) + (v · v0) = T (u) + T (v)

EXAMPLE 7 Transformations on Matrix Spaces

Let Mnn be the vector space of n × n matrices. In each part determine whether the
transformation is linear.

(a) T1(A) = AT (b) T2(A) = det(A)

Solution (a) It follows from parts (b) and (d) of Theorem 1.4.8 that

T1(kA) = (kA)T = kAT = kT1(A)

T1(A + B) = (A + B)T = AT + BT = T1(A) + T1(B)

so T1 is linear.

Solution (b) It follows from Formula (1) of Section 2.3 that

T2(kA) = det(kA) = kn det(A) = knT2(A)

Thus, T2 is not homogeneous and hence not linear if n > 1. Note that additivity also fails
because we showed in Example 1 of Section 2.3 that det(A + B) and det(A) + det(B)

are not generally equal.

V

0

k =1

EKdet(A)

-A
+B)*d
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EXAMPLE 8 Translation Is Not Linear

Part (a) of Theorem 8.1.1 states that a linear transformation maps 0 to 0. This property
is useful for identifying transformations that are not linear. For example, if x0 is a fixed
nonzero vector in R2, then the transformation

T(x) = x + x0

has the geometric effect of translating each point x in a direction parallel to x0 through a
distance of ‖x0‖ (Figure 8.1.1). This cannot be a linear transformation since T(0) = x0,

y

x
x

x0

x + x0

0

Figure 8.1.1 T(x) = x + x0
translates each point x along a
line parallel to x0 through a
distance ‖x0‖.

so T does not map 0 to 0.

EXAMPLE 9 The EvaluationTransformation

Let V be a subspace of F(−!, !), let

x1, x2, . . . , xn

be a sequence of distinct real numbers, and let T : V →Rn be the transformation

T(f ) =
(
f(x1), f(x2), . . . , f(xn)

)
(2)

that associates with f the n-tuple of function values at x1, x2, . . . , xn. We call this the
evaluation transformation on V at x1, x2, . . . , xn. Thus, for example, if

x1 = −1, x2 = 2, x3 = 4

and if f(x) = x2 − 1, then

T(f ) =
(
f(x1), f(x2), f(x3)

)
= (0, 3, 15)

The evaluation transformation in (2) is linear, for if k is any scalar, and if f and g

are any functions in V, then

T(kf ) =
(
(kf )(x1), (kf )(x2), . . . , (kf )(xn)

)

=
(
kf(x1), kf(x2), . . . , kf(xn)

)

= k
(
f(x1), f(x2), . . . , f(xn)

)
= kT(f )

and
T(f + g) =

(
(f + g)(x1), (f + g)(x2), . . . , (f + g)(xn)

)

=
(
f(x1) + g(x1), f(x2) + g(x2), . . . , f(xn) + g(xn)

)

=
(
f(x1), f(x2), . . . , f(xn)

)
+

(
g(x1), g(x2), . . . , g(xn)

)

= T(f ) + T(g)

Finding Linear
Transformations from

Images of Basis Vectors

We saw in Formula (15) of Section 1.8 that if TA: Rn →Rm is multiplication by A, and
if e1, e2, . . . , en are the standard basis vectors for Rn, then A can be expressed as

A = [T(e1) | T(e2) | · · · | T(en)]
It follows from this that the image of any vector v = (c1, c2, . . . , cn) in Rn under multi-
plication by A can be expressed as

TA(v) = c1TA(e1) + c2TA(e2) + · · · + cnTA(en)

This formula tells us that for a matrix transformation the image of any vector is express-
ible as a linear combination of the images of the standard basis vectors. This is a special
case of the following more general result.

T(kx) =kx
+x =k(x+40)

=

IkThes)s
-R

Ot

-

X
X.
-

C
- --
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THEOREM 8.1.2 Let T : V →W be a linear transformation, where V is finite-dimen-
sional. If S = {v1, v2, . . . , vn} is a basis for V, then the image of any vector v in V can
be expressed as

T(v) = c1T(v1) + c2T(v2) + · · · + cnT(vn) (3)

where c1, c2, . . . , cn are the coefficients required to express v as a linear combination of
the vectors in the basis S.

Proof Express v as v = c1v1 + c2v2 + · · · + cnvn and use the linearity of T .

EXAMPLE 10 Computing with Images of BasisVectors

Consider the basis S = {v1, v2, v3} for R3, where

v1 = (1, 1, 1), v2 = (1, 1, 0), v3 = (1, 0, 0)

Let T : R3 →R2 be the linear transformation for which

T(v1) = (1, 0), T(v2) = (2, −1), T(v3) = (4, 3)

Find a formula for T(x1, x2, x3), and then use that formula to compute T(2, −3, 5).

Solution We first need to express x = (x1, x2, x3) as a linear combination of v1, v2, and
v3. If we write

(x1, x2, x3) = c1(1, 1, 1) + c2(1, 1, 0) + c3(1, 0, 0)

then on equating corresponding components, we obtain

c1 + c2 + c3 = x1

c1 + c2 = x2

c1 = x3

which yields c1 = x3, c2 = x2 − x3, c3 = x1 − x2, so

(x1, x2, x3) = x3(1, 1, 1) + (x2 − x3)(1, 1, 0) + (x1 − x2)(1, 0, 0)

= x3v1 + (x2 − x3)v2 + (x1 − x2)v3

Thus
T(x1, x2, x3) = x3T(v1) + (x2 − x3)T(v2) + (x1 − x2)T(v3)

= x3(1, 0) + (x2 − x3)(2, −1) + (x1 − x2)(4, 3)

= (4x1 − 2x2 − x3, 3x1 − 4x2 + x3)

From this formula we obtain
T(2, −3, 5) = (9, 23)

EXAMPLE 11 A LinearTransformation from C 1(−!, !) to F (−!, !)

Let V = C1(−!, !) be the vector space of functions with continuous first derivatives on

CA L C U L U S R E Q U I R E D

(−!, !), and let W = F(−!, !) be the vector space of all real-valued functions defined
on (−!, !). Let D: V →W be the transformation that maps a function f = f(x) into
its derivative—that is,

D( f ) = f ′(x)

From the properties of differentiation, we have

D(f + g) = D(f ) + D(g) and D( kf ) = kD(f )

Thus, D is a linear transformation.

ver
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EXAMPLE 12 An IntegralTransformation

Let V = C(−!, !) be the vector space of continuous functions on the interval (−!, !),

CA L C U L U S R E Q U I R E D

let W = C1(−!, !) be the vector space of functions with continuous first derivatives on
(−!, !), and let J : V →W be the transformation that maps a function f in V into

J (f ) =
∫ x

0
f(t) dt

For example, if f(x) = x2, then

J (f ) =
∫ x

0
t2 dt = t3

3

]x

0
= x3

3

The transformation J : V →W is linear, for if k is any constant, and if f and g are any
functions in V, then properties of the integral imply that

J (kf ) =
∫ x

0
kf(t) dt = k

∫ x

0
f(t) dt = kJ (f )

J (f + g) =
∫ x

0
(f(t) + g(t)) dt =

∫ x

0
f(t) dt +

∫ x

0
g(t) dt = J (f ) + J (g)

Kernel and Range Recall that if A is an m × n matrix, then the null space of A consists of all vectors x
in Rn such that Ax = 0, and by Theorem 4.7.1 the column space of A consists of all
vectors b in Rm for which there is at least one vector x in Rn such that Ax = b. From
the viewpoint of matrix transformations, the null space of A consists of all vectors in Rn

that multiplication by A maps into 0, and the column space of A consists of all vectors in
Rm that are images of at least one vector in Rn under multiplication by A. The following
definition extends these ideas to general linear transformations.

DEFINITION 2 If T : V →W is a linear transformation, then the set of vectors in V

that T maps into 0 is called the kernel of T and is denoted by ker(T ). The set of all
vectors in W that are images under T of at least one vector in V is called the range of
T and is denoted by R(T ).

EXAMPLE 13 Kernel and Range of a MatrixTransformation

If TA: Rn →Rm is multiplication by the m × n matrix A, then, as discussed above, the
kernel of TA is the null space of A, and the range of TA is the column space of A.

EXAMPLE 14 Kernel and Range of the ZeroTransformation

Let T : V →W be the zero transformation. Since T maps every vector in V into 0, it
follows that ker(T ) = V. Moreover, since 0 is the only image under T of vectors in V, it
follows that R(T ) = {0}.

EXAMPLE 15 Kernel and Range of the Identity Operator

Let I : V →V be the identity operator. Since I (v) = v for all vectors in V, every vector
in V is the image of some vector (namely, itself); thus R(I) = V. Since the only vector
that I maps into 0 is 0, it follows that ker(I) = {0}.

EXAMPLE 16 Kernel and Range of an Orthogonal Projection

Let T : R3 →R3 be the orthogonal projection onto the xy-plane. As illustrated in Fig-
ure 8.1.2a, the points that T maps into 0 = (0, 0, 0) are precisely those on the z-axis, so

~
w

T.V -> W

T(r) =0eW
↑ I.V->VN IN) =

V

-

(n,y,z)
1

↓ 10,0,qC--

T4,3,z)/- (v,y, 0)
L
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ker(T ) is the set of points of the form (0, 0, z). As illustrated in Figure 8.1.2b, T maps
the points in R3 to the xy-plane, where each point in that plane is the image of each point
on the vertical line above it. Thus, R(T ) is the set of points of the form (x, y, 0).

Figure 8.1.2

z

x

T y

(0, 0, 0)

(0, 0, z)

(a)  ker(T) is the z-axis.

T

z

x

y

(b) R(T) is the entire xy-plane

(x, y, 0)

(x, y, z)

EXAMPLE 17 Kernel and Range of a Rotation

Let T : R2 →R2 be the linear operator that rotates each vector in the xy-plane through

y

x

v

T(v)

θ

Figure 8.1.3

the angle θ (Figure 8.1.3). Since every vector in the xy-plane can be obtained by rotating
some vector through the angle θ , it follows that R(T ) = R2. Moreover, the only vector
that rotates into 0 is 0, so ker(T ) = {0}.

EXAMPLE 18 Kernel of a DifferentiationTransformation

Let V = C1(−!, !) be the vector space of functions with continuous first derivatives on

CA L C U L U S R E Q U I R E D

(−!, !), let W = F(−!, !) be the vector space of all real-valued functions defined on
(−!, !), and let D: V →W be the differentiation transformation D( f ) = f ′(x). The
kernel of D is the set of functions in V with derivative zero. From calculus, this is the
set of constant functions on (−!, !).

Properties of Kernel and
Range

In all of the preceding examples, ker(T ) and R(T ) turned out to be subspaces. In
Examples 14, 15, and 17 they were either the zero subspace or the entire vector space. In
Example 16 the kernel was a line through the origin, and the range was a plane through
the origin, both of which are subspaces of R3. All of this is a consequence of the following
general theorem.

THEOREM 8.1.3 If T : V →W is a linear transformation, then:

(a) The kernel of T is a subspace of V.

(b) The range of T is a subspace of W .

Proof (a) To show that ker(T ) is a subspace, we must show that it contains at least
one vector and is closed under addition and scalar multiplication. By part (a) of Theo-
rem 8.1.1, the vector 0 is in ker(T ), so the kernel contains at least one vector. Let v1 and
v2 be vectors in ker(T ), and let k be any scalar. Then

T(v1 + v2) = T(v1) + T(v2) = 0 + 0 = 0

so v1 + v2 is in ker(T ). Also,

T(kv1) = kT(v1) = k0 = 0

so kv1 is in ker(T ).

X-
X
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Proof (b) To show that R(T ) is a subspace of W , we must show that it contains at least
one vector and is closed under addition and scalar multiplication. However, it contains
at least the zero vector of W since T(0) = (0) by part (a) of Theorem 8.1.1. To prove
that it is closed under addition and scalar multiplication, we must show that if w1 and
w2 are vectors in R(T ), and if k is any scalar, then there exist vectors a and b in V for
which

T(a) = w1 + w2 and T(b) = kw1 (4)

But the fact that w1 and w2 are in R(T ) tells us there exist vectors v1 and v2 in V such
that

T(v1) = w1 and T(v2) = w2

The following computations complete the proof by showing that the vectors a = v1 + v2

and b = kv1 satisfy the equations in (4):

T(a) = T(v1 + v2) = T(v1) + T(v2) = w1 + w2

T(b) = T(kv1) = kT(v1) = kw1

EXAMPLE 19 Application to Differential Equations

Differential equations of the form

CA L C U L U S R E Q U I R E D

y ′′ + ω2y = 0 (ω a positive constant) (5)

arise in the study of vibrations. The set of all solutions of this equation on the interval
(−!, !) is the kernel of the linear transformation D : C2(−!, !) →C(−!, !), given by

D(y) = y ′′ + ω2y

It is proved in standard textbooks on differential equations that the kernel is a two-
dimensional subspace of C2(−!, !), so that if we can find two linearly independent
solutions of (5), then all other solutions can be expressed as linear combinations of those
two. We leave it for you to confirm by differentiating that

y1 = cos ωx and y2 = sin ωx

are solutions of (5). These functions are linearly independent since neither is a scalar
multiple of the other, and thus

y = c1 cos ωx + c2 sin ωx (6)

is a “general solution” of (5) in the sense that every choice of c1 and c2 produces a
solution, and every solution is of this form.

Rank and Nullity of Linear
Transformations

In Definition 1 of Section 4.8 we defined the notions of rank and nullity for an m × n

matrix, and in Theorem 4.8.2, which we called the Dimension Theorem for Matrices, we
proved that the sum of the rank and nullity is n. We will show next that this result is
a special case of a more general result about linear transformations. We start with the
following definition.

DEFINITION 3 Let T : V →W be a linear transformation. If the range of T is finite-
dimensional, then its dimension is called the rank of T ; and if the kernel of T is
finite-dimensional, then its dimension is called the nullity of T . The rank of T is
denoted by rank(T ) and the nullity of T by nullity(T ).

The following theorem, whose proof is optional, generalizes Theorem 4.8.2.

*
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THEOREM 8.1.4 DimensionTheorem for Linear Transformations

If T : V →W is a linear transformation from a finite-dimensional vector space V to a
vector space W, then the range of T is finite-dimensional, and

rank(T ) + nullity(T ) = dim(V ) (7)

In the special case where A is an m × n matrix and TA: Rn →Rm is multiplication
by A, the kernel of TA is the null space of A, and the range of TA is the column space of
A. Thus, it follows from Theorem 8.1.4 that

rank(TA) + nullity(TA) = n

Proof of Theorem 8.1.4 Assume that V is n-dimensional. We must show thatO PT I O NA L

dim(R(T )) + dim(ker(T )) = n

We will give the proof for the case where 1 ≤ dim(ker(T )) < n. The cases where
dim(ker(T )) = 0 and dim(ker(T )) = n are left as exercises. Assume dim(ker(T )) = r ,
and let v1, . . . , vr be a basis for the kernel. Since {v1, . . . , vr} is linearly independent,
Theorem 4.5.5(b) states that there are n − r vectors, vr+1, . . . , vn, such that the extended
set {v1, . . . , vr , vr+1, . . . , vn} is a basis for V. To complete the proof, we will show that
the n − r vectors in the set S = {T (vr+1), . . . , T(vn)} form a basis for the range of T . It
will then follow that

dim(R(T )) + dim(ker(T )) = (n − r) + r = n

First we show that S spans the range of T . If b is any vector in the range of T , then
b = T(v) for some vector v in V. Since {v1, . . . , vr , vr+1, . . . , vn} is a basis for V, the
vector v can be written in the form

v = c1v1 + · · · + crvr + cr+1vr+1 + · · · + cnvn

Since v1, . . . , vr lie in the kernel of T , we have T(v1) = · · · = T(vr ) = 0, so

b = T(v) = cr+1T(vr+1) + · · · + cnT(vn)

Thus S spans the range of T .
Finally, we show that S is a linearly independent set and consequently forms a basis

for the range of T . Suppose that some linear combination of the vectors in S is zero;
that is,

kr+1T(vr+1) + · · · + knT(vn) = 0 (8)

We must show that kr+1 = · · · = kn = 0. Since T is linear, (8) can be rewritten as

T(kr+1vr+1 + · · · + knvn) = 0

which says that kr+1vr+1 + · · · + knvn is in the kernel of T . This vector can therefore be
written as a linear combination of the basis vectors {v1, . . . , vr}, say

kr+1vr+1 + · · · + knvn = k1v1 + · · · + krvr

Thus,
k1v1 + · · · + krvr − kr+1vr+1 − · · · − knvn = 0

Since {v1, . . . , vn} is linearly independent, all of the k’s are zero; in particular,
kr+1 = · · · = kn = 0, which completes the proof.

X



456 Chapter 8 General Linear Transformations

Exercise Set 8.1
In Exercises 1–2, suppose that T is a mapping whose domain

is the vector space M22. In each part, determine whether T is a
linear transformation, and if so, find its kernel.

1. (a) T(A) = A2 (b) T(A) = tr(A)

(c) T(A) = A + AT

2. (a) T(A) = (A)11 (b) T(A) = 02×2

(c) T(A) = cA

In Exercises 3–9, determine whether the mapping T is a linear
transformation, and if so, find its kernel.

3. T : R3 →R, where T(u) = ‖u‖.

4. T : R3 →R3, where v0 is a fixed vector in R3 and
T(u) = u × v0.

5. T : M22 →M23, where B is a fixed 2 × 3 matrix and
T(A) = AB.

6. T : M22 →R, where

(a) T

([
a b

c d

])
= 3a − 4b + c − d

(b) T

([
a b

c d

])
= a2 + b2

7. T : P2 →P2, where

(a) T(a0 + a1x + a2x
2) = a0 + a1(x + 1) + a2(x + 1)2

(b) T(a0 + a1x + a2x
2)

= (a0 + 1) + (a1 + 1)x + (a2 + 1)x2

8. T : F(−!, !) →F(−!, !), where

(a) T(f(x)) = 1 + f(x) (b) T(f(x)) = f(x + 1)

9. T : R! →R!, where
T(a0, a1, a2, . . . , an, . . .) = (0, a0, a1, a2, . . . , an, . . .)

10. Let T : P2 →P3 be the linear transformation defined by
T(p(x)) = xp(x). Which of the following are in ker(T )?

(a) x2 (b) 0 (c) 1 + x (d) −x

11. Let T : P2 →P3 be the linear transformation in Exercise 10.
Which of the following are in R(T )?

(a) x + x2 (b) 1 + x (c) 3 − x2 (d) −x

12. Let V be any vector space, and let T : V →V be defined by
T(v) = 3v.

(a) What is the kernel of T ?

(b) What is the range of T ?

13. In each part, use the given information to find the nullity of
the linear transformation T .

(a) T : R5 →P5 has rank 3.

(b) T : P4 →P3 has rank 1.

(c) The range of T : Mmn →R3 is R3.

(d) T : M22 →M22 has rank 3.

14. In each part, use the given information to find the rank of the
linear transformation T .

(a) T : R7 →M32 has nullity 2.

(b) T : P3 →R has nullity 1.

(c) The null space of T : P5 →P5 is P5.

(d) T : Pn →Mmn has nullity 3.

15. Let T : M22 →M22 be the dilation operator with factor k = 3.

(a) Find T

([
1 2

−4 3

])

.

(b) Find the rank and nullity of T .

16. Let T : P2 →P2 be the contraction operator with factor
k = 1/4.

(a) Find T(1 + 4x + 8x2).

(b) Find the rank and nullity of T .

17. Let T : P2 →R3 be the evaluation transformation at the se-
quence of points −1, 0, 1. Find

(a) T(x2) (b) ker(T ) (c) R(T )

18. Let V be the subspace of C[0, 2π ] spanned by the vectors 1,
sin x, and cos x, and let T : V →R3 be the evaluation trans-
formation at the sequence of points 0, π, 2π . Find

(a) T(1 + sin x + cos x) (b) ker(T )

(c) R(T )

19. Consider the basis S = {v1, v2} for R2, where v1 = (1, 1) and
v2 = (1, 0), and let T : R2 →R2 be the linear operator for
which

T(v1) = (1, −2) and T(v2) = (−4, 1)

Find a formula for T(x1, x2), and use that formula to find
T(5, −3).

20. Consider the basis S = {v1, v2} for R2, where v1 = (−2, 1) and
v2 = (1, 3), and let T : R2 →R3 be the linear transformation
such that

T(v1) = (−1, 2, 0) and T(v2) = (0, −3, 5)

Find a formula for T(x1, x2), and use that formula to find
T(2, −3).

21. Consider the basis S = {v1, v2, v3} for R3, where
v1 = (1, 1, 1), v2 = (1, 1, 0), and v3 = (1, 0, 0), and let
T : R3 →R3 be the linear operator for which

T(v1) = (2, −1, 4), T(v2) = (3, 0, 1),
T(v3) = (−1, 5, 1)

Find a formula for T(x1, x2, x3), and use that formula to find
T(2, 4, −1).
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22. Consider the basis S = {v1, v2, v3} for R3, where
v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4), and let
T : R3 →R2 be the linear transformation for which

T(v1) = (1, 0), T(v2) = (−1, 1), T(v3) = (0, 1)

Find a formula for T(x1, x2, x3), and use that formula to find
T(7, 13, 7).

23. Let T : P3 →P2 be the mapping defined by

T(a0 + a1x + a2x
2 + a3x

3) = 5a0 + a3x
2

(a) Show that T is linear.

(b) Find a basis for the kernel of T .

(c) Find a basis for the range of T .

24. Let T : P2 →P2 be the mapping defined by

T(a0 + a1x + a2x
2) = 3a0 + a1x + (a0 + a1)x

2

(a) Show that T is linear.

(b) Find a basis for the kernel of T .

(c) Find a basis for the range of T .

25. (a) (Calculus required ) Let D: P3 →P2 be the differentiation
transformation D(p) = p′(x). What is the kernel of D?

(b) (Calculus required ) Let J : P1 →R be the integration trans-
formation J (p) =

∫ 1
−1 p(x) dx. What is the kernel of J ?

26. (Calculus required ) Let V = C[a, b] be the vector space of
continuous functions on [a, b], and let T : V →V be the trans-
formation defined by

T( f ) = 5f(x) + 3
∫ x

a

f(t) dt

Is T a linear operator?

27. (Calculus required ) Let V be the vector space of real-valued
functions with continuous derivatives of all orders on the in-
terval (−!, !), and let W = F(−!, !) be the vector space of
real-valued functions defined on (−!, !).

(a) Find a linear transformation T : V →W whose kernel
is P3.

(b) Find a linear transformation T : V →W whose kernel
is Pn.

28. For a positive integer n > 1, let T : Mnn →R be the linear
transformation defined by T (A) = tr(A), where A is an n × n

matrix with real entries. Determine the dimension of ker(T ).

29. (a) Let T : V →R3 be a linear transformation from a vector
space V to R3. Geometrically, what are the possibilities
for the range of T ?

(b) Let T : R3 →W be a linear transformation from R3 to a
vector space W . Geometrically, what are the possibilities
for the kernel of T ?

30. In each part, determine whether the mapping T : Pn →Pn is
linear.

(a) T(p(x)) = p(x + 1)

(b) T(p(x)) = p(x) + 1

31. Let v1, v2, and v3 be vectors in a vector space V, and let
T : V →R3 be a linear transformation for which

T(v1) = (1, −1, 2), T(v2) = (0, 3, 2),

T(v3) = (−3, 1, 2)

Find T(2v1 − 3v2 + 4v3).

Working with Proofs

32. Let {v1, v2, . . . , vn} be a basis for a vector space V, and let
T : V →W be a linear transformation. Prove that if

T(v1) = T(v2) = · · · = T(vn) = 0

then T is the zero transformation.

33. Let {v1, v2, . . . , vn} be a basis for a vector space V, and let
T : V →V be a linear operator. Prove that if

T(v1) = v1, T(v2) = v2, . . . , T(vn) = vn

then T is the identity transformation on V.

34. Prove: If {v1, v2, . . . , vn} is a basis for a vector space V and
w1, w2, . . . , wn are vectors in a vector space W , not necessarily
distinct, then there exists a linear transformation T : V →W

such that

T(v1) = w1, T(v2) = w2, . . . , T(vn) = wn

True-False Exercises

TF. In parts (a)–(i) determine whether the statement is true or
false, and justify your answer.

(a) If T(c1v1 + c2v2) = c1T(v1) + c2T(v2) for all vectors v1 and v2

in V and all scalars c1 and c2, then T is a linear transformation.

(b) If v is a nonzero vector in V, then there is exactly one linear
transformation T : V →W such that T(−v) = −T(v).

(c) There is exactly one linear transformation T : V →W for
which T(u + v) = T(u − v) for all vectors u and v in V.

(d) If v0 is a nonzero vector in V, then the formula T(v) = v0 + v
defines a linear operator on V.

(e) The kernel of a linear transformation is a vector space.

(f ) The range of a linear transformation is a vector space.

(g) If T : P6 →M22 is a linear transformation, then the nullity of
T is 3.

(h) The function T : M22 →R defined by T(A) = det A is a linear
transformation.

(i) The linear transformation T : M22 →M22 defined by

T(A) =
[

1 3
2 6

]
A

has rank 1.


